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Goal: associate 3 domains
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Where are we going ?

Tools, standards, engineering world Verification / validation \
— replacement of grammars ' — mathematical mean to adress a problem



* Embedded systems
— Concurrent and heterogeneous applications



* Embedded systems

— Concurrent and heterogeneous applications
* Signal/image processing
* Control software
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* Embedded systems

— Concurrent and heterogeneous applications
* Signal/image processing
* Control software ——
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* Embedded systems
— Concurrent and heterogeneous applications

: X
— Heterogeneous parallel execution platforms _

* Constraints
— safety-critical
— hard real-time

— Extra functional

* low power
* Cost
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Domain

* Embedded systems
— Concurrent and heterogeneous applications

mapped to

— Heterogeneous parallel execution platforms

* Constraints
— safety-critical
— hard real-time

— Extra functional

* low power
* Cost
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Domain

* Embedded systems
— Concurrent and heterogeneous applications

mapped to

— Heterogeneous parallel execution platforms

* Constraints
— safety-critical
— hard real-time
— low power
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Domain

* Embedded systems
— Concurrent and heterogeneous applications

mapped to

— Heterogeneous parallel execution platforms

Adivity 1

'\J'lz Adi\L\s
* Constraints TN

— safety-critical
— hard real-time [ mapping ok ? N

— low power
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Domain

* Embedded systems
.1 = Concurrent and heterogeneous applications

3 mapped to Need for formalisms to adress thesel5 @@@@@m@]

.2 - Heterogeneous parallel execution platforms

_ P N S

.4 :Constraints R -
— safety-critical L)

., o
o

........

— hard real-time s mapping ok ?
— low power
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How to deal with the domain ?
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Model-Driven Engineering

* Goals

— High-level descriptions of systems and demands
* Designing in the large !!
* Focusing on concerns one at a time (aspects)
* Weaving concerns

— Support for system structuring all along design cycle
(Z code)

Enfify A Enfity B

]

16



Model-Driven Engineering

* Goals
— High-level descriptions of systems and demands
— Support for system architecturing all along design
cycle (# code)
— Early expression of requirements and specifications

* All along the design cycle
* Requirements are detailled with the specification refinement

Early modeling <::> Requ

TR W

n -1 modeling

irement

Final modeling
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Model-Driven Engineering

* Goals &
— High-level descriptions of systems and demands

— Support for system architecturing all along design
cycle (# code)

— Early expression of requirements and specifications
— Ease Reuse of existing parts / components

o o

ViSions

fassembly g 1
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Platieim
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Model-Driven Engineering
Goals

Early modeling <:>

refmement

Requirement

n -1 modeling

Final modeling

,,,,,,,

fassembly

provisions
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Model-Driven Engineering

* Goals
— High-level descriptions of systems and demands

— Support for system architecturing all along design
cycle (# code)

— Early expression of requirements and specifications
— Ease Reuse of existing part / components

— Traceability

| Final specification l <::>

Which part of the specification
satifies a specific requirement,
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Model-Driven Engineering

* Goals
— High-level descriptions of systems and demands

— Support for system architecturing all along design
cycle (# code)

— Early expression of requirements and specifications
— Ease Reuse of existing part / components

— Traceability

| Final specification l <::>

Which part of the specification
satifies a specific requirement,

How requirements
are linked together
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Model-Driven Engineering

* Goals
— High-level descriptions of systems and demands

— Support for system architecturing all along design
cycle (# code)

— Early expression of requirements and specifications
— Ease Reuse of existing part / components

— Traceability

— Communication between various teams (inside or
across companies), documentation

22



Model-Driven Engineering
* Goals

High-level descriptions of systems and demands

Support for system architecturing all along design cycle (£ code)
Early expression of requirements and specifications

Ease Reuse of existing part / components

Traceability

Communication between various teams (inside or across companies),
documentation

* Current Shortcomings
— discrepancies, lack of semantics or even precise

interpretation

23



Model-Driven Engineering
* Goals

High-level descriptions of systems and demands

Support for system architecturing all along design cycle (£ code)
Early expression of requirements and specifications

Ease Reuse of existing part / components

Traceability

Communication between various teams (inside or across companies),
documentation

* Current Shortcomings
— discrepancies, lack of precise semantics or even of

semantics
— tools suffer from this
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Model-Driven Engineering

Current Shortcomings

— discrepancies, lack of precise semantics or even of
semantics

— tools suffer from this
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Model-Driven Engineering
* Goals

