Model-Driven Engineering with Formal Models for Embedded Systems

INRIA Aoste

AOSTE

Direction: 2 (1+1)

Directeur : de SIMONE, Robert – DR

5,,.....*5*

Co-directeur : SOREL, Yves – DR

Permanents: 6 (5+1)

ANDRE, Charles – Professeur DEANTONI. Julien – McF

HOGIE Luc - IR

MALLET, Frédéric – McF PERALDI-FRATI, Marie-Agnès – McF POTOP BUTUCARU, Dumitru – CR

AOSTE

Ingénieurs experts : 3 (2+1)

BOUCARON, Julien – Docteur FERRERO, Benoît – Master DE RAUGLAUDRE, Daniel – Ingénieur

Direction: 2 (1+1)

Directeur : de SIMONE, Robert – DR Co-directeur : SOREL, Yves – DR

Doctorants: 4 (3+1)

COADOU, Anthony – Master LE TALLEC, Jean-François – Master MEHMOOD KAHN, Aamir – Master MAROUF Mohamed – Master Post-Doctorants: 3 (2+1)

GASCON, Régis – Docteur GLITIA, Calin – Docteur MEUMEU YOMSI, Patrick – Docteur

Assistantes: >2 (2+?)

DEVAUCHELLE, Sandra – I3S LACHAUME, Patricia – INRIA

Goal: associate 3 domains

Where are we going?

→ mathematical mean to adress a problem

→ replacement of grammars

5

- Embedded systems
 - Concurrent and heterogeneous applications

- Embedded systems
 - Concurrent and heterogeneous applications
 - Signal/image processing
 - Control software
 - •

- Embedded systems
 - Concurrent and heterogeneous applications
 - Signal/image processing
 - Control software

•

- Constraints
 - safety-critical
 - hard real-time

- Extra functional
 - low power
 - Cost
 - •

- Embedded systems
 - Concurrent and heterogeneous applications

- Constraints
 - safety-critical
 - hard real-time
 - Extra functional
 - low power
 - Cost
 - •

- Embedded systems
 - Concurrent and heterogeneous applications

- Constraints
 - safety-critical
 - hard real-time
 - Extra functional
 - low power
 - Cost
 - ...

- Embedded systems
 - Concurrent and heterogeneous applications

- Constraints
 - safety-critical
 - hard real-time
 - low power
 - _ ...

- Embedded systems
 - Concurrent and heterogeneous applications

- Constraints
 - safety-critical
 - hard real-time
 - low power
 - - ...

- Embedded systems
 - 1 Concurrent and heterogeneous applications
 - 3 mapped to

Need for formalisms to adress these 5 concerns

- (4) Constraints
 - safety-critical
 - hard real-time
 - low power

How to deal with the domain?

- High-level descriptions of systems and demands
 - Designing in the large !!
 - Focusing on concerns one at a time (aspects)
 - Weaving concerns
- Support for system structuring all along design cycle (≠ code)

- High-level descriptions of systems and demands
- Support for system architecturing all along design cycle (≠ code)
- Early expression of requirements and specifications
 - All along the design cycle
 - Requirements are detailled with the specification refinement

- High-level descriptions of systems and demands
- Support for system architecturing all along design cycle (≠ code)
- Early expression of requirements and specifications
- Ease Reuse of existing parts / components

Components

provisions

Goals

- High-level descriptions of systems and demands
- Support for system architecturing all along design cycle (≠ code)
- Early expression of requirements and specifications
- Ease Reuse of existing part / components
- Traceability

Which part of the specification satisfies a specific requirement,

. . .

