IC-Scheduling Theory: A New Scheduling Paradigm for Internet-Based Computing

Gennaro Cordasco
University of Salerno, Italy

Collaborators:
Arnold L. Rosenberg Greg Malewicz

Univ. of Massachusetts Amherst
Google Inc.

Outline

Motivation

The Internet-Based Computing Pebble Game
Decomposition-Based Scheduling Theory

- Priority Relation
- Dags Composition

Expanding the repertoire of building-block dags

- Planar Bipartite Trees
- Exploiting Duality when Scheduling Dags
- The ICO-Sweep Algorithm

Familiar Computations with IC-Optimal Schedules
Project in Progress

Motivation

- Internet-Based computing platform
- Web Computing
- Grid Computing
- P2P Computing

Why Internet-Based Computing?

- Remuneration (Commercial computational grids)
- Reciprocation (Open computational grids)
- Altruism (e.g. FightAids@home)
- Curiosity (e.g. Seti@home)

Internet-Based Computing (IC)

The "owner" of a massive job enlists the aid of remote clients to compute the job's tasks.

The owner (server) allocates tasks to clients one task at a time.

A client receives its $(k+1)$-th task after returning the results from its k-th task.

Challenges in Internet-Based Computing

Focus on jobs that have inter-task dependencies (modeled as dags) we want to enhance their utilization.

Unfortunately, IC platforms are characterized by a temporal unpredictability:
communication takes place over the internet
remote clients are not dedicated, hence can be unexpectedly slow

Temporal unpredictability precludes use of "standard" strategies that were developed for older platform.

An Avenue of Idealization

- Fact

Without further assumption, adversarial Clients can confute any strategy the Server adopts.

- Fact (Buyya-Abramson-Giddy, Kondo-Casanova-Wing-Berman, Sun-Wu) Monitoring client's past performance and present resources allows one to:
- mitigate the degree of temporal unpredictability;
- match task complexity to client resources.
- Idealization

Via monitoring, one can "approximately" ensure the temporal unpredictability of clients affects the timing, but not the order of task executions.

The Formal Idealization

- Assumption: Tasks are executed in the order of allocation.

This assumption allows us to:

- let "time" be event-driven (execute a node at each "step")
- derive scheduling guidelines that are totally under control of the Server.

The Computation-dag \mathcal{G}

A $\operatorname{dag} \mathcal{G}=(\mathcal{N}, \mathcal{A})$ is used to model a computation (computation-dag):

- each node $v \in \mathcal{N}$ represents a task in the computation;
- an $\operatorname{arc}(u \rightarrow v) \in \mathcal{A}$ represents the dependence of task v on task u : v cannot be executed until u is.
- Given an arc $(u \rightarrow v) \in \mathcal{A}, u$ is parent of v, and v is child of u in \mathcal{G}. Each parentless node of \mathcal{G} is a source (node), and each childless node is a sink (node).

Our Overall Goal

Determine how to schedule a $\underline{D A G}$ of tasks is such a way that

Informally

- the danger of gridlock is lessened
- the utilization of available client resources is enhanced Formally
- the number of tasks that are eligible for allocation is maximized at every step of the computation

The IC Pebble Game

The Players

- A single Server, S (the owner)
- A (finite or infinite) set of Clients, $\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots$

S has unlimited supplies of two types of Pebbles:

- ELIGIBLE pebbles, whose presence indicates a task eligible for execution
- EXECUTED pebbles, whose presence indicates an executed task

The IC Pebble Game

Rules of the Game

1. S begins by placing an ELIGIBLE pebble on each unpebbled source of \mathcal{G}.

March 8-9, 2007 - Nice, France

The IC Pebble Game

Rules of the Game

1. S begins by placing an ELIGIBLE pebble on each unpebbled source of \mathcal{G}.
2. At each step, S

- selects a node that contains an ELIGIBLE pebble,
- replaces that pebble by an EXECUTED pebble,
- places an ELIGIBLE pebble on each unpebbled node of \mathcal{G} all of whose parents contain EXECUTED pebbles.ELIGIBLEEXECUTEDunpebbled

IC Quality/Optimality of a Dag-Schedule

The IC quality of a schedule for a dag:

- the rate of producing ELIGIBLE nodes - the larger, the better.

