
Presentation of Open Simulation

Architecture and Open Simulation

Instrumentation Framework

Judicael RIBAULT1

judicael.ribault@sophia.inria.fr

1- MASCOTTE, INRIA, I3S, CNRS, Univ. Nice Sophia, Sophia Antipolis, France

COMRED, March 1, 2010

J. Ribault 1/30

Outline

OSA

Motivations
Softwares
Objectives
Examples
Conclusion

OSIF

Motivations
Softwares
Objectives
Conclusion

J. Ribault 2/30

Philosophy
To be or not to be ?

“What is a simulation ?”

A representation of a situation with similar but simpler model

Can easily be manipulated
Can show the eventual real effects of a given situation

Computer simulations:

model real-life or hypothetical situation
change variables easily

J. Ribault 3/30

Philosophy
To be or not to be ?

“Do we build our own simulator or reuse an existing one ?”

There is no perfect simulator BUT

All the elements of your perfect simulator already exist.
if not, build only the missing part !

“Which confidence level can I have in my results ?”

More reusing → less validation

“Which credibility in comparing results with others studies ?”

More sharing → more credibility

J. Ribault 4/30

Component-based software engineering
CBSE

separation of concerns

better understanding and maintainability

similar to object-oriented programming

but at the general architecture software level
monolithic executable versus reusable bricks

sub−component

content

binding

external

interface component
shared

membrane

J. Ribault 5/30

Fractal

Primitive Component

Code Container
Client-server interactions

Composite component

Hierarchical grouping
Strong Isolation
Shared sub-Component

Dynamic (re)configuration

Factory & Template Components
Dynamic bindings

Introspection

Extensibility of non-functional services

Controllers

Architecture Description Language

J. Ribault 6/30

FractalADL

Read Architecture from XML Files
Read definitions from multiple files

Each file embeds its own syntax
possibly several DTDs (means extension is unlimited)

Overloading capabilities

An XML definition may be partly overloaded by another

Default ADL parser handles several concerns

Attribute settings, Component Naming, Distributed Execution
Modular, extensible structure (hierarchical comp)

New concerns may be added
Existing may be replaced

J. Ribault 7/30

Aspect-Oriented Programming

Instrumentat ion X

Instrumentat ion X

Instrumentation Y

Model source Model source

Instrumentat ion X

Instrumentation Y

OOP + AOPOOP
Aspect source

Aspect source

Functional Code Code to instrument variable X

Code to instrument variable Y

AOP
WEAVER

J. Ribault 8/30

Aspect-Oriented Programming

Paradigm for modularizing applications with many concerns

Goals are :
Separation of concerns

AOP instructions are placed in separate source files

Crosscutting interactions and Dependencies inversion

Identify particular instructions in an existing Code
To Apply Pre/Post/Replacement Processings
To Enrich/Extend existing code

J. Ribault 9/30

Maven

Maven is an Open Source project from Apache

Maven manages among other

Builds

Documentation

Reporting

Dependencies

SCMs

Releases

Distribution

Maven Archetype help starting new project from templates

J. Ribault 10/30

Objectives
And OSA was born . . .

Separation of modeling concerns

→ component-based framework

Separation of simulation concerns

→ layered approach

Bridge between concerns

→ aspect-oriented programming

Backup and replayability

→ maven project management

GOAL

build or reuse existing parts from others simulators and third-party
tools

J. Ribault 11/30

Open Simulation Architecture
A component-based framework

The Fractal Component Framework

J. Ribault 12/30

Example
P2P system

Simulation of a P2P system:

Components: Peer, Network, Simulator

Bindings: Peer<->Network, Peer<->Simulator,
Network<->Simulator

Controls: LocalSimulator

Objectives:

hundreds of thousands of peers, one network, 1 simulator

J. Ribault 13/30

Annotations
Fraclet

J. Ribault 14/30

Modeling Example
Helloworld

J. Ribault 15/30

Modeling Example
Man-in-the-middle

J. Ribault 16/30

Modeling Example
Spyware

ADL:

AOP:

before(Hello hello): execution(void Hello.printHello()) &&
this(hello){ . . . code . . . }

J. Ribault 17/30

Modeling Example
All in one

J. Ribault 18/30

Conclusion
What is OSA

OSA is a simulator framework

separation of concerns

each layer of the simulation could be replaced or improved

engine, model, scenario, instrumentation, deployment, . . .

AOP enable bridge between concerns

such as between modeling and instrumentation

OSA could be used

to build your perfect simulator

to conduct simulation studies

as a testbed for simulation algorithm, methodology, . . .

to learn simulation focusing on a specific concern

J. Ribault 19/30

Outline

OSA

Motivations

Softwares

Objectives

Examples

Conclusion

OSIF

Motivations

Softwares

Objectives

Conclusion

J. Ribault 20/30

Motivation

Simple API

instrumentation and modeling concerns are mixed together

useless data → slow down the simulation
missing data → need source modification

consume a lot of disk space / bandwidth

Data processing

filter useful data

take a long time

often not reusable

J. Ribault 21/30

COSMOS
COntext entitieS coMpositiOn and Sharing

Component-based framework for managing context data in
ubiquitous applications

Instrumentation built as a graph of processing nodes

3 COSMOS entities: collector, processor, policy

Placement of processors on the context nodes

passive/active
observation/notification
blocking/non-blocking

Based on Fractal

J. Ribault 22/30

Objectives

Separate instrumentation concern from modeling concern

→ Aspect-Oriented Programming

Live process data

→ COSMOS

Build reusable processing

→ COSMOS (based on Fractal)

Compose instrumentation on demand

→ FractalADL

J. Ribault 23/30

Separation of Concerns

Instrumentat ion X

Instrumentat ion X

Instrumentation Y

Model source Model source

Instrumentat ion X

Instrumentation Y

OOP + AOPOOP
Aspect source

Aspect source

Functional Code Code to instrument variable X

Code to instrument variable Y

AOP
WEAVER

J. Ribault 24/30

Live-processing

C2 C3C1

P1

O3 O5 O6

O2 O4

O1

block noti f icat ion

block observat ion

act ive not i f ier

act ive observer

Computer 1 Computer 2

Distr ibuted Simulat ion

Outpu t

Peer1 Peer2 Peer3

J. Ribault 25/30

Composition

COSMOS Based on Fractal

→ FractalADL allow composition by extension and overloading

Benefits:

keep simple

→ easier to manage and maintain
→ reuse more

build complex

J. Ribault 26/30

Real experiments processing

COSMOS is for real applications

We succesfully use COSMOS for instrumentation and data
processing in simulation

Apply the same data processing on real experiment and simulation

validation of simulation results

sharing processing → more confidence

J. Ribault 27/30

conclusion OSIF

separation of concerns

favor model reuse

live processing

save disk space / bandwidth / processing time

composition

build / manage / maintain simple instrumentation and data
processing

reuse data processing

build complex data processing by composition

apply data processing on real experiment

reuse data processing

validate simulation

confidence increase

J. Ribault 28/30

Conclusion
Actual and Future works

OSA actually support

James II

plugins
DEVS engine

COSMOS

Scave (Omnet++ post-processing tool)

Deployment

FractalBF (RMI, RESTful, WebService)
FDF

OSA could support in the near future

YOUR works :)

J. Ribault 29/30

Conclusion
Thank you

Contact:

Olivier Dalle olivier.dalle@sophia.inria.fr

Judicael Ribault judicael.ribault@sophia.inria.fr

Website:

http://osa.inria.fr

J. Ribault 30/30