High-level descriptions of systems and demands

Support for system architecturing all along design cycle (£ code)
Early expression of requirements and specifications

Ease Reuse of existing part / components

Traceability

Communication between various teams (inside or across companies),
documentation

* Current Shortcomings
— discrepancies, lack of semantics or even precise

interpretation
— tools suffer from this

— universality dissolves into particularisms
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Model-Driven Engineering
* Goals

High-level descriptions of systems and demands

Support for system architecturing all along design cycle (£ code)
Early expression of requirements and specifications

Ease Reuse of existing part / components

Traceability

Communication between various teams (inside or across companies),
documentation

* Current Shortcomings
— discrepancies, lack of semantics or even precise

interpretation
— tools suffer from this

— universality dissolves into particularisms

=) Unformal Models (and methods)
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Models of Computation and Communications |
~ (MoCCs) that exhibits explicit concurrency
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Formal Models (moccC)

Goals

— Mathematical semantics
* No Ambiguity
— Tools benefit from that !
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Formal Models (MoCC) 3
N g %

— Mathematical semantics
— Powerful analysis and algorithmic methods
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Formal Models (moccC)

* Goals
— Mathematical semantics
— Powerful analysis and algorithmic methods
— Optimization / verification
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Formal Models (moccC)

* Goals
— Mathematical semantics
— Powerful analysis and algorithmic methods
— Optimization / verification
— Guaranteed equivalence between code and model
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Formal Models (moccC)

Goals

— Mathematical semantics

— Powerful analysis and algorithmic methods
— Optimization / verification

— Guaranteed equivalence between code and model
— Basis for well-founded transformations
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Formal Models (MoCC)

A quick snhapshot of relevant MoCC

— Process Networks

* Marked Graph
* Synchronous Data Flow

* Kahn Process Network
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Formal Models

A quick snhapshot of relevant MoCC

& Formal models P%
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— Process Networks
* Marked Graph
* Synchronous Data Flow
* Kahn Process Network

\

A Execution of A
Oab provide 1 'data’

2

1 = > 2 executions of A

For 1 of B

-

N
Execution of A
reqwre 2 'data’

2 initial 'data }%,

"',’r'l

2 J

tbc

35



Formal Models

A quick snhapshot of relevant MoCC

— Process Networks
* Marked Graph
* Synchronous Data Flow
* Kahn Process Network
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Formal Models

A quick snhapshot of relevant MoCC

— Process Networks
* Marked Graph
* Synchronous Data Flow
* Kahn Process Network
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Formal Models

A quick snhapshot of relevant MoCC

— Process Networks
* Marked Graph
* Synchronous Data Flow
* Kahn Process Network

A Execution of A
Oab provide 1 'data’

L.

2 initial data}% D

| =
2.
Execution of A
reqmre 2 'data’
2

tbc
\/ 1

[ Logical Time ]

Schedule of A
Schedule of B
Schedule of C

<RY

z
s

"~ % "l& !
‘? Formal models&
?'l‘ i

X #F *‘jg‘

38



Formal Models

A quick snhapshot of relevant MoCC

— Process Networks
* Marked Graph
* Synchronous Data Flow
* Kahn Process Network
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Formal Models

A quick snhapshot of relevant MoCC

— Process Networks
* Marked Graph
* Synchronous Data Flow
* Kahn Process Network
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Formal Models

A quick snhapshot of relevant MoCC

— Process Networks
* Marked Graph
* Synchronous Data Flow
* Kahn Process Network
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Formal Models

Formal models P%
Y G

A quick snhapshot of relevant MoCC
— Process Networks
— Synchronous languages
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Formal Models

A quick snapshot of relevant formal models
— Process Networks

— Synchronous languages
* Declarative: Lustre / Scade, Signal / Polychrony

Doataflow Diagram : Watchdog f unnamed

control |
Present —D'E— f

Drder
Logical Time
e . True F|n|5h prise;]nt , Multi-Clock
zenk .t }E
® ¢

CNE True
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Formal Models

A quick snapshot of relevant formal models
— Process Networks

— Synchronous languages
* Declarative: Lustre / Scade, Signal / Polychrony

Drataflow Diagram : Watchdog f unnamed

(

Logical Time
+

Multi-Clock

Welock -
> CalclillisT N

\ Clock schedulesJ
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Formal Models “*‘ig