- High-level descriptions of systems and demands
- Support for system architecturing all along design cycle (≠ code)
- Early expression of requirements and specifications
- Ease Reuse of existing part / components
- Traceability

- High-level descriptions of systems and demands
- Support for system architecturing all along design cycle (≠ code)
- Early expression of requirements and specifications
- Ease Reuse of existing part / components
- Traceability
- Communication between various teams (inside or across companies), documentation

Goals

- High-level descriptions of systems and demands
- Support for system architecturing all along design cycle (≠ code)
- Early expression of requirements and specifications
- Ease Reuse of existing part / components
- Traceability
- Communication between various teams (inside or across companies), documentation

Current Shortcomings

discrepancies, lack of semantics or even precise interpretation

Goals

- High-level descriptions of systems and demands
- Support for system architecturing all along design cycle (≠ code)
- Early expression of requirements and specifications
- Ease Reuse of existing part / components
- Traceability
- Communication between various teams (inside or across companies), documentation

- discrepancies, lack of precise semantics or even of semantics
 - → tools suffer from this

- discrepancies, lack of precise semantics or even of semantics
 - → tools suffer from this

Goals

- High-level descriptions of systems and demands
- Support for system architecturing all along design cycle (≠ code)
- Early expression of requirements and specifications
- Ease Reuse of existing part / components
- Traceability
- Communication between various teams (inside or across companies), documentation

- discrepancies, lack of semantics or even precise interpretation
 - → tools suffer from this
- universality dissolves into particularisms

Goals

- High-level descriptions of systems and demands
- Support for system architecturing all along design cycle (≠ code)
- Early expression of requirements and specifications
- Ease Reuse of existing part / components
- Traceability
- Communication between various teams (inside or across companies), documentation

- discrepancies, lack of semantics or even precise interpretation
 - → tools suffer from this
- universality dissolves into particularisms

Models of Computation and Communications (MoCCs) that exhibits explicit concurrency

- Goals
 - Mathematical semantics
 - No Ambiguity
 - → Tools benefit from that !

- Mathematical semantics
- Powerful analysis and algorithmic methods

- Mathematical semantics
- Powerful analysis and algorithmic methods
- Optimization / verification

- Mathematical semantics
- Powerful analysis and algorithmic methods
- Optimization / verification
- Guaranteed equivalence between code and model

- Mathematical semantics
- Powerful analysis and algorithmic methods
- Optimization / verification
- Guaranteed equivalence between code and model
- Basis for well-founded transformations

- Process Networks
 - Marked Graph
 - Synchronous Data Flow
 - Kahn Process Network

Formal Models

- Process Networks
 - Marked Graph
 - Synchronous Data Flow
 - Kahn Process Network

Formal Models

- Process Networks
 - Marked Graph
 - Synchronous Data Flow
 - Kahn Process Network

Formal Models

- Process Networks
 - Marked Graph
 - Synchronous Data Flow
 - Kahn Process Network

A quick snapshot of relevant MoCC

- Process Networks
 - Marked Graph
 - Synchronous Data Flow
 - Kahn Process Network

Logical Time

Schedule of A Schedule of B Schedule of C

A quick snapshot of relevant MoCC

- Process Networks
 - Marked Graph
 - Synchronous Data Flow
 - Kahn Process Network

Logical Time

Schodule of A
Schodule of B
Schodule of C

A quick snapshot of relevant MoCC

- Process Networks
 - Marked Graph
 - Synchronous Data Flow
 - Kahn Process Network

A quick snapshot of relevant MoCC

- Process Networks
 - Marked Graph
 - Synchronous Data Flow
 - Kahn Process Network

A quick snapshot of relevant MoCC

- Process Networks
- Synchronous languages

Formal models

- Process Networks
- Synchronous languages
 - Declarative: Lustre / Scade, Signal / Polychrony

Formal models

- Process Networks
- Synchronous languages
 - Declarative: Lustre / Scade, Signal / Polychrony

Formal models

- Process Networks
- Synchronous languages
 - Declarative: Lustre / Scade, Signal / Polychrony

Formal models

- Process Networks
- Synchronous languages
 - Declarative: Lustre / Scade, Signal / Polychrony

- Process Networks
- Synchronous languages
 - Declarative: Lustre / Scade, Signal / Polychrony
 - Imperative: Esterel / SyncCharts

