Approximation Algorithms for

2-Dimensional Packing Problems

Klaus Jansen

Universitat Kiel

\ Overview |

Introduction

Algorithms NFDH, FFDH
Algorithm by Kenyon, Remila
Algorithm by Jansen, Solis-Oba

Open problems

‘ZD packing problem I

Given:
e n rectangles R; = (w;, h;) of width w; < 1 and height h; < 1,

e a strip of width 1 and unbounded height.

Problem: pack the n rectangles into the strip (without overlap and

rotation) while minimizing the total height used.

Complexity: NP-hard (contains bin packing as special case).

‘ Example I

1

R, = (7/20,9/20), Ry = (3/10,1/4), Ry = (2/5,1/5),
Ry, =(1/4,1/5), Rs = (1/4,1/10), Rg = (1/5,1/10). Here we
have OPT((Ry,. .., Rg)) = h(Ry) = 9/20.

‘Application I I

e Cutting Stock : cutting patterns of objects out of a large strip of

material (like cloth, paper or steel).

e Goal: minimize the waste of material.

‘Application | I

e Scheduling : compute a schedule for a set of jobs each requiring
a certain number of resources (machines, processors or memory

locations).

e Goal: minimum length of the schedule (minimum makespan).

‘Application |1 I

e VLSI Design : placement of modules on a chip.

e Goal: minimum area of the chip.

‘Approximation algorithms I

for an optimization problem are methods which for each instance L of
the problem compute efficiently a feasible solution with provable

performance guarantee.

We compare

A(L) the height computed by algorithm A.
OPT(L) the minimum height among all solutions.

‘Absolute performance ratio I

Worst Case :

For all instances L we have:

A(L) < aOPT(L)

Goal: a > 1 should be close to 1.

‘Algorithm I: NFDH I

Here we have NFDH (L) = 3/4.

10

‘Algorithm II: FFDH I

Here we have FF'DH (L) = 13/20.

11

‘Absolute performance ratio I

A(L) <aOPT(L) for all L

3
2.7
2.0
2

NFDH (Coffman et al.)
FFDH (Coffman et al.)
(Sleator)

(Schiermeyer, Steinberg)

12

‘Asymptotic performance ratio I

A(L) <aOPT(L)+b for al L

Goal: Ratio a close to 1.

An AFPTAS is a family of approximation algorithms {Ae\e > O}
where A.(L) < (1 + ¢)OPT(L) + b (and b does not depend on

OPT(L)).

13

‘Asymptotic performance ratio I

A(L) <aOPT(L)+b for all L

2

1.7
4/3
5 /4
14 ¢

NFDH (Coffman et al.)
FFDH (Coffman et al.)
(Golan)

(Baker et al.)

AFPTAS (Kenyon, Remila)

14

‘Algorithm by Kenyon, Remila I

Theorem: (Kenyon, Remila, FOCS 1996)

There is an algorithm A which, given a list L of n rectangles and a

positive number ¢, produces a packing of L into a strip of width 1 and
height

A(L) < (14 €)OPT(L) + 4/,

The running time of A is polynomial in and 1/6.

15

‘I\/Iain iIdeas of the algorithm I

(a) partition the list L into narrow and wide rectangles,
(b) round the wide rectangles to obtain a constant number of widths,
(c) solve a linear program to pack the wide rectangles,

(d) use a modified version of NFDH to pack the narrow rectangles.

16

€

/

L’I”LCLT"I"O’LU

‘Partition of L into wide and narrow rectangles I

Lwide — {(xay) c L ‘ x > 6/}
Lnarrow — {(xay) c L ‘ T < 6/}

17

‘Rounding of the wide rectangles I

Round up each rectangle in group 7 to the widest rectangle in group %.

This leaves a constant number m' < m = 4/62 of widths.

18

‘Configurations I

e a configuration C'is a multiset {ozc,l LW, .. , O/

widths with total sum » . acw; < 1,

e ((; denotes the number of occurrences of width wy; in

configuration C.

. w

/
m/

} of

19

‘ Example I

- 2.75

1.75

Type A: 4 rectangles with width 3/7 and height 1,
Type B: 4 rectangles with width 2/7 and height 3 /4.

20

‘ Configurations I

- 2.75

1.75

1
0.75
0
1. configuration with 2 type A rectangles:

2. configuration with 1 type A and 2 type B rectangles:
Coy=41:3/7,2:2/7}.

‘ Linear program I

Use for each configuration C' a positive variable xo~ > 0 that

represents the total height of configuration C' in the solution.

Objective function: Zc T 1S the total height of the packing.

22

‘ Important inequality I

(3; the sum of the heights of all rectangles with width w;

ac; the number of occurrences of w; in configuration C'.

