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Context

Many (combinatorial) optimisation problems are NP-hard = no
polynomial-time algorithms to solve them.

WE NEED TO SOLVE THEM.

Several classical approaches:
@ approximation algorithms;
@ randomised algorithms;
@ heuristics.

Drawback: do not give the optimal solution.

WE NEED EXACT ALGORITHMS.
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Two (new) approaches

Exact exponential time algorithm: running time in O(c") with ¢ as
small as possible. = if ¢ is small, one can solve large size instances.

Fixed parameter algorithm: running time in f(k)P(n) with
@ k parameter (well chosen),
e f function,
@ P polynomial.

= if k is small, one can solve.
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Optimisation problem and parameterisation

NP minimisation problem
Instance: x € * with X a finite alphabet.
Goal: Find min{cost(x, y) | y € sol(x)} with

@ sol(x) set of solutions of x;
e cost : {(x,y) |y € sol(x)}.

Associated parameterized problem

Instance: x € X* and an integer k.
Parameter: k.

Question: min{cost(x,y) | y € sol(x)} < k?
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Example 1: Vertex cover

Vertex cover = set of vertices C such that every edge has an
endvertex in C.

Minimum Vertex Cover Problem:
Input: Graph G.
Output: A vertex cover of G of minimum size.

Parameterised Vertex Cover Problem:

Input: Graph G and integer k.

Parameter: k.

Question: Does G have a vertex cover of size (at most) k 7
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Example 2: Maximum Independent Set

independent set = set of pairwise non-adjacent vertices.

Maximum Independent Set Problem:
Input: Graph G.
Output: An independent set of maximum size in G.

Parameterised Independent Set Problem:

Input: Graph G and integer k.

Parameter: k.

Question: Does G have an independent of size (at least) k ?
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Example 3: Minimum Dominating Set
dominating set = set D of vertices such that D U N(D) = V(G).

Minimum Dominating Set Problem:
Input: Graph G.
Output: A dominating set of minimum size in G.

Parameterised Dominating Set Problem:

Input: Graph G and integer k.

Parameter: k.

Question: Does G have a dominating set of size (at most) k ?
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Example 4: Chromatic Number
colouring = ¢: V(G) — S's. t. c(u) # c(v), Yuv € E(G).

Chromatic Number Problem:

Input: Graph G.

Output: A colouring with minimum number of colours G.
k-Colourability Problem:

Input: Graph G and integer k.

Parameter: k.

Question: Is G k-colourable? (x(G) < k7)
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FPT problems

A parameterized problem is Fixed Parameter Tractable if it is
decidable in time f(k)n°©.

FPT implies polynomial-time solvable for any fixed k.

Vertex Cover, Independent Set, Dominating Set: OK
Trivial algorithm in O(nk).

Chromatic number is not FPT since 3-colourability is NP-complete.
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Parameterized complexity theory

PCFPT C W[1] € W[2] C ... CW[P] CXP

-~

presumably fixed-parameter intractable

Conjecture FPT # W([1], and more generally W[i] # W[i + 1]

P =NP = FPT = WJ[1]
but the converse seems not to hold.

Examples: Vertex Cover is FPT, Independent Set is W[1],
Dominating Set is W[2]
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Difference between W[1] and W|[2]

Independent Set:  3I(x1,...,xk), Vi#j, xixj ¢ E

Dominating Set:  3(x1,...,xx), YveV, i, xveEEorx,=v

One more level of quantifiers for Dominating Set.
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Algorithmic methods for fixed parameter algorithms

Data reduction and problems kernels
Depth-bounded search trees
Color Coding

Iterative compression

Tree decomposition, minor theory
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Data reduction and problems kernels

Observation: If a vertex is incident to more than k edges, it must
be in every vertex cover of size at most k.

Buss' reduction for Vertex Cover: All vertices with degree > k are
added to the vertex cover.

In the resulting graph G’ each vertex has degree at most k. Then
iG' has a vertex cover of size k' < k, then it contains at most
k? + k vertices and at most k> edges.

Brute force: check the (kaJ,rk) possibilities = algo in time g(k) + n.
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Kernelization

f(k)-kernelization: polynomial-time algorithm
instance (G, k) — instance (G’, k)  such that:

e (G, k') is equivalent to (G, k);
o k' <k and |G| < (k).

Kernelization + brute force = O(g(k) + n) time algo.

