IC-Scheduling Theory: A New Scheduling Paradigm for Internet-Based Computing

Gennaro Cordasco University of Salerno, Italy

Collaborators: Arnold L. Rosenberg Greg Malewicz

Univ. of Massachusetts Amherst Google Inc.

AEOLUS Workshop on Scheduling

March 8-9, 2007 - Nice, France

Outline

Motivation

The Internet-Based Computing Pebble Game Decomposition-Based Scheduling Theory

- Priority Relation
- Dags Composition

Expanding the repertoire of building-block dags

- Planar Bipartite Trees
- Exploiting Duality when Scheduling Dags
- The ICO-Sweep Algorithm

Familiar Computations with IC-Optimal Schedules Project in Progress

Motivation

- Internet-Based computing platform
 - Web Computing
 - Grid Computing
 - P2P Computing

Why Internet-Based Computing?

- Remuneration (Commercial computational grids)
- Reciprocation (Open computational grids)
- Altruism (e.g. FightAids@home)
- Curiosity (e.g. Seti@home)

Internet-Based Computing (IC)

The "*owner*" of a massive job enlists the aid of remote *clients* to compute the job's tasks.

The owner (server) allocates tasks to clients one task at a time.

A client receives its (k + 1)-th task after returning the results from its k-th task.

Challenges in Internet-Based Computing

Focus on jobs that have inter-task dependencies (modeled as *dags*) we want to enhance their utilization.

Unfortunately, IC platforms are characterized by a temporal unpredictability: communication takes place over the internet remote clients are not dedicated, hence can be unexpectedly slow

Temporal unpredictability precludes use of "standard" strategies that were developed for older platform.

An Avenue of Idealization

• <u>Fact</u>

Without further assumption, adversarial Clients can confute any strategy the Server adopts.

- <u>Fact</u> (Buyya-Abramson-Giddy, Kondo-Casanova-Wing-Berman, Sun-Wu) Monitoring client's past performance and present resources allows one to:
 - mitigate the degree of temporal unpredictability;
 - match task complexity to client resources.
- <u>Idealization</u>

Via monitoring, one can "approximately" ensure the temporal unpredictability of clients affects <u>the timing</u>, but <u>not the order</u> of task executions.

AEOLUS Workshop on Scheduling

The Formal Idealization

• <u>Assumption:</u> Tasks are executed in the order of allocation.

This assumption allows us to:

- let "time" be event-driven (execute a node at each "step")
- derive scheduling guidelines that are totally under control of the Server.

The Computation-dag ${\cal G}$

A $dag \mathcal{G}=(\mathcal{N},\mathcal{A})$ is used to model a computation (computation-dag):

- each node $v \in \mathcal{N}$ represents a task in the computation;
- an arc $(u \rightarrow v) \in \mathcal{A}$ represents the dependence of task v on task u: v cannot be executed until u is.
- Given an arc $(u \rightarrow v) \in A$, *u* is *parent* of *v*, and *v* is *child* of *u* in *G*. Each parentless node of *G* is a *source* (node), and each childless node is a *sink* (node).

Our Overall Goal

Determine how to schedule a <u>DAG of tasks</u> is such a way that

Informally

- the danger of gridlock is <u>lessened</u>
- the utilization of available client resources is <u>enhanced</u>

Formally

• the number of tasks that are eligible for allocation is maximized at every step of the computation

The IC Pebble Game

The Players

- A single Server, S (the owner)
- A (finite or infinite) set of Clients, $C_1, C_2, ...$

S has unlimited supplies of two types of *Pebbles*:

- ELIGIBLE pebbles, whose presence indicates a task eligible for execution
- EXECUTED pebbles, whose presence indicates an executed task

The IC Pebble Game

Rules of the Game

1. S begins by placing an ELIGIBLE pebble on each unpebbled source of \mathcal{G} .

The IC Pebble Game

Rules of the Game

- 1. S begins by placing an ELIGIBLE pebble on each unpebbled source of \mathcal{G} .
- 2. At each step, S
 - selects a node that contains an ELIGIBLE pebble,
 - replaces that pebble by an **EXECUTED** pebble,
 - places an ELIGIBLE pebble on each unpebbled node of \mathcal{G} all of whose parents contain EXECUTED pebbles.

unpebbled

March 8-9, 2007 - Nice, France

IC Quality/Optimality of a *Dag*-Schedule

The *IC quality* of a schedule for a *dag*:

• the rate of producing ELIGIBLE nodes - the larger, the better.

