Presentation of Open Simulation
Architecture and Open Simulation
Instrumentation Framework

Judicael RIBAULT!
judicael.ribault@sophia.inria.fr

1- MASCOTTE, INRIA, 13S, CNRS, Univ. Nice Sophia, Sophia Antipolis, France

COMRED, March 1, 2010

J. Ribault —i3s— [B=.. mascorte @ EE BWivria

1/30



Outline

e OSA

o Motivations
o Softwares
e Objectives
e Examples
e Conclusion
o OSIF

e Motivations
e Softwares
e Objectives
e Conclusion

J. Ribault —izs— [E- MASCOTTE

2/30



Philosophy

To be or not to be ?

“What is a simulation ?”

@ A representation of a situation with similar but simpler model

o Can easily be manipulated
o Can show the eventual real effects of a given situation

o Computer simulations:

e model real-life or hypothetical situation
e change variables easily

J. Ribault _iBs— mascottE @

3/30



Philosophy

To be or not to be ?

“Do we build our own simulator or reuse an existing one 7"

@ There is no perfect simulator BUT

o All the elements of your perfect simulator already exist.
o if not, build only the missing part !

“Which confidence level can | have in my results 7"

@ More reusing — less validation

“Which credibility in comparing results with others studies 7"

@ More sharing — more credibility

J. Ribault —izs— [E- MASCOTTE @

4/30



Component-based software engineering
CBSE

@ separation of concerns
e better understanding and maintainability
@ similar to object-oriented programming

e but at the general architecture software level
e monolithic executable versus reusable bricks

SRR
membrane — e

external

! o - shared
interface

component

sub—component

binding

content

J. Ribault —izs— [E- MASCOTTE @

5/30



Fractal

@ Primitive Component

o Code Container
o Client-server interactions

Composite component
e Hierarchical grouping
e Strong Isolation
e Shared sub-Component

Dynamic (re)configuration
o Factory & Template Components
e Dynamic bindings

Introspection

Extensibility of non-functional services
e Controllers

@ Architecture Description Language

J. Ribault —izs—

MASCOTTE @

6/30



FractalADL

@ Read Architecture from XML Files
e Read definitions from multiple files

e Each file embeds its own syntax
@ possibly several DTDs (means extension is unlimited)

e Overloading capabilities
@ An XML definition may be partly overloaded by another
@ Default ADL parser handles several concerns

o Attribute settings, Component Naming, Distributed Execution
o Modular, extensible structure (hierarchical comp)

e New concerns may be added
e Existing may be replaced

J. Ribault —izs—

MASCOTTE @

7/30



Aspect-Oriented Programming

OOP |OOP + AOP

Instrumentation X

Instrumentation X

Aspect source

-.{Instrumentation X

AOP J
WEAVER

J. Ribault

. Functional Code

I:l Code to instrument variable X

. Code to instrument variable Y

8/30



Aspect-Oriented Programming

@ Paradigm for modularizing applications with many concerns

o Goals are :
o Separation of concerns
@ AOP instructions are placed in separate source files
o Crosscutting interactions and Dependencies inversion

o Identify particular instructions in an existing Code
o To Apply Pre/Post/Replacement Processings
e To Enrich/Extend existing code

J. Ribault _iBs— mascottE @

9/30



Maven

@ Maven is an Open Source project from Apache

@ Maven manages among other

@ Maven Archetype help starting new project from templates

J. Ribault

Builds
Documentation
Reporting
Dependencies
SCMs

Releases

Distribution

MASCOTTE

10/30



Objectives
And OSA was born ...

@ Separation of modeling concerns
e — component-based framework
@ Separation of simulation concerns
e — layered approach
@ Bridge between concerns
e — aspect-oriented programming
@ Backup and replayability

e — maven project management

e GOAL

o build or reuse existing parts from others simulators and third-party

tools

J. Ribault

MASCOTTE




Open Simulation Architecture

A component-based framework

Component's membrane (Fractal controllers)
Life-Cyde Controller Super Controller

1] |

Binding Controller
Name Controller

Attribute Controller

Simulation Controller
e Component's 22
Interactions tent Interactions g‘ g-
w. simulation engi {mndcdmin'g e Ww. other comps. g E

The Fractal Component Framework

12/30

MASCOTTE @

J. Ribault



Example
P2P system

@ Simulation of a P2P system:

e Components: Peer, Network, Simulator

e Bindings: Peer<->Network, Peer<->Simulator,
Network<->Simulator

o Controls: LocalSimulator
@ Objectives:

e hundreds of thousands of peers, one network, 1 simulator

J. Ribault —izs—

MASCOTTE @

13/30



Annotations

Fraclet

13 @Component

14 @Membrane(controller = "simPrimitive")
15 public class Hello implements HelloItf {
16
17= @Requires(name = "world")
18 private WorldItf world;
19
20= @Controller(value = "simulation-controller")
21 private SimulationControllerAPI simulationController_;
22
23= public void printHello() {
24 simulationController .waiting(10};
25 world.print("Hello"};
26 1
27
28 }
J. Ribault —ims— [B=.. mascorre @ 14/30