A schedule for a dag is IC optimal (ICO):

- It maximizes the number of ELIGIBLE nodes for all steps.

How Important is IC Quality?

- Consider the following dag:

Non-optimal schedule: Never more than 2
ELIGIBLE nodes

Optimal schedule: Roughly $t^{1 / 2}$
ELIGIBLE nodes at step tELIGIBLEEXECUTEDunpebbled

Optimality is not always possible

For each step t of a play of the Game on a $\operatorname{dag} \mathcal{G}$ under a schedule Σ : $\mathrm{E}_{\Sigma}(t)$ denotes the number of nodes of \mathcal{G} that contain ELIGIBLE pebbles at step t.
Consider the following dag:

- $\quad \forall$ schedule $\Sigma \mathrm{E}_{\Sigma}(0)=3$;
- $\max _{\Sigma} \mathrm{E}_{\Sigma}(1)=\mathrm{E}_{\Sigma^{\prime}}(1)=3\left(\right.$ where $\Sigma^{\prime}=\left(s_{1}, s_{2}, s_{3}\right)$ or $\left.\left(s_{1}, s_{3}, s_{2}\right)\right)$
- but $\mathrm{E}_{\Sigma^{\prime}}(2)=2$
- However, $\max _{\Sigma} \mathrm{E}_{\Sigma}(2)=\mathrm{E}_{\Sigma^{\prime \prime}}(2)=3$ (where $\Sigma^{\prime \prime}=\left(s_{2}, s_{3}, s_{1}\right)$ or $\left.\left(s_{3}, s_{2}, s_{1}\right)\right)$

No schedule maximal at step 1 is maximal at step 2.ELIGIBLEEXECUTEDunpebbled

[^0]
IC-Optimal Schedules for Common Dags

- Theorem. [MRY06] $\left\{\begin{array}{l}\text { an evolving mesh-dag (2- or 3-D) } \\ \text { a reduction-mesh } \\ \text { a reduction-tree } \\ \text { an FFT dag }\end{array}\right\}$
is IC optimal iff is parent oriented.
Parent oriented: A node's parents are executed sequentially.
- Meshes: level by level, sequentially across each level
- Tree-dags: in "sibling pairs" (nodes that share a child)
- FFT-dags: in "butterfly pairs" (nodes that share two children)

Decomposition-Based Scheduling Theory

Construct Dags from schedulable "building blocks"

1. Choose bipartite "building block" dags that have optimal schedules.

Theorem. [MRY06]
Any schedule for these building blocks that executes all sources sequentially is IC optimal

The Priority relation

Let two $\operatorname{dag} \mathcal{G}_{1}$ and \mathcal{G}_{2} respectively admit an IC optimal schedule Σ_{1} and Σ_{2} then
$\mathcal{G}_{1} \triangleright \mathcal{G}_{2}$ means that the schedule Σ that entirely execute \mathcal{G}_{1} 's non-sinks and then entirely execute $\mathcal{G}_{2}{ }^{\text {'s }}$ non-sinks is at least as good as any other schedule that execute both \mathcal{G}_{1} and $\mathcal{G}_{2}\left(\mathcal{G}_{1}+\mathcal{G}_{2}\right)$.
Lemma. [MRY06] The relation \triangleright is transitive

Dag Composition

Let \mathcal{G}_{1} and \mathcal{G}_{2} two dags, the composition of \mathcal{G}_{1} and \mathcal{G}_{2} is obtained by merging some k sources of \mathcal{G}_{2} with some k sinks of \mathcal{G}_{1}.
The dag obtained is composite of type $\mathcal{G}_{1} \Uparrow \mathcal{G}_{2}$.
Composition is associative
Example $\mathcal{M}_{1,2} \Uparrow \mathcal{M}_{2,3} \Uparrow \mathcal{M}_{1,3}$

