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Context

Many (combinatorial) optimisation problems are NP-hard = no
polynomial-time algorithms to solve them.

WE NEED TO SOLVE THEM.

Several classical approaches:

approximation algorithms;

randomised algorithms;

heuristics.

Drawback: do not give the optimal solution.

WE NEED EXACT ALGORITHMS.
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Two (new) approaches

Exact exponential time algorithm: running time in O(cn) with c as
small as possible. ⇒ if c is small, one can solve large size instances.

Fixed parameter algorithm: running time in f (k)P(n) with

k parameter (well chosen),

f function,

P polynomial.

⇒ if k is small, one can solve.
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Optimisation problem and parameterisation

NP minimisation problem
Instance: x ∈ Σ∗ with Σ a finite alphabet.
Goal: Find min{cost(x , y) | y ∈ sol(x)} with

sol(x) set of solutions of x ;

cost : {(x , y) | y ∈ sol(x)}.

Associated parameterized problem
Instance: x ∈ Σ∗ and an integer k .
Parameter: k.
Question: min{cost(x , y) | y ∈ sol(x)} ≤ k?
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Example 1: Vertex cover

Vertex cover = set of vertices C such that every edge has an
endvertex in C .

Minimum Vertex Cover Problem:
Input: Graph G .
Output: A vertex cover of G of minimum size.

Parameterised Vertex Cover Problem:
Input: Graph G and integer k.
Parameter: k.
Question: Does G have a vertex cover of size (at most) k ?
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Example 2: Maximum Independent Set

independent set = set of pairwise non-adjacent vertices.

Maximum Independent Set Problem:
Input: Graph G .
Output: An independent set of maximum size in G .

Parameterised Independent Set Problem:
Input: Graph G and integer k.
Parameter: k.
Question: Does G have an independent of size (at least) k ?
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Example 3: Minimum Dominating Set

dominating set = set D of vertices such that D ∪ N(D) = V (G ).

Minimum Dominating Set Problem:
Input: Graph G .
Output: A dominating set of minimum size in G .

Parameterised Dominating Set Problem:
Input: Graph G and integer k.
Parameter: k.
Question: Does G have a dominating set of size (at most) k ?
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Example 4: Chromatic Number

colouring = c : V (G )→ S s. t. c(u) 6= c(v), ∀uv ∈ E (G ).

Chromatic Number Problem:
Input: Graph G .
Output: A colouring with minimum number of colours G .

k-Colourability Problem:
Input: Graph G and integer k.
Parameter: k.
Question: Is G k-colourable? (χ(G ) ≤ k?)
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FPT problems

A parameterized problem is Fixed Parameter Tractable if it is
decidable in time f (k)nc .

FPT implies polynomial-time solvable for any fixed k .

Vertex Cover, Independent Set, Dominating Set: OK
Trivial algorithm in O(nk).

Chromatic number is not FPT since 3-colourability is NP-complete.
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Parameterized complexity theory

P ⊆ FPT ⊆ W[1] ⊆ W[2] ⊆ . . . ⊆W[P] ⊆ XP︸ ︷︷ ︸
presumably fixed-parameter intractable

Conjecture FPT 6= W[1], and more generally W[i] 6= W [i + 1]

P = NP ⇒ FPT = W[1]

but the converse seems not to hold.

Examples: Vertex Cover is FPT, Independent Set is W[1],
Dominating Set is W[2]
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Difference between W[1] and W[2]

Independent Set: ∃(x1, . . . , xk), ∀i 6= j , xixj /∈ E

Dominating Set: ∃(x1, . . . , xk), ∀v ∈ V , ∃i , xiv ∈ E or xi = v

One more level of quantifiers for Dominating Set.
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Algorithmic methods for fixed parameter algorithms

Data reduction and problems kernels

Depth-bounded search trees

Color Coding

Iterative compression

Tree decomposition, minor theory
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Data reduction and problems kernels

Observation: If a vertex is incident to more than k edges, it must
be in every vertex cover of size at most k .

Buss’ reduction for Vertex Cover: All vertices with degree > k are
added to the vertex cover.

In the resulting graph G ′ each vertex has degree at most k . Then
iG ′ has a vertex cover of size k ′ ≤ k , then it contains at most
k2 + k vertices and at most k2 edges.

Brute force: check the
(k2+k

k ′

)
possibilities ⇒ algo in time g(k) + n.
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Kernelization

f (k)-kernelization: polynomial-time algorithm
instance (G , k) −→ instance (G ′, k ′) such that:

(G ′, k ′) is equivalent to (G , k);

k ′ ≤ k and |G ′| ≤ f (k).

Kernelization + brute force = O(g(k) + nc) time algo.