A quick snapshot of relevant formal models

— Process Networks

— Synchronous languages
* Declarative: Lustre / Scade, Signal / Polychrony

Drataflow Diagram : Watchdog f unnamed
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Formal Models

A quick snapshot of relevant formal models
— Process Networks

— Synchronous languages
* Declarative: Lustre / Scade, Signal / Polychrony

Drataflow Diagram : Watchdog f unnamed
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Formal Models

A quick snapshot of relevant formal models
— Process Networks

— Synchronous languages
* Declarative: Lustre / Scade, Signal / Polychrony
* Imperative: Esterel / SyncCharts

timer

signal c1,c2
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Formal Models

A quick snapshot of relevant formal models
— Process Networks
— Synchronous languages
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* Declarative: Lustre / Scade, Signal / Polychrony
* Imperative Esterel / SyncCharts

timer

signal c1,c2
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Formal Models

A quick snapshot of relevant formal models
— Process Networks

— Synchronous languages
* Declarative: Lustre / Scade, Signal / Polychrony
* Imperative Esterel / SyncCharts

timer

Everything is about
“activation conditions

.| formal __ State "L
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Formal Models

* Goals
— Mathematical semantics
— Powerful analysis and algorithmic methods
— Optimization / verification
— Guaranteed equivalence between code and model
— Basis for well-founded transformations

* Current Shortcomings
— Distance from current mainstream engineering practice
— Exotic formalisms for programmers (not C / C++ / java)
— Need for a mathematical background
— Most tools half-academic or confidential
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Formal Models

@“ Formal mod

N g
* Goals
— Mathematical semantics
— Powerful analysis and algorithmic methods
— Optimization / verification
— Guaranteed equivalence between code and model
— Basis for well-founded transformations

* Current Shortcomings
— Distance from current mainstream engineering practice
— Exotic formalisms for programmers (not C / C++ / java)
— Need for a mathematical background
— Most tools half-academic or confidential

==) Poor integration into designflow

W
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Transformations are often used from a world to another one...

?
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............. -

models &

Transformations distort models and lead to hard understanding and round-trip

are alsmost impossible
54



The finality ?
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The finality !
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Time @ Design Time

W " = l

* Expliciting the MoCC within a MDE environment
— Adding explicit activation conditions
— Adding relations between these activation conditions

— formal semantics explicit within the model
(not hidden in the simulator / any transformation)
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Time @ Design Time

Wy - " = l

* Expliciting the MoCC within a MDE environment
— Adding explicit activation conditions
— Adding relations between these activation conditions

— formal semantics explicit within the model
(not hidden in the simulator / any transformation)

— By using multiform logical time

58



Time @ Design Time

* MDE is good for the structural concern

* Logical Time is good for the dynamic concern
— Adding explicit activation conditions
— Adding relations between these activation conditions
— Optionnaly linking logical time to physical time
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Time @ Design Time

* MDE is good for the structural concern

* Logical Time is good for the dynamic concern
— Adding explicit activation conditions
— Adding relations between these activation conditions
— Optionnaly linking logical time to physical time

— The MARTE time modeJ/ IS a first step toward that

60



Time @ Design Time

* MDE is good for the structural concern

* Logical Time is good for the dynamic concern
— Adding explicit activation conditions
— Adding relations between these activation conditions
— Optionnaly linking logical time to physical time

— The \MARTE time modeL specifies logical activation conditions
28

CCSL Model l

— CCSL specifies relations between MARTE activation conditions

and optionnaly specifies link between logical and physical time 62



Time @ Design Time

* MDE is good for the structural concern

* Logical Time is good for the dynamic concern
— Adding explicit activation conditions
— Adding relations between these activation conditions
— Optionnaly linking logical time to physical time

User Model &3
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Time @ Design Time

* MDE is good for the structural concern

* Logical Time MoCC is good for the dynamic concern
— Adding explicit activation conditions
— Adding relations between these activation conditions
— Optionnaly linking logical time to physical time

User Model ‘

MoCC
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Time @ Design Time

* MDE is good for the structural concern

* Logical Time is good for the dynamic concern
— Adding explicit activation conditions
— Adding relations between these activation conditions
— Optionnaly linking logical time to physical time
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Time @ Design Time

* MDE is good for the structural concern

* Logical Time is good for the dynamic concern
— Adding explicit activation conditions
— Adding relations between these activation conditions
— Optionnaly linking logical time to physical time
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MARTE TIME MODEL

* SubProfile of the MARTE UML profile standardized
by the OMG (Object Management Group)

— Reviewed and accepted by the community

— Implemented in Papyrus (an UML tool integrated with
Eclipse)

— Under Implementation in other UML tools

* A Domain Model integrated with eclipse and usable
with Domain Specific Language
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MARTE TIME MODEL

* The main concepts is the Clock.

