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Université de Paris-Sud, Laboratoire de Recherche en Informatique, CNRS UMR 8623
Bâtiment 490,
F-91405 Orsay Cedex, France

Nous proposons dans cet article une nouvelle version du problème de plus court chemin robuste. L’incertitude, qui ne
concerne que les poids des arcs d’un graphe dans la version initiale, s’applique ici également à la structure même du
graphe. Le problème consiste alors à trouver une séquence de chemins minimisant la somme des poids des chemins
plus la somme des coût de transformation de deux chemins consécutifs. Après avoir formalisé le problème et établi
sa complexité, nous donnons sa formulation mathématique ainsi qu’une relaxation. Nous proposons un algorithme
polynômial pour les instances constituées de deux graphes et dans lesquelles le coût de désinstallation d’un arc est
inférieur à son poids.
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1 Introduction
Recently the introduction of the uncertainty has appeared in numerous applications. This notion captures
the natural evolution of general systems. The complexity lies in the number of parameters that are allowed
to vary in order to cope with the characteristics of the problem studied.

In this context, the Absolute Robust Shortest Path problem consists in finding a path corresponding to
the minimum maximum weight over a set of scenarii. Each scenario corresponds to a pre-determined
set of edge weights. The motivation for studying this problem comes from telecommunications where a
communication network is used to send packets from a given source to a given destination. The aim is
to determine a shortest path between some given source and destination under some criteria (total delay,
congestion, . . . ). The network manager has to choose a robust path where the total delay is acceptable
regardless of the realized congestion [KY97].

The common approach of the robustness consists in finding a robust solution which minimizes the max-
imum regret, i.e., the worst case scenario. Several approaches have been proposed. Averbakh [Ave04] fo-
cuses on minmax regret for optimization over uniform matroid, Ben-Tal, El Ghaoui and Nemirovski [BTN00,
BT, BTNEGR00] work on ellipsoidal uncertainty, Bertismas and Sim [BS04] investigate robust optimiza-
tion with control of the conservation of a solution, Kouvelis and Yu [KY97] focus on minmax regret robust
optimization and Yaman and Karasan [PKY03] also work on absolute and relative robustness for spanning
tree problem.

In Robust Shortest Path problem, the uncertainty is only related to link weights and does not take into
account the possible evolutions of the network topology. Based on the market quick evolutions, telecom-
munication networks may increase and sometimes decrease when operators sell a part of their networks.
Thus, an existing route between two protagonists may appear less profitable after adding new connections
or nodes, and it may have to be reconsidered with the network evolution. Further cost may appear during
this evolution, especially for resource desallocation and re-allocation. Considering this other definition of
robustness, we introduce an alternative problem in which the uncertainty is also related to the structure of
the network itself. Here, routing consists in finding an optimal sequence of paths taking into account the
network topology variations. Moreover, changing existing routing may create local disturbance which can
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be formulated in terms of cost. Thus, a sequence of paths will be optimal if it minimizes its total weight
cost and the number of disturbances. We call this problem Robust Routing in Changing Topologies, RRCT
for short.

We show in Section 2 that this problem is NP-complete even with simplified assumptions and we give
its mathematical formulation and a combinatorial relaxation. In Section 3 we give a polynomial algorithm
for an instance of a two-graph sequence, where the first graph is a simple path and disturbance cost is
simplified. Finally, we draw a conclusion and address open questions in Section 4.

2 Definition
Throughout this paper, networks will be considered as weighted graphs.

2.1 RRCT problem

We consider a sequence of n directed and weighted graphs (Gi)i∈{1,..,n}. Each graph is defined by its set of
edges Ei and its set of vertices Vi. This sequence of graphs is such that Ei ⊂ Ei+1 and Vi ⊆Vi+1 . We note
Gi ⊂ Gi+1. Let ni be the number of nodes of graph Gi and mi its number of edges. In addition, an edge has
an installation cost and an uninstallation cost. We define w : E → N as the weight function, ι : E → N as the
installation cost function and δ : E → N as the uninstallation cost function. Let s and t be a source node and
a destination node respectively. Note also that s and t belong to Gi for any i.

The problem consists in finding a collection of paths (Xi)i∈{1,...n}, one per graph, each linking source node
s to destination node t. In the rest of the paper, Sn denotes the collection (Xi)i∈{1,...,n}. The aim of RRCT
problem is to minimize total weight plus transition cost between consecutive paths. The transition cost is
composed of the uninstallation cost of the subset of edges of Xi which are not in Xi+1 plus the installation
cost of the subset of edges of Xi+1 that are not in Xi. Formally, we have to minimize the following function:

ϕ(Sn) =
n

∑
i=1

∑
x∈Xi

w(x)+ ∑
x∈X1

ι(x)+
n−1

∑
i=1

( ∑
x∈Xi,x6∈Xi+1

δ(x)+ ∑
x∈Xi+1,x6∈Xi

ι(x)) (1)

The Robust Routing in Changing Topologies problem can be formulated as a decision problem:
Robust Routing in Changing Topologies problem (RRCT )
Instance:

n graphs Gi = (Vi,Ei) such that Gi ⊂ Gi+1 ∀i ∈ {1 . . .n−1}
w : E → N, ι : E → N, δ : E → N

two vertices s and t; and an integer b
Question:

Does there exist a sequence Sn of n paths between s and t such that ϕ(Sn) ≤ b?

