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Most complex networks evolve through time, yet up till now their analysis has mainly focused on static snapshots of
these networks. Our goal is to provide a set of basic tools for the analysis of the dynamics of networks. These tools
should be at the same time very general, in order be applicable to all networks, whatever field they are originated from,
and yet be relevent, in order to be able to capture meaningful behaviours. We restricted ourselves to the case of growing
networks (i.e. networks in which nodes and links appear but are never removed), but our tools can easily be adapted
to general dynamic networks. Finally, we have applied our tools to two cases of growing networks, to illustrate their
relevence.
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1 Introduction
The analysis of complex networks has lead since a few years to the introduction of a set of statistical param-
eters providing information on networks, See for instance [BS03, Bar02]. Some of these parameters played
a central role because they are very general: most real-world complex networks display the same behaviour
concerning them, which is not captured by classical models (like regular graphs or random graphs).

In many cases, the networks under concern evolve during time: new nodes or links arrive, and some
leave. This has been pointed as a central characteristics of real-world complex networks, but until now
very little is known on these dynamics. Indeed, dynamic data are difficult to collect and represent, and
even if one has such data there are very few, if any, statistical tools for their analysis. The small number
of papers addressing this subject, are mostly concerned with answering precise questions, with no goal of
generalisation [PHL04, OdC03, Hol03, Sni01, KMCB95, EL03, New01].

Our aim in this paper is to make a first step in this direction: we want to propose a set of simple statistical
tools which may be used as a basic toolbox when one deals with a dynamic complex network. We want
our tools to be: as simple and general as possible, in order to make them easily usable in various contexts;
relevant, in the sense that they indeed capture some non-trivial behaviours of the dynamics; efficiently
computable, or at least tractable in large practical cases (real-world networks can be very large, up to
several dozens of millions of nodes); and finally they should span well the variety of phenomena one may
want to capture, at a basic and general level.

We actually restricted ourselves to a special case: we only considered growing networks, i.e. networks in
which nodes and links arrive during time but are never removed afterwards. Many real-world cases actually
fit in this special case. Moreover, most tools we will propose may easily be extended to the general case.
New tools should however be introduced to deal with the general case, but this is out of the scope of this
paper.

We will now present the formal framework we have considered as well as the two growing networks
we have chosen to illustrate our approach, and then we will present the tools we have introduced for the
analysis of the dynamics.
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network nodes links time-grain density av. distance clus.
actor 869,986 51,520,496 1 year 1.361×10−4 3.77 0.795
IP exch. 281,760 508,667 10 sec. 1.281×10−5 5.29 5.914×10−5

Table 1: Number of nodes and links, time grain, density, average distance and clustering coefficient of the growing
networks under consideration.

2 Formal framework and methodology
There are several ways to describe a growing network. We will use the formalism of coarse-grained growing
networks, which can be described as follows: a coarse-grained growing network is described as a series of
sets (δVi,δEi), i = 1,2, . . . and a time grain denoted by δt. The network at time t = δt · i (i.e. the network at
step i) is nothing but Gi = (Vi,Ei) with Vi = ∪ j≤iδV j and Ei = ∪ j≤iδE j. Notice that, even if a node or a link
may appear several times (i.e. belong to several δVi’s or δEi’s), this information is not encoded in the graph
at a given time. The coarse-grained formalism naturally induces several notions:

• δV>
i is the set of nodes in δVi which appear at step i, i.e. {v ∈ δVi such that 6 ∃ j < i, v ∈ δV j}. We

will call these nodes the external nodes of step i.
• δV⊥

i is the set of nodes in δVi already present before step i, i.e. {v ∈ δVi such that ∃ j < i, v ∈ δV j}.
We will call these nodes the internal nodes of step i.

• δE>
i is the set of links in δEi between nodes which appear at step i, i.e. δE>

i = δEi ∩δV>
i ×δV>

i . We
will call these links the fully external links of step i.

• δE⊥
i is the set of links in δEi between nodes which were already present before step i, i.e. δE⊥

i =
δEi ∩ δV⊥

i ×δV⊥
i . We will call these links the internal links of step i.

• δE
>
⊥
i is the set of links in δEi between a node which appears at step i and a node which was already

present, i.e. δE
>
⊥
i = δEi ∩δV⊥

i ×δV>
i . We will call these links the external links of step i.

Our aim is to introduce a general formalism to describe real-world growth of complex networks. It is
therefore essential to use real-world cases to illustrate and evaluate the relevance of our approach and of
the parameters we will introduce. We will therefore use two large growing complex networks all along the
paper: the actor networks, where the nodes are film actors and where a link exists between two actors if
they acted together in a film, [Dat], and the IP exchange networks, in which the nodes are computers on the
Internet and a link exists between two computers if the they echange a packet. For more details, see [Arc].

Table 1 gives the number of nodes and links of these networks, their time grain, as well as the basic
statistics for these networks: density, average distance, clustering coefficient. For a definition of these
statistics see for instance [GL05]. We have not represented here the degree distributions of these networks.
They are, not surprisingly, well approximated by power-laws [GL05].