Theorem: A parameterized problem is Fixed Parameter Tractable if
and only if it has a kernelization.
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Kernel race

We want kernel but also as small as possible kernels.

Techniques for finding small kernels:
@ Integer Linear Programming,
@ Crown decomposition,

Techniques for non-existence of small kernel (under complexity
assumptions):

o Distillation,
@ Coloured strengthening,

mascotte IR,
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[LP-formulation of Vertex Cover

Minimise > oy Xy
Under: x,+x,>1 YuveE
x, € {0,1} Vv eV relaxation0<x, <1

The relaxation has an half-integral solution, i.e. x, € {0,1/2,1}.
For t € {0,1/2,1}, set Vi ={ve V| x, =t} and G = G(V4).
Obs: ve(Gyj2) = \V1/2|

[Nemhauser et Trotter '75] There is a minimum vertex cover C of
G such that: VoNn C=0and V4 C C.
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LP-based kernelization of Vertex Cover

1. Find an optimal solution x of the fractional relaxation.
2. If the weight of x is greater than k, return a “no”-instance.
3. Else return (Gy o, k — |V4]).

By the Observation, |Gy /5| < 2(k —[V1]) < 2k.

So, we have a 2k-kernel.
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Depth-bounded search trees

Idea: In polynomial time find a small subset s. t. at least one
element of this subset is part of an optimal solution.

Vertex Cover: small subset = two endvertices of an edge.
= binary tree of depth at most k. Time 2%.n.
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Hardness results for Maximum Independent Set

e NP-hard [Karp '72]

o Not approximable within O(n*~) unless P = NP
[Zucherman '06]

o No exact O(c®™) algorithm unless SNP C SUBEXP
[Impagliazzo,Paturi,Zane '01]

e WI[1]-hard [Downey & Fellows '92]

= The best we can hope for is a O(c") exact algorithm for some
small constant ¢ €]1,2].

F. Havet —ims— %ksmw mascorrs B INRIA [ FPT and exponential algo



Race for Maximum Independent Set

0(1.261") poly-space [Tarjan &Trojanowski '77]
0O(1.235™) poly-space [Jian '86]

0(1.228™) poly-space, 0(1.221") exp-space [Robson '86]
better results for sparse graphs [Beigel99, Chen,Kanj &
Xia 03]

simpler O(1.221") exp-space [Fomin, Grandoni and
Kratsch '06]
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New techniques for exact exponential algorithms

Design techniques: Branch and Recharge, Inclusion-Exclusion, ...

Running time analysis techniques: Measure and Conquer, ...

F. Havet —ims— %sm= mascorrs W INRIA [B FPT and exponential algo



Reduction rules for Maximum Independent Set
components: C connected component a(G) = a(C) + a(G — C).

dominance: if N[w] C NJ[v] a(G) =a(G —v).
folding: if v has 2 neighbours v and w a(G) =1+ a(G).
o)
& ©® ©

mirroring: M set of mirrors of v
a(G) =max{a(G —v — M), 1+ a(G— N[v])}
u is a mirror of v if d(u,v) =2 and N(v) \ N(u) is a clique.
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Algorithm for Maximum Independent Set

mis(G)

if |[V(G)| <1 return |V(G)|;

if 3 component C of G return mis(C) + mis(G — C);
if 3 vand ws.t. Njw|] C N[v] return nis(G — v);

if 3v st d(v)=2return 1 + mis(G);

pick a vertex v of max. degree;

return max{mis(G — v — M), 1 + mis(G — N[v])}

ok wdH=
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Standard analysis

I.5 & 6 Branching Step

d(v) = 3: when discarding v, we also discard a mirror of v, or at
next step we fold a neighbour of v, so we remove at least 2
vertices; when selecting we remove at least 4 vertices. =

B(n) < B(n—2)+ B(n—4).

d(v) > 4: we remove at least one or five vertices =
B(n) < B(n—1)+ B(n—5).

B(n) = O*(A\") with A = 1.3247 the largest root of x* — x? — 1
and x> — x* — 1.
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Measure and conquer

In the standard analysis, measure of a graph: p(G) = number of
vertices.

Idea: take into account the fact that reducing the degree has a
positive impact on the long term. (degree 2 vertices are removed
without branching)

New measure: n;: number of vertices of degree /.
aj: weight (in [0, 1]) of every vertex of degree i.

W(G) = Za;n;

i>0

We obtain new recurrence relations and by choosing adequate
value of aj, we get B(n) = 0%(1.221").
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