— It is a way to specify a, possibly infinite, ordered set of
Instant

— It can be logical or chronometric, discrete or dense
— Its type is a ClockType

«ClockType»

MyClockType
5 itsResolution: Integer [1] ) TEEIE 3
itsClock: MyClockType [1]
itsResolution = 1
«Clock»
«CIOtt:kType» standard = TAI
nature = discrete type = MyClockType
unitType = TimeUnitKind i

isLogical = true
resolAttr = itsResolution

68



MARTE TIME MODEL

1 on
ClockT Clock TimedElement
ockType ‘E;hrpe oc -&:‘1 e G
TimedConstraint TimedEvant TimedProcessing TimedObservation
Constraint Event Behavior Observation

Simplified view of the MARTE Time meta-Model
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MARTE TIME MODEL

* Sketchy example of its use

Producer o1 Consumer

4

User model
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MARTE TIME MODEL

* Sketchy example of its use

Producer o1 Consumer

User model

sendEvent receivekEvent
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MARTE TIME MODEL

Lo -
b %
o (LI y
W

* Sketchy example of its use

Producer o1 Consumer

User model

sendEvent receivekEvent

il

c1.receiveEvent: LogicalClock

c1.sendEvent LogicalClock

MARTE model

LogicalClock : ClockType

IsLogical : True
Nature : discrete
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MARTE TIME MODEL

* Sketchy example of its use

Producer o1 Consumer
User model
sendEvent receivekEvent
on/‘ \on
| 2 B

c1.sendEvent LogicalClock

MARTE model

LogicalClock : ClockType

IsLogical : True

LTS The ordered set of sendEvent
~ Is bijective with the ordered set
of instants of c1.sendEvent
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CCSL

* Clock Constraint Specification Language
— Firstly introduced in the MARTE TIME profile

— Declarative model-based language integrated with
Eclipse

— Formal semantics (both denotational and operational)
— Tooled (TimeSquare)

— Explicitly represent / specify relations between clocks
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CCSL

* Clock Constraint Specification Language

— Relations: dependencies between clocks
* Coincidence —
* Exclusion —
* Precedence —
* Alternance —

=
<

— Expressions: a mean to create new clocks from others

* Delay — delayedFor X on aClock

* Filtering — aClock filteredBy aBinaryWord

* Union — aClock union anotherClock

* Intersection — aClock inter anotherClock

* Periodicity — periodicOn aClock period X offset Y
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CCSL

* Clock Constraint Specification Language

— Relations: dependencies between clocks
* Coincidence —

* Exclusion — =
* Precedence — <
* Alternance — ~
— Expressions: a mean to create new clocks from others
* Delay — delayedFor X on aClock
* Filtering — aClock filteredBy aBinaryWord
* Union — aClock union anotherClock
* Intersection — aClock inter anotherClock
* Periodicity — periodicOn aClock period X offset Y

— Libraries: user-defined relations and expressions
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CCSL

* Complete the sketchy example

User model

MARTE model

Producer

Consumer
connector1

sendEvent receivekEvent

c1.sendEvent LogicalClock

LogicalClock : ClockType

IsLogical : True
Nature : discrete

The ordered set of sendEvent
s bijective with the ordered set
of instants of c1. sendEvent

7



CCSL

* Complete the sketchy example

Producer Consumer
connector1

User model

sendEvent receivekEvent

¢1.sendEvent LogicalClock c1.receiveEvent: LogicalClock

MARTE model

LogicalClock : ClockType

IsLogical : True
Nature : discrete

left right

CCSL mOdel Ril: Precedes)
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CCSL

* Complete the sketchy example

Producer Consumer
connector1

User model

sendEvent receivekEvent

¢1.sendEvent LogicalClock c1.receiveEvent: LogicalClock

MARTE model

LogicalClock : ClockType

IsLogical : True
Nature : discrete

left right

CCSL model R1: Coincides
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Benefits