Formal models

- Process Networks
- Synchronous languages
 - Declarative: Lustre / Scade, Signal / Polychrony
 - Imperative Esterel / SyncCharts

Formal models

A quick snapshot of relevant formal models

- Process Networks
- Synchronous languages
 - Declarative: Lustre / Scade, Signal / Polychrony
 - Imperative Esterel / SyncCharts

Everything is about activation conditions

Goals

- Mathematical semantics
- Powerful analysis and algorithmic methods
- Optimization / verification
- Guaranteed equivalence between code and model
- Basis for well-founded transformations

Current Shortcomings

- Distance from current mainstream engineering practice
- Exotic formalisms for programmers (not C / C++ / java)
- Need for a mathematical background
- Most tools half-academic or confidential

Goals

- Mathematical semantics
- Powerful analysis and algorithmic methods
- Optimization / verification
- Guaranteed equivalence between code and model
- Basis for well-founded transformations

Current Shortcomings

- Distance from current mainstream engineering practice
- Exotic formalisms for programmers (not C / C++ / java)
- Need for a mathematical background
- Most tools half-academic or confidential

Poor integration into designflow

So?

Transformations are often used from a world to another one...

Transformations distort models and lead to hard understanding and round-trip are alsmost impossible

The finality?

The finality!

- Expliciting the MoCC within a MDE environment
 - Adding explicit activation conditions
 - Adding relations between these activation conditions
 - → formal semantics explicit within the model (not hidden in the simulator / any transformation)

- Expliciting the MoCC within a MDE environment
 - Adding explicit activation conditions
 - Adding relations between these activation conditions
 - → formal semantics explicit within the model (not hidden in the simulator / any transformation)
 - → By using multiform logical time

- MDE is good for the structural concern
- Logical Time is good for the dynamic concern
 - Adding explicit activation conditions
 - Adding relations between these activation conditions
 - Optionnaly linking logical time to physical time

- MDE is good for the structural concern
- Logical Time is good for the dynamic concern
 - Adding explicit activation conditions
 - Adding relations between these activation conditions
 - Optionnaly linking logical time to physical time

→ The MARTE time model is a first step toward that

- MDE is good for the structural concern
- Logical Time is good for the dynamic concern
 - Adding explicit activation conditions
 - Adding relations between these activation conditions
 - Optionnaly linking logical time to physical time
- → The MARTE time model specifies logical activation conditions

→ CCSL specifies relations between MARTE activation conditions

- MDE is good for the structural concern
- Logical Time is good for the dynamic concern
 - Adding explicit activation conditions
 - Adding relations between these activation conditions
 - Optionnaly linking logical time to physical time

User Model

- MDE is good for the structural concern
- Logical Time MoCC is good for the dynamic concern
 - Adding explicit activation conditions
 - Adding relations between these activation conditions
 - Optionnaly linking logical time to physical time

- MDE is good for the structural concern
- Logical Time is good for the dynamic concern
 - Adding explicit activation conditions
 - Adding relations between these activation conditions
 - Optionnaly linking logical time to physical time

- MDE is good for the structural concern
- Logical Time is good for the dynamic concern
 - Adding explicit activation conditions
 - Adding relations between these activation conditions
 - Optionnaly linking logical time to physical time

- SubProfile of the MARTE UML profile standardized by the OMG (Object Management Group)
 - Reviewed and accepted by the community
 - Implemented in Papyrus (an UML tool integrated with Eclipse)
 - Under Implementation in other UML tools
- A Domain Model integrated with eclipse and usable with Domain Specific Language

- The main concepts is the Clock.
 - It is a way to specify a, possibly infinite, ordered set of instant
 - It can be logical or chronometric, discrete or dense
 - Its type is a ClockType

Sketchy example of its use

User model

Sketchy example of its use

User model

Sketchy example of its use

Sketchy example of its use

User model Producer c1 Consumer receiveEvent on c1.sendEvent LogicalClock c1.receiveEvent: LogicalClock