A schedule for a dag is *IC optimal* (ICO):

• It maximizes the number of ELIGIBLE nodes for all steps.

How Important is IC Quality?

• Consider the following *dag*:

Non-optimal schedule: Never more than 2 ELIGIBLE nodes

AEOLUS Workshop on Scheduling

Optimal schedule: Roughly $t^{1/2}$ ELIGIBLE nodes at step t

Optimality is not always possible

For each step t of a play of the Game on a dag \mathcal{G} under a schedule Σ : $E_{\Sigma}(t)$ denotes the number of nodes of \mathcal{G} that contain ELIGIBLE pebbles at step t.

Consider the following dag:

- \forall schedule $\Sigma E_{\Sigma}(0) = 3;$
- $\max_{\Sigma} E_{\Sigma}(1) = E_{\Sigma'}(1) = 3 \text{ (where } \Sigma' = (s_1, s_2, s_3) \text{ or } (s_1, s_3, s_2))$
- but $E_{\Sigma'}(2)=2$
- However, $\max_{\Sigma} E_{\Sigma}(2) = E_{\Sigma''}(2) = 3$ (where $\Sigma'' = (s_2, s_3, s_1)$ or (s_3, s_2, s_1))

No schedule maximal at step 1 is maximal at step 2.

ELIGIBLEEXECUTED

unpebbled

March 8-9, 2007 - Nice, France

IC-Optimal Schedules for Common Dags

• <u>Theorem.</u> [MRY06] an evolving mesh-dag (2- or 3-D) A schedule for a reduction-mesh a reduction-tree an FFT dag

is IC optimal iff is parent oriented.

Parent oriented: A node's parents are executed sequentially.

- Meshes: level by level, sequentially across each level
- Tree-dags: in "sibling pairs" (nodes that share a child)
- FFT-dags: in "butterfly pairs" (nodes that share two children)

Decomposition-Based Scheduling Theory

Construct Dags from schedulable "building blocks"

1. Choose *bipartite* "building block" *dags* that have optimal schedules.

The Priority relation

Let two dag \mathcal{G}_1 and \mathcal{G}_2 respectively admit an IC optimal schedule Σ_1 and Σ_2 then

 $\mathcal{G}_1 \triangleright \mathcal{G}_2$ means that the schedule Σ that entirely execute \mathcal{G}_1 's *non-sinks* and then entirely execute \mathcal{G}_2 's *non-sinks* is at least as good as any other schedule that execute both \mathcal{G}_1 and \mathcal{G}_2 ($\mathcal{G}_1 + \mathcal{G}_2$).

Lemma. [MRY06] *The relation* ▷ *is transitive*

Dag Composition

Let \mathcal{G}_1 and \mathcal{G}_2 two *dags*, the composition of \mathcal{G}_1 and \mathcal{G}_2 is obtained by merging some *k* sources of \mathcal{G}_2 with some *k* sinks of \mathcal{G}_1 .

The *dag* obtained is *composite of type* $\mathcal{G}_1 \uparrow \mathcal{G}_2$.

Composition is associative

Dag Composition

<u>Theorem.</u> [MRY06] If the dag \mathcal{G} is a composition of connected bipartite dags $\{\mathcal{G}_i\}_{1 \leq i \leq n}$, of type $\mathcal{G}_1 \uparrow \mathcal{G}_2 \uparrow \ldots \uparrow \mathcal{G}_n$

and if

 $\mathcal{G}_{_1} \rhd \mathcal{G}_{_2} \rhd \ldots \rhd \mathcal{G}_{_n} \ (\mathcal{G} \ is \ a \rhd -\text{linear composition})$

then executing \mathcal{G} by executing the \mathcal{G}_i in \triangleright -order is IC optimal.

IC-Optimality via Dag-Decomposition

- The "real" problem is not to *build* a computation-*dag* but rather to execute a given one
- In [MRY06] a framework which allows to convert a "real" *dag* into a *simplified* and *decomposed* one has been provided.