Theorem: A parameterized problem is Fixed Parameter Tractable if
and only if it has a kernelization.
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Kernel race

We want kernel but also as small as possible kernels.

Techniques for finding small kernels:

Integer Linear Programming,

Crown decomposition,

...

Techniques for non-existence of small kernel (under complexity
assumptions):

Distillation,

Coloured strengthening,

...
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ILP-formulation of Vertex Cover

Minimise
∑

v∈V xv

Under : xu + xv ≥ 1 ∀uv ∈ E

xv ∈ {0, 1} ∀v ∈ V relaxation 0 ≤ xv ≤ 1

The relaxation has an half-integral solution, i.e. xv ∈ {0, 1/2, 1}.

For t ∈ {0, 1/2, 1}, set Vt = {v ∈ V | xv = t} and Gt = G 〈Vt〉.

Obs: vc(G1/2) ≥ 1
2 |V1/2|.

[Nemhauser et Trotter ’75] There is a minimum vertex cover C of
G such that: V0 ∩ C = ∅ and V1 ⊆ C .
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LP-based kernelization of Vertex Cover

1. Find an optimal solution x of the fractional relaxation.

2. If the weight of x is greater than k, return a “no”-instance.

3. Else return (G1/2, k − |V1|).

By the Observation, |G1/2| ≤ 2(k − |V1|) ≤ 2k .

So, we have a 2k-kernel.
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Depth-bounded search trees

Idea: In polynomial time find a small subset s. t. at least one
element of this subset is part of an optimal solution.

Vertex Cover: small subset = two endvertices of an edge.
⇒ binary tree of depth at most k. Time 2k .n.
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Hardness results for Maximum Independent Set

NP-hard [Karp ’72]

Not approximable within O(n1−ε) unless P = NP
[Zucherman ’06]

No exact O(co(n)) algorithm unless SNP ⊆ SUBEXP
[Impagliazzo,Paturi,Zane ’01]

W[1]-hard [Downey & Fellows ’92]

⇒ The best we can hope for is a O(cn) exact algorithm for some
small constant c ∈]1, 2].
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Race for Maximum Independent Set

O(1.261n) poly-space [Tarjan &Trojanowski ’77]

O(1.235n) poly-space [Jian ’86]

O(1.228n) poly-space, O(1.221n) exp-space [Robson ’86]

better results for sparse graphs [Beigel99, Chen,Kanj &
Xia ’03]

simpler O(1.221n) exp-space [Fomin, Grandoni and
Kratsch ’06]
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New techniques for exact exponential algorithms

Design techniques: Branch and Recharge, Inclusion-Exclusion, ...

Running time analysis techniques: Measure and Conquer, ...
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Reduction rules for Maximum Independent Set

components: C connected component α(G ) = α(C ) + α(G − C ).

dominance: if N[w ] ⊂ N[v ] α(G ) = α(G − v).

folding: if v has 2 neighbours v and w α(G ) = 1 + α(G̃ ).
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a b cc

mirroring: M set of mirrors of v
α(G ) = max{α(G − v −M), 1 + α(G − N[v ])}

u is a mirror of v if d(u, v) = 2 and N(v) \ N(u) is a clique.
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v

u
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Algorithm for Maximum Independent Set

mis(G )
1. if |V (G )| ≤ 1 return |V (G )|;
2. if ∃ component C of G return mis(C ) + mis(G − C );
3. if ∃ v and w s.t. N[w ] ⊂ N[v ] return mis(G − v);
4. if ∃ v s.t. d(v) = 2 return 1 + mis(G̃ );
5. pick a vertex v of max. degree;
6. return max{mis(G − v −M), 1 + mis(G − N[v ])}
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Standard analysis

l.5 & 6 Branching Step
d(v) = 3: when discarding v , we also discard a mirror of v , or at
next step we fold a neighbour of v , so we remove at least 2
vertices; when selecting we remove at least 4 vertices. ⇒
B(n) ≤ B(n − 2) + B(n − 4).

d(v) ≥ 4: we remove at least one or five vertices ⇒
B(n) ≤ B(n − 1) + B(n − 5).

B(n) = O∗(λn) with λ = 1.3247 the largest root of x4 − x2 − 1
and x5 − x4 − 1.

F. Havet MASCOTTE FPT and exponential algo



Measure and conquer

In the standard analysis, measure of a graph: µ(G ) = number of
vertices.

Idea: take into account the fact that reducing the degree has a
positive impact on the long term. (degree 2 vertices are removed
without branching)

New measure: ni : number of vertices of degree i .
αi : weight (in [0, 1]) of every vertex of degree i .

µ′(G ) =
∑
i≥0

αini

We obtain new recurrence relations and by choosing adequate
value of αi , we get B(n) = O∗(1.221n).
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