Modeling Example

Helloworld

3 =definition name="fr.inria.osa.models.helloworld"=

4
5e <component name="Hello"
6 definition="fr.inria.osa.models.Hello"/>
7
8= <component name="World"
9 definition="fr.inria.osa.models.World"/>
10
11 <binding client="Hello.world" server="World.world" /=
12
13 </definition>
14
J. Ribault 15/30




Modeling Example

Man-in-the-middle

3 <definition name="fr...hellomitm" extends="fr...helloworld":
4

5 <component name="Hello"/>

6 <component name="World"/=>

7

8= =component name="Mitm"

9 definition="fr.inria.osa.models.Mitm"/>

10

11 =binding client="Hello.world" server="Mitm.world" /=
12 =binding client="Mitm.world" server="World.world" /=
13

14 </definition=

J. Ribault 16/30



Modeling Example

Spyware
e ADL:

3 =definition name="fr...hellospy" extends="fr...helloworld">
4
5& <component name="Hello"/>
6
7e <component name="Spy"
8 definition="fr.inria.osa.models.Spy">
a </component=
10=
11= <binding client="Hello.spy" server="Spy.spy" /=
12

13 </definition=
e AOP:

o before(Hello hello): execution(void Hello.printHello()) &&
this(hello){ ...code ...}

J. Ribault —i3s— [f=.. mascorre @

17/30



Modeling Example

All in one

3 =definition name="fr...Allinone"
4 extends="fr...hellomitm, fr...hellospy"=
5 </definition=

J. Ribault —izs— [E.

18/30



Conclusion
What is OSA

@ OSA is a simulator framework

e separation of concerns
e each layer of the simulation could be replaced or improved

@ engine, model, scenario, instrumentation, deployment, ...

o AOP enable bridge between concerns

@ such as between modeling and instrumentation

@ OSA could be used

e to build your perfect simulator
e to conduct simulation studies
e as a testbed for simulation algorithm, methodology, ...

e to learn simulation focusing on a specific concern

J. Ribault _iBs— mascottE @

19/30



Outline

o OSA

o Motivations
e Softwares
o Objectives
e Examples

Conclusion

e OSIF

o Motivations
o Softwares
o Objectives

e Conclusion

J. Ribault MASCOTTE

20/30



Motivation

@ Simple API

e instrumentation and modeling concerns are mixed together

@ useless data — slow down the simulation
@ missing data — need source modification

e consume a lot of disk space / bandwidth
@ Data processing

o filter useful data
o take a long time

e often not reusable

J. Ribault _iBs— mascottE @

21/30



COSMOS

COntext entitieS coMpositiOn and Sharing

@ Component-based framework for managing context data in
ubiquitous applications

@ Instrumentation built as a graph of processing nodes

3 COSMOS entities: collector, processor, policy

e Placement of processors on the context nodes

@ passive/active
@ observation/notification
o blocking/non-blocking

@ Based on Fractal

J. Ribault _iBs— mascottE @

22/30



Objectives

@ Separate instrumentation concern from modeling concern
e — Aspect-Oriented Programming

@ Live process data
e — COSMOS

@ Build reusable processing
e — COSMOS (based on Fractal)

@ Compose instrumentation on demand

e — FractalADL

J. Ribault _iBs— MASCOTTE @ .

23/30



Separation of Concerns

OOP

Instrumentation X

Instrumentation X

OOP + AOP

Aspect source

-.{Instrumentation X

AOP J

WEAVER

J. Ribault

. Functional Code I:l Code to instrument variable X

. Code to instrument variable Y

24/30



Live-processing

Output block notification
T block observation
P1

active observer

T
¥
6 active notifier
7

Peerl Peer2 Peer3

Distributed Simulation

Computer 1 i Computer 2

MASCOTTE @

J. Ribault

25/30



Composition

o COSMOS Based on Fractal

o — FractalADL allow composition by extension and overloading
@ Benefits:

o keep simple

@ — easier to manage and maintain
@ — reuse more

e build complex

J. Ribault _iBs— mascottE @

26/30



Real experiments processing

@ COSMQS is for real applications

o We succesfully use COSMOS for instrumentation and data
processing in simulation

@ Apply the same data processing on real experiment and simulation

e validation of simulation results

e sharing processing — more confidence

J. Ribault —iz3s— MASCOTTE @ =

27/30



conclusion OSIF
@ separation of concerns
o favor model reuse
@ live processing
o save disk space / bandwidth / processing time
@ composition

o build / manage / maintain simple instrumentation and data
processing
e reuse data processing

e build complex data processing by composition
@ apply data processing on real experiment

e reuse data processing

e validate simulation

e confidence increase

J. Ribault _iBs— ? mascottE @

28/30



Conclusion

Actual and Future works

@ OSA actually support

e James Il

o plugins
o DEVS engine

e COSMOS
o Scave (Omnet++ post-processing tool)

o Deployment

o FractalBF (RMI, RESTful, WebService)
e FDF

@ OSA could support in the near future

o YOUR works :)

J. Ribault _iBs— mascottE @

o)

29/30



Conclusion
Thank you

o Contact:

e Olivier Dalle olivier.dalle@sophia.inria.fr

e Judicael Ribault judicael.ribault@sophia.inria.fr

o Website:

o http://osa.inria.fr

J. Ribault _iBs— mascottE @

30/30