AEOLUS Workshop on Scheduling

March 8-9, 2007 - Nice, France

Expanding the repertoire of building-block dags

Planar Bipartite Trees (PBT)

A sequence of positive numbers is zigzagged if it alternates integers and reciprocals of integers, with all integers exceeding 1. For any zigzagged sequence δ , the δ -Planar Bipartite Tree (PBT, for short), denoted $\mathcal{P}[\delta]$, is denoted inductively as follows: For each d > 1:

- $\mathcal{P}[d]$ is the (single-source) out-degree-d W-dag $\mathcal{W}[d]$, i.e., the bipartite dag that has one source, d sinks, and d arcs connecting the source to each sink.
- $\mathcal{P}[1/d]$ is the (single-sink) in-degree-d M-dag $\mathcal{M}[d]$, i.e., the bipartite dag that has one sink, d sources, and d arcs connecting each source to the sink.

Expanding the repertoire of building-block dags

Planar Bipartite Trees (PBT)

For each zigzagged sequence d and each d > 1: If δ ends with a reciprocal, then $\mathcal{P}[\delta, d]$ is obtained by giving d new sinks to $\mathcal{P}[\delta]$, with $\mathcal{P}[\delta]$'s rightmost source as their common parent.

If δ ends with an integer, then $\mathcal{P}[\delta, 1/d]$ is obtained by giving d new sources to $\mathcal{P}[\delta]$, with $\mathcal{P}[\delta]$'s rightmost sink as their common child.

$$\mathcal{P}[1/4,3,1/3,3,1/2,2,1/4,3,1/2]$$

On Scheduling Strands IC-Optimally

<u>Theorem.</u> Every sum of PBT-Strands admits an ICoptimal schedule.

- Let Src(S) denote S's sources

- For $X \in Src(S)$, e(X;S) denotes the number of sinks of S that are rendered ELIGIBLE when precisely the sources in X are EXECUTED.
- For each $u \in \operatorname{Src}(\mathcal{S})$
 - For any $k \in [1, n], u(k) = e(\{u, ..., u + k 1\}; S)$

$$- V_u = \langle u(1), \dots, u(n) \rangle$$

- Order the vectors V_1, \dots, V_n lexicographically, using the notation $V_a \ge_L V_b$ to denote this order.
- $\begin{array}{ll} & \text{A source } s \in \operatorname{Src}(\mathcal{S}) \text{ is maximum if } \operatorname{V}_s \geq_{\operatorname{L}} \operatorname{V}_{s'} \text{ for all } s' \in \operatorname{Src}(\mathcal{S}). \end{array}$

The greedy schedule $\Sigma_{\mathcal{S}}$

The greedy schedule Σ_{S} for S operates as follows.

1. $\Sigma_{\mathcal{S}}$ executes any maximum $s \in \operatorname{Src}(\mathcal{S})$.

- 2. Σ_{S} removes from S the just-executed source s and all sinks having s as their only parent. This converts S to the sum of PBT-strands S'
- 3. Σ_{S} recursively executes S' using schedule $\Sigma_{S'}$.

The schedule Σ_{S} *is IC optimal for* S

March 8-9, 2007 - Nice, France

The greedy schedule Σ_S : An example

Consider the dag $S = \mathcal{P}[4, 1/2, 2] + \mathcal{P}[3, 1/2, 2]$ $V_1 = \langle 3, 5, 5, 5 \rangle, V_2 = \langle 1, 1, 1, 1 \rangle, V_3 = \langle 2, 4, 4, 4 \rangle, V_4 = \langle 1, 1, 1, 1 \rangle, \text{ hence } 1 \text{ is } maximum$ $\Sigma_S \text{ executes } 1$

$$S' = \mathcal{P}[2] + P[3, 1/2, 2]$$

$$V_2 = \langle 2, 2, 2 \rangle, V_3 = \langle 2, 4, 4 \rangle, V_4 = \langle 1, 1, 1 \rangle,$$

hence 3 is maximum

$$\Sigma_{S'} \text{ executes } 3$$

$$\begin{split} \mathcal{S}^{\prime\prime} &= \mathcal{P}[\mathcal{2}] + \mathcal{P}[\mathcal{2}] \\ \mathbf{V}_{\mathcal{2}} &= \langle \mathcal{2}, \mathcal{2} \rangle, \, \mathbf{V}_{\mathcal{4}} &= \langle \mathcal{2}, \mathcal{2} \rangle, \, \text{hence } \mathcal{2} \text{ and } \mathcal{4} \text{ are } \\ \textit{maximum} \end{split}$$

 $\Sigma_{S^{\gamma}}$ executes 2 and then 4 (or viceversa)