Dag Composition

Theorem. [MRY06] If the $\operatorname{dag} \mathcal{G}$ is a composition of connected bipartite dags $\left\{\mathcal{G}_{\mathrm{i}}\right\}_{1 \leq i \leq n}$, of type

$$
\mathcal{G}_{1} \Uparrow \mathcal{G}_{2} \Uparrow \ldots \Uparrow \mathcal{G}_{n}
$$

and if

$$
\mathcal{G}_{1} \triangleright \mathcal{G}_{2} \triangleright \ldots \triangleright \mathcal{G}_{n}(\mathcal{G} \text { is a } \triangleright \text {-linear composition })
$$

then executing \mathcal{G} by executing the \mathcal{G}_{i} in \triangleright-order is IC optimal.

IC-Optimality via Dag-Decomposition

- The "real" problem is not to build a computation-dag but rather to execute a given one
- In [MRY06] a framework which allows to convert a "real" dag into a simplified and decomposed one has been provided.

Expanding the repertoire of building-block dags

Planar Bipartite Trees (PBT)

A sequence of positive numbers is zigzagged if it alternates integers and reciprocals of integers, with all integers exceeding 1. For any zigzagged sequence δ, the δ-Planar Bipartite Tree (PBT, for short), denoted $\mathcal{P}[\delta]$, is denoted inductively as follows:
For each $\mathrm{d}>1$:

- $\quad \mathcal{P}[\mathrm{d}]$ is the (single-source) out-degree-d W -dag \mathcal{W} [d], i.e., the bipartite dag that has one source, d sinks, and d arcs connecting the source to each sink.
$-\quad \mathcal{P}[1 / \mathrm{d}]$ is the (single-sink) in-degree-d M-dag $\mathcal{M}[d]$, i.e., the bipartite dag that has one sink, d sources, and d arcs connecting each source to the sink.

Expanding the repertoire of building-block dags

Planar Bipartite Trees (PBT)

For each zigzagged sequence d and each $\mathrm{d}>1$:
If δ ends with a reciprocal, then $\mathcal{P}[\delta, \mathrm{d}]$ is obtained by giving d new sinks to $\mathcal{P}[\delta]$, with $\mathcal{P}[\delta]$'s rightmost source as their common parent.

If δ ends with an integer, then $\mathcal{P}[\delta, 1 / \mathrm{d}]$ is obtained by giving d new sources to $\mathcal{P}[\delta]$, with $\mathcal{P}[\delta]$'s rightmost sink as their common child.

$$
\mathcal{P}[1 / 4,3,1 / 3,3,1 / 2,2,1 / 4,3,1 / 2]
$$

On Scheduling Strands IC-Optimally

Theorem. Every sum of PBT-Strands admits an ICoptimal schedule.

- Let $\operatorname{Src}(\mathcal{S})$ denote \mathcal{S} 's sources

s quar

- For $\mathrm{X} \in \operatorname{Src}(\mathcal{S}), \mathrm{e}(\mathrm{X} ; \mathcal{S})$ denotes the number of sinks of \mathcal{S} that are rendered ELIGIBLE when precisely the sources in X are EXECUTED.
- For each $u \in \operatorname{Src}(\mathcal{S})$
- For any $k \in[1, n], u(k)=\mathrm{e}(\{u, \ldots, u+k-1\} ; \mathcal{S})$
$-\mathrm{V}_{u}=\langle u(1), \ldots, u(n)\rangle$
- Order the vectors $\mathrm{V}_{1}, \ldots, \mathrm{~V}_{n}$ lexicographically, using the notation $\mathrm{V}_{a} \geq_{\mathrm{L}} \mathrm{V}_{b}$ to denote this order.
- A source $s \in \operatorname{Src}(\mathcal{S})$ is maximum if $\mathrm{V}_{s} \geq_{\mathrm{L}} \mathrm{V}_{s^{\prime}}$ for all $s^{\prime} \in$ $\operatorname{Src}(\mathcal{S})$.

