
Tralics, a LATEX to XML translator

José Grimm
INRIA
2002, Route des Lucioles, BP 93,
06902 Sophia Antipolis CEDEX
Jose.Grimm@sophia.inria.fr

http://www-sop.inria.fr/miaou/Jose.Grimm

Abstract

In this paper we describe Tralics, a LATEX to XML translator. A previous version
of the software (written in Perl) was used to obtain the Pdf version of Inria’s
“Rapport d’Activité” for year 2001. The current version of the software (written
in C++) is used for both the HTML and Pdf version for the year 2002: the XML

generated by Tralics is conforming to a local DTD, similar to the TEI; it was
converted to Pdf via pdfTEX and the xmltex package, and the HTML via a xslt
processor.

We explain here the philosophy of the software, its usage, its limitations, and
how to customize it.

Résumé

Dans cet article nous décrivons le logiciel Tralics, un traducteur de LATEX vers
XML. Une version antérieure de ce logiciel, écrite en Perl, a été utilisée pour
générer la version Pdf du Rapport d’activité de l’Inria en 2001. La version actuelle
du logiciel, écrite en C++, a été utilisée pour obtenir à la fois le HTML et le Pdf
de la version 2002 : nous avons utilisé une DTD locale, similaire à la TEI, et
pdfTEX plus xmltex pour obtenir le Pdf.

Nous expliquons ici la philosophie de Tralics, son usage, ses limitations, et
comment paramétrer le logiciel.

Introduction

If you run Tralics on a document like this one, you
will get as output a document that starts and ends
like this:

<?xml version=’1.0’ encoding=’iso-8859-1’?>

<!DOCTYPE eurotex SYSTEM ’tugboat.dtd’>

<!-- translated from latex by tralics 1.8a-->

<eurotex language=’english’>

<titlepage>

<ti>Tralics, a <LaTeX/> to XML translator</ti>

<NetA>Jose.Grimm@sophia.inria.fr</NetA>

<U>http://www-sop.inria.fr/miaou/Jose.Grimm</U>

<resume><p>

In this paper we describe Tralics,

...

<byear>1999</byear>

</citation>

</biblio></eurotex>

All that is needed for this example to work is
to put, in the configuration file read by Tralics, the
following lines:

BeginType eurotex
DocType = eurotex tugboat.dtd

BeginTitlePage
\maketitle <titlepage> "" ""
\title <ti> "No title"
\netaddress <NetA> "No address"
\personalURL <U> "No url given"
\resume E<resume> "Pas de résumé"
\abstract E<abstract> "no abstract"
\author + <author> <auth> "No authors"
\address p<address> "no address"

End
End

Once you have an XML version of the docu-
ment, you can use any tool you wish to process it
(we used the gnome library, http://xmlsoft.org/),
but something has to be done. There are typically
two kinds of applications: everybody that wants to
publish an Inria Technical Report has to give, to-
gether with the typeset PostScript document, the
start of the LATEX source, which is processed by an

TUGboat, Volume 0 (2060), No. 0 —Proceedings of EuroTEX 2003 1001

José Grimm

ad hoc tool that adds a new item to the publication
data basis. One could use Tralics to convert the
partial document, and an xslt style sheet to extract
from the <titlepage> element all relevant informa-
tion, like name of author, title, abstract, keywords,
etc. In such a situation, the presence of an unknown
element like <LaTeX/> or an unexpected math for-
mula causes no problem, the element can be replaced
by its name, and the math formula removed (the
current process behaves like this).

A second type of application is the following:
for some reasons, the LATEX document has to ex-
ists in both PostScript and HTML form, and XML

is used as intermediate, common, format. In such
a case there should be little difference between the
PostScript as seen by the author (direct route) and
the final version (the XML route). As a result, the
translation of \LaTeX must match the LATEX logo
at best, and it is not possible to reject a math for-
mula under the pretext that it does not fit in the
MathML standard. As indicated on the figure page
104 of (Carlisle, Goossens, and Rahtz, 2000), there
are lots of possibilities, none of them is very sim-
ple. In practice, even more tools are needed if the
objective is a complete web site.

This paper is formed of two parts: we first ex-
plain the main application of Tralics (why a new
software, how it is used, what is done with the re-
sulting XML, etc.), after that, we shall explain what
Tralics does in the same order as the LATEX compan-
ion (Goossens, Mittelbach, and Samarin, 1993).

Why another LaTeX to X translator?

Inria’s annual activity report has a long history, as
long as the history of Inria itself. In fact, each re-
search team has to report, each year, on its activity;
this set of documents, which we call the RA in what
follows, is sometimes called the scientific annexes to
the annual report (which is a bilingual document on
glazed paper with lots of figures and photographs,
produced by a specialized company).