AEOLUS Workshop on Scheduling

March 8-9, 2007 - Nice, France

Scheduling-Based Duality

The dual of a dag \mathcal{G} is the dag $\mathcal{G}^{\mathcal{D}}$ that is obtained by reversing all of \mathcal{G} 's arcs

The following results holds:

- For any dag G, given an optimal schedule Σ for G, one can algorithmically derive from Σ an optimal schedule Σ^D for G^D
- 2. Given two dags, \mathcal{G}_1 and \mathcal{G}_2 , if $\mathcal{G}_1 \triangleright \mathcal{G}_2$, then $\mathcal{G}_2^{\mathcal{D}}$ $\triangleright \mathcal{G}_1^{\mathcal{D}}$

Scheduling-Based Duality

Let \mathcal{G} be a dag having n non-sinks and m non-source nodes.

Let Σ be a schedule for \mathcal{G} that execute its non-sink in the order u_1, u_2, \ldots, u_n .

 Σ renders \mathcal{G} 's sinks ELIGIBLE in a sequence of "packets" P_1, P_2, \ldots, P_n (where P_i is the set of non-sources that become eligible when Σ executes u_i).

A schedule for $\mathcal{G}^{\mathcal{D}}$ is dual to Σ if it executes $\mathcal{G}^{\mathcal{D}}$'s sources in an order of the form $[[P_n]], [[P_{n-1}]], \dots, [[P_1]]$

Scheduling-Based Duality

Theorem.

Let the \mathcal{G} dag admit the IC-optimal schedule Σ . Any schedule for \mathcal{P} that is dual to Σ is IC-optimal

$$\begin{split} A_t &= set \mbox{ of sources executed in the} \\ first t steps \mbox{ of } \Sigma \\ B_t &= set \mbox{ of sinks ELIGIBLE after step} \\ t \mbox{ of } \Sigma \end{split}$$

Scheduling-Based Duality (2)

<u>Theorem.</u> For any dag G_1 and $G_2: G_1 \triangleright G_2$ if, and only if, $G_2^{\mathcal{D}} \triangleright G_1^{\mathcal{D}}$

The 26th International Conference on Distributed Computing Systems

July 4-7, 2006 - Lisboa, Portugal

The ICO-Sweep Algorithm

Consider a sequence of $p \ge 2$ disjoint *dags*, $\mathcal{G}_1, \ldots, \mathcal{G}_p$ having respectively n_1, \ldots, n_p non-sinks.

<u>Lemma.</u> If the sum $\mathcal{G} = \mathcal{G}_1 + \mathcal{G}_2 + \cdots + \mathcal{G}_p$ admits an IC-optimal schedule Σ , then, for each $i \in [1, p]$,

- 1. Each G_i admits an IC-optimal schedule Σ_i
- 2. Σ must execute the non-sinks of G that come from G_i in the same order as some IC-optimal schedule Σ_i for G_i .

Algorithm ICO-Sweep on two dags

Algorithm **2-ICO-Sweep**:

- 1. Use the schedules Σ_1 and Σ_2 to construct an $(n_1 + 1) \times (n_2 + 1)$ table \mathcal{E} such that: $(\forall i \in [0, n_1])(\forall j \in [0, n_2]) \mathcal{E}(i, j)$ is the maximum number of nodes of $\mathcal{G}_1 + \mathcal{G}_2$ that can be rendered ELIGIBLE by the execution of *i* non-sinks of \mathcal{G}_1 and *j* non-sinks of \mathcal{G}_2 .
- 2. Perform a left-to-right pass along each diagonal i+j of \mathcal{E} in turn, and fill in the $n_1 \times n_2$ Verification Table \mathcal{V} , as follows.
 - a) Initialize all $\mathcal{V}(i,j)$ to "NO"
 - b) Set $\mathcal{V}(0,0)$ to "YES"
 - c) for each $t \in [1, n_1 + n_2]$:
 - i. for each $\mathcal{V}(i,j)$ with i + j = t: if $(\mathcal{V}(i-1, j) = "YES" \text{ OR } \mathcal{V}(i, j-1) = "YES")$ AND $\mathcal{E}(i, j) = \max_{a+b=i+j} \{\mathcal{E}(a,b)\}$ then set $\mathcal{V}(i, j)$ to "YES"
 - ii. if no entry $\mathcal{V}(i, j)$ with i + j = t has been set to "YES" then HALT and report "There is no IC-optimal schedule."
 - d) HALT and report "There is an IC-optimal schedule."