Producer connector Consumer
User model
sendEvent receiveEvent
y Ty

c1.sendEvent LogicalClock

MARTE model

LogicalClock : ClockType

IsLogical : True
Nature : discrete

CCSL model

rocess

Temporal Logic
Network

=

L

4

!_L" =

Simulation
* Model animation
* Timing Diagram
* Sequence Diagram
* User Defined action

e

alenbgauw

State space exploration
* Still Beta

b

b

u SPIN

Polychronyl u K-Passa |
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Benefits

User model

MARTE model

CCSL model

Temporal Logic

Producer Consumer
connector1
sendEvent receiveEvent
on } A\ on |
’/‘ rrrrrrrrrrrrrrrrrrrrr 4\

c1.sendEvent LogicalClock

LogicalClock : ClockType

IsLogical : True

Nature : discrete

I-

B

i

4

aienbgauwi] - -

Simulation
* Model animation
* Timing Diagram
* Sequence Diagram
* User Defined action

e

State space exploration
* Still Beta

I

u SPIN

Polychronyl u K-Passa |
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Benefits

AADL model

MARTE model

CCSL for AADL model

avionic

Producer

sendEvent

S

c1.sendEvent LogicalClock

LogicalClock : ClockType

IsLogical : True
Nature : discrete

connector1

Consumer

receiveEvent

cl.receiveEvent: LogicalClock

RIFICoincides]|

EAST-ADL

MARTE model

CCSL for EAST-ADL model

havioral
ence

c1.sendEvent LogicalClock

LogicalClock : ClockType

IsLogical : True
Nature : discrete

cl.receiveEvent: LogicalClock

=18 Uniom |

Rif:Coincidesy
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Benefits

AADL model

MARTE model

CCSL for AADL model

avionic

Producer

Consumer
connector1

sengEve nt receive gve nt

y—

c1.sendEvent LogicalClock c1.receiveEvent: LogicalClock

LogicalClock : ClockType

IsLogical : True

Nature : discrete

IP-Xact

MARTE model

CCSL 4 IP-Xact model

EAST-ADL

MARTE model

SoC

Consumer
connector1

senjEvent receivezvent

Producer

c1.sendEvent LogicalClock cl.receiveEvent: LogicalClock

LogicalClock : ClockType

IsLogical : True
Nature : discrete

left right

Rill:iCoincides}|

c1.sendEvent LogicalClock

cl.receiveEvent: LogicalClock

LogicalClock : ClockType

IsLogical : True
Nature : discrete

» CCSL for EAST-ADL model

Ril:{Coincides]

righ

EQflUnion |
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Benefits

* PolyChrony/SME
> - SynDEx
* K-Passa
» Gaspard2
AutoSar o SystemC
* Meta-H toolsuite * Symta/S - CoWare
- OSATE * RT@W - Virtio/Innovator
* Cheddar ETE * VaST
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Multi-Views

Power-consumption |
[ Safety }
[

* Meta-H toolsuite
« OSATE
* Cheddar

}
Specifies link \
between vie Y

Benefits and future

* PolyChrony/SME

> - SynDEx

EAST ADL
AutoSar

* Symta/S

- RT@W

* K-Passa

» Gaspard2

IP-XACT
SystemC

* CoWare
* Virtio/Innovator
* VaST
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Current Projects

ARTEMIS CESAR [01/09 — 12/11]
— 52 partners : CEA, Airbus, Esterel Technology, Thales, ...
— Requirements engineering: multi viewpoint, multi criteria and multi level requirements,

— Component based engineering: design space exploration, comprising multi-view, multi-
criteria and multi level architecture trade-offs.

ITEA TIMMO2 [?]

— Continental, Delphi, Volvo, ...

— Time Model for AUTOSAR/East-ADL2
FUI Lambda [07/08 — 06/11]

— 14 partners : CEA-List, Thales TRT, Supélec, Airbus EADS, ...

— Convergences MARTE, SysML, AADL, IP-Xact, Scade/SyncCharts
ANR RT-Simex [12/08 — 12/11]

— CEA-List, Thales TRT, OBEO, UBO, Aonix

— Retro-ingénerie de Traces d'analyse de SIMulation et d'EXécution de systéemes temps-réel
ANR Help [11/09 — 10/12]

— Verimag, STMicro Grenoble, Docea Power, LEAT

— High Level Models for Low Power Systems : IP-Xact et UPF
Nano 2012 — ID-TLM [10/08 — 12/10]

— ST-MicroElectronics

— UML/MARTE & IP-Xact: behavioral and timing models for IP-Xact

87



This Is the end...

...thanks...
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