Theorem 1 ( [BGL05a]) RRCT is NP-complete even for a two-graph sequence and when the first one is a
simple path.

The proof of this theorem is given in [BGL05a]. The reduction is based on Hamiltonian Circuit Prob-
lem [GJ79].

2.2 Mathematical formulation

We now formulate RRCT as a quadratic program with linear constraints. Let xk
i j be the binary variable equal

to 1 if the edge between the nodes i and j of graph Gk is part of path Xk, and 0 otherwise. The objective
function can be formulated as:

ϕ(Sn) =
n

∑
k=1

(

∑
(i, j)∈Ek

w(i j)xk
i j + ∑

(i, j)∈Ek

δ(i j)xk
i j(1− xk+1

i j )+ ∑
(i, j)∈Ek+1

ι(i j)xk+1
i j (1− xk

i j)

)

(2)

RRCT can be formulated as follows:
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(RRCT )
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∑ j∈V xk
i j −∑ j∈V xk

ji =
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



1 i f i = u
−1 i f i = v
0 otherwise

∀k ∈ {1 . . .n} ∀i ∈V (3)

∑(i, j)∈E(H) xk
i j ≤ |H|−1 ∀H ⊂ Gk ∀k ∈ {1 . . .n} (4)

xk
i j ∈ {0,1} ∀i, j ∈Vk ∀k ∈ {1 . . .n}

Constraints 3 represent the classical flow constraints and ensure that the solution contains a path from s
to t within each graph Gi. Constraints 4 eliminate potential circuits. Indeed, some circuits can appear since
the objective function contains negative terms. However, Constraints 4 introduce an exponential number of
constraints.

In the following, we assume that Constraints 4 can be relaxed in order to solve RRCT by direct methods.
It can however be handled within a decomposition scheme where cuts are added if a circuit is detected. The
model then becomes:

(RRCTr)


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∑ j∈V xk
i j −∑ j∈V xk

ji =
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

1 if i = u
−1 if i = v
0 otherwise

∀k ∈ {1 . . .n} ∀i ∈V (5)

xk
i j ∈ {0,1} ∀i, j ∈Vk ∀k ∈ {1 . . .n}

RRCTr is a quadratic 0-1 program problem. It can be solved by several approaches. Among all, tight re-
laxation can be used to obtain good lower bounds. Recent studies, such as Goemans [Goe97] and Rendl [BT-
NEGR00], show the efficiency of semidefinite relaxation for solving quadratic 0-1 programming, namely,
Quadratic Knapsack problem, Max Cut problem. . . . However, we show in [BGL05b] that semidefinite
relaxation can only be used for small instances.

3 Polynomial cases
In this section, we identify two cases in which RRCT turns to be polynomially solvable. The first one is
based on the basic formulation given in the previous section, and the second one presents a case in which a
more efficient algorithm can be used.

3.1 Link between both formulations
Theorem 2 If the optimal solution of RRCTr problem is composed of n paths between s and t, then this
solution is optimal for RRCT problem.

Proof: Let S̃ be the optimal solution of RRCTr and S the optimal solution of RRCT . It is easy to see that
S̃ is an upper bound of RRCT since it is a feasible solution of RRCT problem. It is also a lower bound of
RRCT since it is a feasible solution of RRCTr. 2

This theorem provides a simple way to determine whether our instance belongs to the polynomially
solvable cases. Since the constraints are simply flow constraints and disjointed linearization constraints, the
linearization of the problem induces that the resulting linear program is unimodular, and consequently the
binary solution can be obtained in polynomial time by solving the linear relaxation

We define the following algorithm:

1. Solve the relaxed program RRCTr (5). Let Pi denote part of the solution which is a path between s
and t in graph Gi and Ci denote the part of the solution which is an independent cycle in graph Gi.

2. Return (Pi)i∈{1,...,n}
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3.2 A path and a graph
We showed that RRCT problem is NP-complete in the general case. In this section, we consider the case in
which G1 is a simple path and G2 is a general graph. Since this sub-problem is NP-complete, we consider
furthermore that the uninstallation cost of any edge is lower than its weight.

Let us consider now the following algorithm. First, let us define a new function w′ on the edges of G2 as:
• w′(e) = w(e)+ ι(e) if e 6∈ X1, i.e., e 6∈ G1;

• w′(e) = w(e)−δ(e) otherwise.
At this step, let X2 be the shortest path in G2 using this new function. Since all the weights are positive, X2
exists and can be found by the classical Dijkstra algorithm in O(mn logn) time. It is quite easy to see that
solution (X1 = G1,X2) is optimal for the RRCT problem. Note that, if the weight function w′ is negative,
the previous problem may be solved using the Bellman-Ford algorithm in O(n3) . However, this algorithm
may not find a solution when there exists an absorbent circuit.

4 Conclusion
In this paper, we have shown that the Robust Routing in Changing Topologies problem is NP-complete
and have provided a formulation based on 0-1 quadratic program as well as a combinatorial relaxation.
However, some questions remain open. Indeed, the problem is polynomial when the transition cost are
equals to zero or infinite. On the other hand, we have seen in Theorem 1 that the problem becomes difficult
when the transition costs have a large amplitude. It would be of interest to determine the impact of the
transition functions on the complexity of the problem, e.g., when these functions are constant.
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