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Presentation of the subject

— We will consider graphs and digraphs.

— Given a (di)graph G = (V, E), the edge (resp. arc) forwarding index is defined as the minimum edge
(arc) load induced by a set of (fractional) (di)paths connecting all the n? couples of vertices. In other
words, it is the minimum congestion of the routing of the ALL-to-ALL traffic matrix. We will denote it
~(V, E'). When one assumes uniform traffic demands at a given rate A, one can prove that whatever be
the routing policy the average load of an edge (arc) will be at least \ - v(V, E'). Moreover there exist
routing policies that ensure that the maximum load of an arc will be close A - v(V, E'). This makes the
edge forwarding index of great practical importance.

We will give the definitions for graphs, the ones for digraphs are analogous. Our aim is to study how the

number of edges of a graph impacts on its edge forwarding index. This induces several design problems :

a) Min congested k-subgraph : Given G = (V, E) and k € N, find E' C E, |E’| < k such that y(V, E’)
is minimum. We will denote this minimum by v*(V, E, k).

b) Min congested (n, e)-graph : Given n, e € N, find a graph (V, E) with |V| = n vertices and |E| = e
edges such that (V, E) is minimum. We denote this number ~v*(n, e) (when e < n — 1 we take as
convention y*(n, ) = 00).

We intend to study both problems under degree restriction or other constraints (as example classical
graph properties like planarity, genus, ...). Those two problems belong to the family of design problems.
In both cases, given some constraints, one wishes to construct “good” (or a best) spanners (i.e. spanning
subgraph) of a given graph. The problem (b) in which one design the graph itself can be seen as spanner
design problem for which the original graph G is the complete graph K. Our measure of goodness for
a graph is its edge forwarding index. This quantity is strongly related to distance properties of the graph.
Indeed, a usual naive lower bound on 7 is :
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where D(u,v), D(G) and d(G) denote respectively the distance from u to v, the average distance in the
graph G, and the average degree of the graph GG. This bound is attained if and only if there exists a shortest
paths routing that is balanced on the edges, which is the case for highly symmetric graphs such as cycles,
toruses, complete bipartite graphs, and other edge-transitive graphs. When no assumption is made about the
graph, optimal solutions are quite easy to construct since they look like stars, as example whene = n — 1
it is easy to show that the best graph is simply a star with n nodes and that v*(n,n — 1) = 2(n — 1). This
extends to the case e = xz(n — x),z € N, for which complete bipartite graphs K ,,_, are optimal with

v, z(n — ) ~ 22 (1 4 o(1)).
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The problem gets more complex when one assume that the graph has bounded degree. Then, solving the
minimally congested graph problem means finding a rather symmetric spanning (sub)graph with small ave-
rage distance, and a good (n, e)-graphs should ressemble (A, D) graphs. The (A, D) problem has received
considerable attention and is still unsolved (see the references). In this problem, one wishes to construct a
graph with the largest number of vertices given a maximum degree A and diameter D. One define N (A, D)
as this largest number, a simple upper bound on N (A, D) (known as the Moore’s bound) is obtained by
counting the number of nodes in a tree with degree A and depth D. This leads to :
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Graphs with N’(A, D) ~ AP~1/D are known, but their existence is proven using random constructions
(namely random regular graphs with degree A since one can prove that a such a random graph with N nodes
has, with high probability, diameter (14 0(1)) loga_1(ZV))). Such graphs are likely to also have the smallest
forwarding index among graphs with maximum degree A. Notably, deterministic constructions are very far
to perform as well as random ones since the best ones only have diameter of order logy /, (N) instead of
log A (IV)). So the relationship between (A, D) graphs and graphs with small forwarding index and bounded
degree has to be explored.

More on Distances and Edge forwarding index

Duality of linear programming implies that the relationship between distance and edge forwarding index
is exact. One can compute the edge forwarding index of a graph by solving the next path packing problem.
We let P denote the set of all paths and P,,, denote the set of all paths from u to v.
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The dual of this problem is the following distance maximization problem. First, we need the following
definition : Given a positive length function [ : E — R*, [(P) = Y .cpl(e),P € P is the length of P.
Then the dual of the edge forwarding index problem can then be seen as :
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If we denote D}, the maximum of the above problem, Farkas’s lemma (strong duality) implies that :
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In other words, the edge forwarding index is indeed an average distance on GG but taken over a distorted
metric. This distorted metric is often a “bad cut” that is a set of edges [S, V' \ V] that is congested, the dual
then set [(e) = 0,e € [S,V \ S] and I(e) = 0 otherwise and proves that V'S € 2V, S ¢ {0, V},v(V, E) >
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Objectives

The scope is very wide, so the goal is to solve one or several of the following problems. As example for
problem (b) :

- Determine exactly the edge forwarding index of a graph with n vertices and e edges. We currently

know the general rough behavior, but details have to be worked on.

- Determine minimally congested graphs given a maximum degree constraint. This will mean (re)-using
ideas developed when dealing with the well-studied (A, D) problem. Note that in the (A, D) problem
one deal with graphs having # edges, so it does not cover the case of graphs with n nodes and n+ &
edges. So determining the behavior of y(n,e) when e = n + k when £ is a fixed constant will be
particular interest (in other words how decrease the load of the edges when we add a few edges to a
tree).

- Determine the minimum value of v(V, E) when G = (V, E) is planar, and when G is planar with
max degree 3, 4. This part will probably rely on the Tarjan’s isoperimetric inequality that state that
planar graphs do have congested cuts.

- Consider possible extensions to the case of graphs with bounded genus or with excluded minor.
Similar questions can be asked for problem (a) in which the solution must be included into an input graph
G. Then one need to either provide algorithms (finding a good spanner) or to prove bounds that would be
expressed from parameters of the input graph G. As example one can wonder what is the forwarding index
(i.e. the load of the edges) when one remove half the edges. Should this load roughly double ?
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