The greedy schedule $\Sigma_{\mathcal{S}}$

The greedy schedule $\Sigma_{\mathcal{S}}$ for \mathcal{S} operates as follows.

1. $\Sigma_{\mathcal{S}}$ executes any maximum $s \in \operatorname{Src}(\mathcal{S})$.
2. $\quad \Sigma_{\mathcal{S}}$ removes from \mathcal{S} the just-executed source s and all sinks having s as their only parent. This converts \mathcal{S} to the sum of PBT-strands \mathcal{S}
3. $\Sigma_{\mathcal{S}}$ recursively executes \mathcal{S}^{\prime} using schedule $\Sigma_{\mathcal{S}}$.

The schedule $\Sigma_{\mathcal{S}}$ is IC optimal for \mathcal{S}

The greedy schedule $\Sigma_{\mathcal{S}}$: An example

Consider the dag $\mathcal{S}=\mathcal{P}[4,1 / 2,2]+\mathcal{P}[3,1 / 2,2]$ $\mathrm{V}_{1}=\langle 3,5,5,5\rangle, \mathrm{V}_{2}=\langle 1,1,1,1\rangle, \mathrm{V}_{3}=\langle 2,4,4,4\rangle$, $\mathrm{V}_{4}=\langle 1,1,1,1\rangle$, hence 1 is maximum
 $\Sigma_{\mathcal{S}}$ executes 1
$\mathcal{S}^{\prime}=\mathcal{P}[2]+\mathrm{P}[3,1 / 2,2]$
$\mathrm{V}_{2}=\langle 2,2,2\rangle, \mathrm{V}_{3}=\langle 2,4,4\rangle, \mathrm{V}_{4}=\langle 1,1,1\rangle$,
hence 3 is maximum
$\Sigma_{\mathcal{S}}$ executes 3

$\mathcal{S}^{\prime \prime}=\mathcal{P}[2]+\mathcal{P}[2]$
$\mathrm{V}_{2}=\langle 2,2\rangle, \mathrm{V}_{4}=\langle 2,2\rangle$, hence 2 and 4 are maximum

$\Sigma_{\mathcal{S}}$, executes 2 and then 4 (or viceversa)

Scheduling-Based Duality

The dual of a dag \mathcal{G} is the dag $\mathcal{G}^{\mathcal{D}}$ that is obtained by reversing all of \mathcal{G}^{\prime} s arcs

The following results holds:

1. For any dag \mathcal{G}, given an optimal schedule Σ for \mathcal{G}, one can algorithmically derive from Σ an optimal schedule $\Sigma^{\mathcal{D}}$ for $\mathcal{G}^{\mathcal{D}}$
2. Given two dags, \mathcal{G}_{1} and \mathcal{G}_{2}, if $\mathcal{G}_{1} \triangleright \mathcal{G}_{2}$, then $\mathcal{G}_{2}{ }^{\mathcal{D}}$ $\triangleright \mathcal{G}_{1}{ }^{\mathcal{D}}$

Scheduling-Based Duality

Let \mathcal{G} be a dag having n non-sinks and m non-source nodes.
Let Σ be a schedule for \mathcal{G} that execute its non-sink in the order $u_{1}, u_{2}, \ldots, u_{n}$.
Σ renders \mathcal{G} 's sinks ELIGIBLE in a sequence of "packets" $\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots, \mathrm{P}_{n}$ (where P_{i} is the set of non-sources that become eligible when Σ executes u_{i}).
A schedule for $\mathcal{G}^{\mathcal{D}}$ is dual to Σ if it executes $\mathcal{G}^{\mathcal{D}}$'s sources in an order of the form $\left[\left[\mathrm{P}_{n}\right]\right],\left[\left[\mathrm{P}_{n-1}\right]\right], \ldots,\left[\left[\mathrm{P}_{1}\right]\right]$

Scheduling-Based Duality

Theorem.