AEOLUS Workshop on Scheduling

Algorithm ICO-Sweep on two dags

<u>Theorem.</u> Given disjoint dags, \mathcal{G}_1 and \mathcal{G}_2 , having, respectively, n_1 and n_2 non-sinks, Algorithm **2-ICO-Sweep** determines, within time $O(n_1n_2)$:

- 1. whether or not the sum $G_1 + G_2$ admits an IC-optimal schedule; in the positive case, the Algorithm provides such a schedule;
- 2. whether or not either $\mathcal{G}_1 \triangleright \mathcal{G}_2$, or $\mathcal{G}_2 \triangleright \mathcal{G}_1$, or both.

Algorithm ICO-Sweep on multiple dag

<u>Theorem.</u> Given $p \ge 2$ disjoint dags, $\mathcal{G}_1, \mathcal{G}_2, ..., \mathcal{G}_p$, where each \mathcal{G}_i has n_i non-sinks and admits the IC-optimal schedule Σ_i ,

Algorithm **ICO-Sweep** determines, within time $O(\sum_{1 \le i < j \le p} n_i n_j)$:

- 1. whether or not the sum $\mathcal{G}_1 + \mathcal{G}_2 + \dots + \mathcal{G}_p$ admits an IC-optimal schedule; in the positive case, the Algorithm provides such a schedule;
- 2. whether or not $\mathcal{G}_1 \triangleright \mathcal{G}_2 \triangleright \cdots \triangleright \mathcal{G}_p$.

Familiar Computations with ICO Schedules

• Expansive-Reductive Computations

- Example: Numerically integrate F via Trapezoid Rule (linear approx to F) or Simpson's Rule (quadratic approx to F)
- **Out-tree**: generate approximate area in interval; test for quality accept approximation **OR** bisect interval; recurse
- **In-tree**: Accumulate accepted approximate subareas.

Familiar Computations with ICO Schedules

• The Discrete Laplace Transform: Two Algorithms

kth function: $y_k(\omega) = x_0 + x_1 \omega^k + x_2 \omega^{2k} + \dots + x_{n-1} \omega^{(n-1)k}$

Familiar Computations with ICO Schedules

• Matrix Multiplication via Recursion

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \times \begin{pmatrix} E & F \\ G & H \end{pmatrix} = \begin{pmatrix} AE + BG & AF + BH \\ CE + DG & CF + BH \end{pmatrix}$$

Project in Progress

- 1. Extend the priority relation \triangleright to include topological order.
 - Order of composition (rather than \triangleright -priority) may force a schedule to execute \mathcal{G}_1 before \mathcal{G}_2 .
- 2. Determine how to invoke schedules that execute building blocks in an interleaved rather than sequential fashion.
 - *Can now do this for bipartite dags.*
- 3. Experimentally determine the significance of IC-optimality
 - Initial results suggest significant speedup [MFRW06]

Thanks for your attention

Any Questions?

AEOLUS Workshop on Scheduling

March 8-9, 2007 - Nice, France

References

- [R04] A.L. Rosenberg (2004): "On scheduling mesh-structured computations for Internet-based computing". *IEEE Trans. Comput. 53*, 1176–1186.
- [MRY06] G. Malewicz, A.L. Rosenberg and M. Yurkewych (2006): "Toward a theory for scheduling dags in Internet-based computing". *IEEE Trans. Comput. 55*.
- [MFRW06] Grzegorz Malewicz, Ian Foster, Arnold L. Rosenberg and Michael Wilde (2006): "A Tool for Prioritizing DAGMan Jobs and Its Evaluation". *IEEE International Symposium on High Performance Distributed Computing*.
- [CMR07a] G. Cordasco, G. Malewicz and A.L. Rosenberg (2007): "Advances in IC-Scheduling Theory: Scheduling Expansive and Reductive Dags and Scheduling Dags via Duality". *IEEE Transaction on Parallel and Distributed Systems*. (*To appear*)
- [CMR07b] G. Cordasco, G. Malewicz and A.L. Rosenberg (2007): "Applying IC-Scheduling Theory to Familiar Classes of Computations". In Proc. of Workshop on Large-Scale, Volatile Desktop Grids held in conjunction with the IEEE International Parallel & Distributed Processing Symposium, March 30, 2007 Long Beach, California U.S.A. (To appear)

AEOLUS Workshop on Scheduling