Since year 1987 the RA is typeset by LATEX,
using a specific document style (or document class),
see (Louarn, 1988). Since then, the number of pages
has evolved from one thousand to three thousand,
and the document is no more printed on paper (a
CD-Rom version is available since 1999). On the
other hand, a HTML version of the document exists
since 1994, it was produced by latex2html (using
SGML as intermediate language for the first year).

In the years 1997-98, some discussions showed
that it would be nice to redesign the RA, using XML

as intermediate language. We contacted some com-
panies, but got no good answer: nobody was able

to translate the LATEX input into an XML output,
no guarantee was given about quality of a printed
version of the XML, and mathematical support was
very poor. These three points will be discussed later
on.

These discussions were not completely negative:
a new concept emerged, the RAWEB. Essentially, it
is formed of “modules”, that can be read indepen-
dently (lots of nice properties of these modules are
still to be implemented; for instance, depending on
the user profile, these modules could be presented in
one order or another). Each module is equivalent to
a web page, and can be put in a “classeur” (French
equivalent of a loose-leaf file, it’s like a caddy but
elements are ordered; there is no official English
name for it). The objects in the caddy can be re-
ordered, and the caddy can be transformed into a
single HTML document (in 1999, the caddy con-
tained the LATEX version of the modules, hence was
able to produce a PostScript document; we hope
that next year it will contain the XML version of
the modules, but running pdfTEX on the web server
is not an option).

Moreover, the notion of a RA-conforming doc-
ument was formalized (and this served as the basis
of the raweb DTD), a syntax checker was written
in Perl. This checker has some intrinsic limitations:
since it was unaware of macro-expansion and com-
mands like \csname, it was very easy to fool it.

Our new translator

In fall 2001, we decided to fabricate a translator and
to test it; the tool was based on ltx2x (a transla-
tor by Peter Wilson, available on CTAN) and Ω (a
TEX extension that produces MathML as a byprod-
uct, (Haralambous and Place, 1999)), together with
a Perl script that was used as a syntax checker, a
module splitter, and a pre- and post-processor. A
second version of the tool, written entirely in Perl,
was used for the Pdf version of the RA2001.

The description of the software can be found in
(Grimm, 2002), together with lots of examples that
could not be translated. For instance this one:

\catcode ‘$=\active %$emacs
\def$#1~{\catcode‘$=3 zut}
$\left[1=2\right)$ is a formula~!

We decided to rewrite completely the software in
May 2002, and to call it tralics. The previous ex-
ample is understood correctly by Tralics, meaning
that Tralics groks catcodes, active characters, de-
limited arguments, etc. More complicated is

{\catcode‘_\active\global\let_X}
\begingroup\lccode ‘\~=‘_

1002 TUGboat, Volume 0 (2060), No. 0 — Proceedings of EuroTEX 2003

Tralics, a LATEX to XML translator

\catcode‘\~\active
\lowercase\relax{~\def~{u}\endgroup ~a}~
\MakeUppercase{abAB\ae\i}

This shows that \lowercase is fully implemented,
including funny details, like the optional \relax be-
fore the open brace. One objective was to fully im-
plement the TEX macro-expansion mechanism, in-
cluding conditionals (and to translate most LATEX
constructs). The following example provokes an er-
ror:

\font\foo=cmr10 scaled 1023
\setbox0=\hbox to 10pt{\foo p\hss}
\ifdim\dp0>0pt 1\else 2\fi

Here, the first line defines a command \foo that
selects some font; since we do not want to parse font
metric files, all these fonts are equivalent and \foo
is a no-op. The second line constructs an horizontal
box and puts its content into box0; we shall explain
later what Tralics does with the box. One thing
is clear: the objective of Tralics is not to split a
paragraph into lines, so that there is no packaging,
no overfull hboxes, no underfull vboxes. In fact,
the box specifications and the \hss command are
ignored, the resulting box contains only the letter
p. When you ask for the depth of the box, Tralics
signals an error (and returns 0).

Note that \ifvmode and \ifinner are part of
TEX’s macroexpansion mechanism, but these com-
mands are not implemented, mostly because there
is little relationship between the modes of TEX and
the modes of Tralics. All you need to know is that
the following lines work as expected

\ensuremath{\Omega}
\leavevmode
\mbox{\par}

The last line is silly: inside a box, \par cannot start
a new paragraph, and the resulting box is empty.
For simplicity, the \par token is allowed anywhere
(as if every command were prefixed with \long).
Why \mbox is declared \long in LATEX is beyond
me.

The target language

The main job of a translator like Tralics is to read
and analyze the input document, manage it (and
simplify, complete, re-order, etc.) and produce a
new document. The big question here is: what ele-
ments should be chosen? In the case of latex2html,
the choice is limited to HTML version 2.0, 3.0, 3.2,
and 4.0. In the case of Tralics, there is no prede-
fined set of elements. In the opening example, we
used <U> for the \personalURL command, in or-

der to avoid long lines, but more suggestive names
should be used.