3 Analysis of the dynamics
The first quantity to consider when analysing growing networks is the evolution of the number of nodes and
links of each type, presented in Figure 1. Notice that this already allows us to spot different behaviours in
the networks we consider.

The statistics we will now present are based on the degrees of the nodes, and their evolution. Since the
degree distributions of most real-world networks are heterogeneous, the mean degree is not representative
of the network: most nodes’ degree is smaller than the mean degree, and some node have a much larger
degree.

We have therefore considered separately these two types of nodes. There is a large number of small
degree nodes, and they form the bulk of the network. Therefore it makes sense to consider them as a whole,
a natural quantity to study being then the overall fraction of small-degree nodes in the network. Figure 2
presents the time-evolution of the fraction of nodes of degree ≤ k, for different values of k. We observe a
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Figure 1: Time evolution of the number of fully-external, external and internal links, and external and internal nodes
for actor and IP exch. networks
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Figure 2: Time evolution of the number of small degree nodes for actor and IP exch. networks. The quantity plotted is
the fraction of nodes with degree ≤ k, for different values of k.

difference between our two networks: for the actor network, these values for the smallest values of k, seem
to converge to a constant value. This is not the case for the IP exch. network.

High-degree nodes are the exceptional elements of a network, and therefore cannot be considered to form
a homogeneous group. We have therefore considered separately the ten nodes that have the highest degree
at the end of the network evolution. Once these nodes are identified, we can study the time evolution of
their degree throughout the network’s evolution. Figure 3 plots the time-evolution of a representative subset
of these nodes, compared to the time-evolution of the maximal degree of the network (i.e. the degree of the
highest degree node of the network at each time step).

The first conclusion is that, for each of the networks under study, the highest-degree nodes have a very
similar behaviour: the degrees of the actor network’s nodes all grow with an S-shape, while the growth is
linear for the IP exch. network. This seems to be a general characteristic of growing networks (confirmed
by other experiments not reproduced here). From the observation of the highest-degree nodes, we can also
gather specific information on some networks: in the actor network, not only do the shape of the plots of
the nodes’ degree growth have a similar shape, as expected, but, moreover, the time at which most of these
nodes’ degree starts to grow is almost the same, somewhere close to 1930. This is a much stronger property
than the fact that the plots have a similar shape: they could have similar shapes, whith their growth starting
at different times. This therefore indicates a peculiar property of the actor network.

Second, we observe two different regimes when we compare the behaviour of the highest-degree nodes
to the time evolution of the maximal degree of the network. For the actor network, the maximal degree
is mainly carried by three different nodes: the first one apprears around 1910, and is not among the ten
highest degree nodes. The maximal degree is then carried, beween approximatively 1935 and 1950, by the
second-highest degree node, and by the highest degree node afterwards. This is very different from what
happens for the IP exch. network, where the maximal degree is carried by the same node throughout the
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Figure 3: Time behaviour of a few high degree nodes for actor and IP exch. networks, as well as the evolution of the
maximum degree for these networks. Rank is the rank of the node, based on his degree, in the final network.
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evolution of the network.
The statistics we have introduced rely on the heterogeneous nature of the degree distribution of real-world

networks, and seem to capture both properties common to all growing networks, and some specificities of
the networks under study. They are therefore relevent for the analysis of networks’ dynamics.

4 Conclusion
In this paper, we have undertaken the study of the dynamics of networks, restricting ourselves to the case of
growing networks. We have introduced a formal framework for this study, then we have introduced some
statistics to study the dynamics of networks, mainly concerning the degrees of nodes and their evolution. To
illustrate the relevance of our statistics, we have measured them on two growing networks, without trying
to give an interpretation of the observed behaviours.

The statistics we have introduced are relevent in the sense that they capture different behaviours for
the networks we have studied. Another way to show that a statistic is relevent would be to compare our
measurements with what happens for randomly growing networks: if the behaviour of a given network is
similar to that of a random network, then the statistic does not capture something specific to this network.
If, on the other hand, the two behaviours are different, then the satistics are relevent. We fully expect that
this is the case for the statistics we have introduced, but this comparison has yet to be done.

Our tools, though quite general, do not address all simple characteristics of growing networks dynamics.
There are in particular two simple, natural question that are not answered here. The first one concerns the
degrees of the nodes between which new links appear: do these links tend to appear attached to high degree
nodes, or independently of the nodes’ degrees? The second question concerns the distance in the network
between nodes joined by new links: are such two nodes closer in general than two randomly chosen nodes?
These two questions should be addressed in order to yield tools for answering these questions.

Finally, our tools can be easily adapted to deal with the case of general dynamic networks. They do not,
however, fully address the questions natural in this context, and new tools might be introduced to answer
these questions.
Acknowledgments. This work was partly funded by the GAP (Graphes, Algorithmes et Probabilités) project, and by the
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