Let the \mathcal{G} dag admit the IC-optimal schedule Σ. Any schedule for $\mathcal{G}^{\mathcal{D}}$ that is dual to Σ is IC-optimal
\mathcal{G}

$A_{t}=$ set of sources executed in the first t steps of Σ $\mathrm{B}_{\mathrm{t}}=$ set of sinks ELIGIBLE after step t of Σ

A_{t} is ICO for \mathcal{G} at step $\left|\mathrm{A}_{\mathrm{t}}\right|$

$\mathrm{V} \backslash \mathrm{B}_{\mathrm{t}}$ is ICO for $\mathcal{G}^{\mathcal{D}}$ at step $\mathrm{m}-\left|\mathrm{B}_{\mathrm{t}}\right|$

Scheduling-Based Duality (2)

Theorem. For any dag \mathcal{G}_{1} and $\mathcal{G}_{2}: \mathcal{G}_{1} \triangleright \mathcal{G}_{2}$ if, and only if, $\mathcal{G}_{2}{ }^{\mathcal{D}} \triangleright \mathcal{G}_{1}{ }^{D}$

An Example

$\mathcal{W}[3]$
$\mathcal{W}[2]$

$\mathcal{M}[3]$

$\mathcal{M}[2]$

The ICO-Sweep Algorithm

Consider a sequence of $p \geq 2$ disjoint dags, $\mathcal{G}_{1}, \ldots, \mathcal{G}_{p}$ having respectively n_{1}, \ldots, n_{p} non-sinks.

Lemma. If the sum $\mathcal{G}=\mathcal{G}_{1}+\mathcal{G}_{2}+\cdots+\mathcal{G}_{p}$ admits an IC-optimal schedule Σ, then, for each $i \in[1, p]$,

1. Each \mathcal{G}_{i} admits an IC-optimal schedule Σ_{i}
2. Σ must execute the non-sinks of \mathcal{G} that come from \mathcal{G}_{i} in the same order as some IC-optimal schedule Σ_{i} for \mathcal{G}_{i}.

Algorithm ICO-Sweep on two dags

Algorithm 2-ICO-Sweep:

1. Use the schedules Σ_{1} and Σ_{2} to construct an $\left(n_{1}+1\right) \times\left(n_{2}+1\right)$ table \mathcal{E} such that: $\left(\forall i \in\left[0, n_{1}\right]\right)\left(\forall j \in\left[0, n_{2}\right]\right) \mathcal{E}(i, j)$ is the maximum number of nodes of $\mathcal{G}_{1}+\mathcal{G}_{2}$ that can be rendered ELIGIBLE by the execution of i non-sinks of \mathcal{G}_{1} and j non-sinks of \mathcal{G}_{2}.
2. Perform a left-to-right pass along each diagonal $i+j$ of \mathcal{E} in turn, and fill in the $n_{1} \times n_{2}$ Verification Table \mathcal{V}, as follows.
a) Initialize all $\mathcal{V}(i, j)$ to "NO"
b) Set $\mathcal{V}(0,0)$ to "YES"
c) for each $\mathrm{t} \in\left[1, n_{1}+n_{2}\right]$:
i. for each $\mathcal{V}(i, j)$ with $i+j=t: \quad$ if $(\mathcal{V}(i-1, j)=$ "YES" $\mathrm{OR} \mathcal{V}(i, j-1)=$ "YES" $)$ AND $\mathcal{E}(i, j)=\max _{a+b=i+j}\{\mathcal{E}(a, b)\}$ then set $\mathcal{V}(i, j)$ to "YES"
ii. if no entry $\mathcal{V}(i, j)$ with $i+j=t$ has been set to "YES" then HALT and report "There is no IC-optimal schedule."
d) HALT and report "There is an IC-optimal schedule."