Inequality: » ,acire > Bifori=1,...,m'

ldea: The configurations must reserve enough space for the

rectangles with width w?.

23

‘ Linear program (LP) I

min > .o Xc
suchthat > ~acxc >0 i=1,...,m (1)
iYe, Z 0

Notice: this is a relaxation of the 2.) packing problem (implicitly we

allow to cut rectangles into pieces).

24

‘Step | (space generated by LP) I

x] + x5+ x5+ 3

]+ x5 + 2

r]+ 1

25

‘Step Il (placing the wide rectangles) I

xr] + x5+ a5+ 3

T+ x5+ 2

x] + 1

26

‘Step Il (after placing all wide rectangles) I

r] + x5+ a5+ 3

T+ x5+ 2

x] + 1

27

‘Step IV (adding the narrow rectangles) I

x] + x5+ a5+ 3

T+ x5+ 2

x] + 1

28

\ New Result |

Theorem: (Jansen, Solis-Oba 2006)

There is an approximation algorithm A, which computes a packing

into a strip of width 1 and height

A(L) < (14 e)OPT(L) + 1

forany € > 0.

29

‘ZD knapsack problem I

Given:

e n rectangles R; = (wj;, h;) of width w; < 1, height h; < 1 and
profit p; > 0.

Find: asubset R C {Ry,..., R,} which can be packed into a
square |0, 1] x [0, 1].

Goal: maximize the total profit ZRieR, Ds.

30

‘ Example I

Ry =(1/2,1/2), Ry = (2/5,7/20), Ry = (4/5,1/4)
Ry = (1/5,13/20), Rs = (7/10,1/5), Rg = (4/5,1/3) with
pi = L

\ New result |

Theorem: (Jansen, Solis-Oba 2006) There is an algorithm B which
finds a subset R C { Ry, ..., R,} that can be packed into a
rectangle of width 1 and height 1 + € and has total profit

B(L) > (1 —) OPT(L),

where O PT'(L) is the maximum profit among all subsets (that fit into
a square [0, 1] x [0, 1]).

32

‘Main ideas for 2. knapsack problem I

(a) eliminate a group of rectangles (with low profit) of width or height
within [6°, 6.

(b) partition the rectangles into tall and short rectangles and into wide

and narrow rectangles.

(c) round up the height of each tall rectangle (with h; > 0) to a

multiple of 52 and move these rectangles vertically.

33

‘Rounding of tall rectangles I

115

1420

34

‘Container for short rectangles I

height

Y

width

Each container contains at least one short, wide rectangle. Therefore,

there is only a constant number of such containers.

35

\ Further ideas |

(a) pack short, wide rectangles only in containers,

(b) determine a constant number K of tall rectangles with highest

profit
(c) compute packings for the K tall rectangles and the containers,

(d) use alinear program to place the remaining tall and short,

narrow rectangles.

36

‘Packing of the K tall rectangles and containers I

A

1420

37

‘Adding the other rectangles I

A

1420

38

‘New 2D packing algorithm | I

(1) use the algorithm by Steinberg to pack L into a strip of height
v < QOPTHeight(L),

(2) guess approximately a value v’ € [v/2, v],

(3) use the 2D knapsack algorithm for the set of rectangles with
scaled height Bi = h; / v, width w; and profit (or area)
pi = hw;.

39

‘ZD packing algorithm Il I

(4) for v" with
OPTHez'ght(L) S ’U/ S (1 -+ E)OPTHez'ght<L)

there is a packing of all scaled rectangles into the square
0, 1] x [0, 1] with total area F' < 1,

(5) our 2D knapsack algorithm packs a subset R’ C R into the
rectangle [0, 1] x [0, 1 + €] with total profit
> (1—€)OPTprofie(L) = (1 —€)F,

The subset R \ R’ with profit or area < e’ < € remains unpacked.

40

‘ZD packing algorithm Il I

(6) pack the subset R \ R’ (using the algorithm by Steinberg) into a
rectangle of width 1 and height < € + 1/7/,

(7) the packing of the scaled rectangles gives a total height of
1+ 2+ 1/

Rescaling generates a total height of at most

(14 2€e)v" + 1

(1+2€)(1 4 €)OPTgeign (L) + 1
(14 5€)OPTrHeignt(L) + 1.

IA A

41

‘Open guestions I

(1) is there an efficient algorithm A for the 2D packing problem with
A(L) S CLOPTHGZ'ght(L)

and a < 27?

(2) is there an efficient algorithm B for the 2D packing problem with
B(L) < (1 + €)OPTyeign(L) + b

and b < 1?

42