LogicalClock : ClockType

IsLogical : True

Nature : discrete

The ordered set of sendEvent is bijective with the ordered set of instants of c1.sendEvent

CCSL

- Clock Constraint Specification Language
 - Firstly introduced in the MARTE TIME profile
 - Declarative model-based language integrated with Eclipse
 - Formal semantics (both denotational and operational)
 - Tooled (TimeSquare)
 - → Explicitly represent / specify relations between clocks

CCSL

- Clock Constraint Specification Language
 - Relations: dependencies between clocks
 - Coincidence → =
 - Exclusion → #
 - Precedence →
 - Alternance → ~
 - Expressions: a mean to create new clocks from others
 - Delay → delayedFor X on aClock
 - Filtering → aClock filteredBy aBinaryWord
 - Union → aClock union anotherClock
 - Intersection → aClock inter anotherClock
 - Periodicity → periodicOn aClock period X offset Y

• ...

- Clock Constraint Specification Language
 - Relations: dependencies between clocks
 - Coincidence → =
 - Exclusion → #
 - Precedence → <
 - Alternance → ~
 - Expressions: a mean to create new clocks from others
 - Delay → **delayedFor** *X* **on** *aClock*
 - Filtering → aClock filteredBy aBinaryWord
 - Union → aClock union anotherClock
 - Intersection → aClock inter anotherClock
 - Periodicity → periodicOn aClock period X offset Y
 - ...
 - Libraries: user-defined relations and expressions

Complete the sketchy example

Formal MDE

User model

MARTE model

LogicalClock : ClockType

IsLogical : True Nature : discrete

The ordered set of sendEvent is bijective with the ordered set of instants of c1.sendEvent

Complete the sketchy example

Producer Consumer connector1 **User model** sendEvent receiveEvent on on c1.sendEvent LogicalClock c1.receiveEvent: LogicalClock **MARTE** model LogicalClock: ClockType IsLogical: True Nature : discrete left right R1: Precedes **CCSL** model

Formal MDE

Complete the sketchy example

Producer Consumer connector1 **User model** sendEvent receiveEvent on on c1.sendEvent LogicalClock c1.receiveEvent: LogicalClock **MARTE** model LogicalClock: ClockType IsLogical: True Nature : discrete left right R1: Coincides **CCSL** model

Formal MDE

Simulation

- Model animation
- Timing Diagram
- Sequence Diagram
- User Defined action

State space exploration

Still Beta

Simulation

- Model animation
- Timing Diagram
- Sequence Diagram
- User Defined action

State space exploration

Still Beta

Current Projects

ARTEMIS CESAR [01/09 – 12/11]

- 52 partners : CEA, Airbus, Esterel Technology, Thalès, ...
- Requirements engineering: multi viewpoint, multi criteria and multi level requirements,
- Component based engineering: design space exploration, comprising multi-view, multicriteria and multi level architecture trade-offs.

ITEA TIMMO2 [?]

- Continental, Delphi, Volvo, ...
- Time Model for AUTOSAR/East-ADL2

FUI Lambda [07/08 – 06/11]

- 14 partners : CEA-List, Thales TRT, Supélec, Airbus EADS, ...
- Convergences MARTE, SysML, AADL, IP-Xact, Scade/SyncCharts

ANR RT-Simex [12/08 – 12/11]

- CEA-List, Thales TRT, OBEO, UBO, Aonix
- Retro-ingénerie de Traces d'analyse de SIMulation et d'EXécution de systèmes temps-réel

ANR Help [11/09 – 10/12]

- Verimag, STMicro Grenoble, Docea Power, LEAT
- High Level Models for Low Power Systems: IP-Xact et UPF

Nano 2012 – ID-TLM [10/08 – 12/10]

- ST-MicroElectronics
- UML/MARTE & IP-Xact: behavioral and timing models for IP-Xact

This is the end...

...thanks...