Algorithm ICO-Sweep on two dags

Theorem. Given disjoint dags, \mathcal{G}_{1} and \mathcal{G}_{2}, having, respectively, n_{1} and n_{2} non-sinks, Algorithm 2-ICO-Sweep determines, within time $O\left(n_{1} n_{2}\right)$:

1. whether or not the sum $\mathcal{G}_{1}+\mathcal{G}_{2}$ admits an IC-optimal schedule; in the positive case, the Algorithm provides such a schedule;
2. whether or not either $\mathcal{G}_{1} \triangleright \mathcal{G}_{2}$, or $\mathcal{G}_{2} \triangleright \mathcal{G}_{1}$, or both.

Algorithm ICO-Sweep on multiple dag

Theorem. Given $p \geq 2$ disjoint dags, $\mathcal{G}_{1}, \mathcal{G}_{2}, \ldots, \mathcal{G}_{p}$, where each \mathcal{G}_{i} has n_{i} non-sinks and admits the IC-optimal schedule Σ_{i},
Algorithm ICO-Sweep determines, within time $\mathrm{O}\left(\Sigma_{1 \leq i<j \leq p} n_{i} n_{j}\right)$:

1. whether or not the sum $\mathcal{G}_{1}+\mathcal{G}_{2}+\cdots+\mathcal{G}_{p}$ admits an IC-optimal schedule; in the positive case, the Algorithm provides such a schedule;
2. whether or not $\mathcal{G}_{1} \triangleright \mathcal{G}_{2} \triangleright \cdots \triangleright \mathcal{G}_{p}$.

Familiar Computations with ICO Schedules

- Expansive-Reductive Computations

Example: Numerically integrate F via Trapezoid Rule (linear approx to F) or Simpson's Rule (quadratic approx to F)
Out-tree: generate approximate area in interval; test for quality accept approximation OR bisect interval; recurse
In-tree: Accumulate accepted approximate subareas.

Familiar Computations with ICO Schedules

- The Discrete Laplace Transform: Two Algorithms k th function: $y_{k}(\omega)=x_{0}+x_{1} \omega^{k}+x_{2} \omega^{2 k}+\cdots+x_{n-1} \omega^{(n-1) k}$

Familiar Computations with ICO Schedules

- Matrix Multiplication via Recursion

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \times\left(\begin{array}{ll}
E & F \\
G & H
\end{array}\right)=\left(\begin{array}{cc}
A E+B G & A F+B H \\
C E+D G & C F+B H
\end{array}\right)
$$

Project in Progress

1. Extend the priority relation \triangleright to include topological order.

- Order of composition (rather than \triangleright-priority) may force a schedule to execute \mathcal{G}_{1} before \mathcal{G}_{2}.

2. Determine how to invoke schedules that execute building blocks in an interleaved - rather than sequential - fashion.

- Can now do this for bipartite dags.

3. Experimentally determine the significance of IC-optimality

- Initial results suggest significant speedup [MFRW06]

Thanks for your attention

References

- [R04] A.L. Rosenberg (2004): "On scheduling mesh-structured computations for Internet-based computing". IEEE Trans. Comput. 53, 1176-1186.
- [MRY06] G. Malewicz, A.L. Rosenberg and M. Yurkewych (2006): "Toward a theory for scheduling dags in Internet-based computing". IEEE Trans. Comput. 55.
- [MFRW06] Grzegorz Malewicz, Ian Foster, Arnold L. Rosenberg and Michael Wilde (2006): "A Tool for Prioritizing DAGMan Jobs and Its Evaluation". IEEE International Symposium on High Performance Distributed Computing.
- [CMR07a] G. Cordasco, G. Malewicz and A.L. Rosenberg (2007): "Advances in IC-Scheduling Theory: Scheduling Expansive and Reductive Dags and Scheduling Dags via Duality". IEEE Transaction on Parallel and Distributed Systems. (To appear)
- [CMR07b] G. Cordasco, G. Malewicz and A.L. Rosenberg (2007): "Applying IC-Scheduling Theory to Familiar Classes of Computations". In Proc. of Workshop on Large-Scale, Volatile Desktop Grids held in conjunction with the IEEE International Parallel \& Distributed Processing Symposium, March 30, 2007 Long Beach, California U.S.A. (To appear)

[^0]: March 8-9, 2007 - Nice, France