The default behavior of Tralics is defined by
its main application, namely the raweb, with the
following constraints: the resulting XML has to be
converted to a set of HTML pages, one page for each
module, it has to be converted to PostScript or Pdf,
one document per research team, without loss in ty-
pographic quality, and finally, mathematics should
not be forgotten. Two style sheets were used, one
to produce HTML, and another one for the Pdf ver-
sion. Formatting a document is not trivial, because
some objects have to be evaluated more than once,
sometimes depending on the context (this explains
why some LATEX commands are fragile). In our case,
the formatting was done by TEX or pdfTEX, which
was able to parse XML files thanks to the xmltex
package, see (Carlisle, Goossens, and Rahtz, 2000).
There is still work to to, in particular concerning ta-
bles: the implementation of tables in fotex.sty is
rather disturbing; 400 lines of TEX code were needed
(for instance to patch the behavior of <mfenced>
and <mover>, and to get the cover page right).

For the DTD, we first considered the Docbook
DTD, (Walsh and Muelner, 1999), and discarded
it, because it was too complicated. We considered
then the TEI, and simplified it drastically. Lots
of interesting material can be found on that web
site (http://www.tei-c.org/), included PassiveTEX,
(Rahtz, 2003), which is companion tool to xmltex,
and a model for the above-mentioned style sheets.

On the other hand, we added some features, in
order to implement figures, tables, math, etc. For
obvious reasons, we use the presentation elements
of MathML, (Carlisle, Ion, Miner, and Poppelier,
2001), but the design of the bibliography is not yet
done (more on this subject will follow).

There are nearly one hundred elements in this
DTD, 30 elements being specific to the raweb, 20
for the bibliography, other elements are borrowed
from the TEI. Via the configuration file, you can
change the default names (except those defined by
MathML, and those specific to the raweb); using
commands like \xmlelement, you can generate ad-
ditional elements. If you do so, you can convince
Tralics to use your own DTD. The software, the
documentation, and the raweb DTD can be found
on the following web site

http://www-sop.inria.fr/miaou/tralics/

Application to the raweb

The main application of Tralics can be found on
Inria’s web site

TUGboat, Volume 0 (2060), No. 0 —Proceedings of EuroTEX 2003 1003

José Grimm

http://www.inria.fr/rapportsactivite

For year 2002, 125 teams have written their activity
report, (in LATEX, with one exception) and the re-
sult is over 3000 pages of Pdf (A4 format, 10 point
font size), resulting in 3890 HTML pages, that oc-
cupy 598.386 Mb of the CD-rom. Translating these
files took 100 seconds (30 seconds if Tralics is com-
piled with the -O2 switch, this shows that the C++
optimizer does a good job). The most time consum-
ing operation was the conversion from XML to Pdf
(the xmltex parser is very slow), and production of
images (conversion from PostScript to Pdf via the
epstopdf Perl script, and to png, using tools bor-
rowed from latex2html).

Lots of people were involved in the process: first
the raweb team, which contributed to the design of
the raweb (the web site, the paper version, the idea
of using XML, the DTD), the authors of the texts,
the people who collected the texts and who corrected
some typos, and Marie-Pierre Durollet who deserves
special thanks: she wrote some shell scripts, Perl
scripts, cgi scripts, part of the style sheets, etc., in
fact, all that is needed to make the web site function.
She was also the first real user of Tralics, in that
she translated all the files, on her Linux box (other
people tried Tralics on SunOS, MacOS, Windows).

One non-trivial point was the question of math-
ematics: there are some browsers (Amaya, Mozilla,
etc), that understand MathML, or claim to do so,
together with plugins and other tools supposed to
visualize MathML, but we decided nevertheless to
convert all the math stuff. In fact, Tralics comes
with a Perl script (a bit over one thousand lines),
that reads an XML file, and converts math and im-
ages.

Image post-processing Consider a simple, classi-
cal, example:

\begin{figure}
\begin{center}
\includegraphics{miaou_transf.ps}

\end{center}
\caption{Modèle de transducteur.}
\label{trans}

\end{figure}

It is translated into

<figure file=’miaou_transf’ id=’uid30’>
<head>Modèle de transducteur.</head>
</figure>

As can be seen, the argument of the \label com-
mand was normalized from ‘trans’ to ‘uid30’ and be-
came an attribute of the figure element, the center-
ing environment was ignored, the underscore treated

as a normal character, the extension of the file name
was removed, and the file became an attribute of the
figure element (see below an example where more
than one image appears in a figure environment).
The post-processing script has the charge to make
sure that the image exists in PostScript, Pdf and
png format. It also modifies the XML like this
<figure aux=’image_1.png’
file=’miaou_transf’ id=’uid30’>

<head>Modèle de transducteur.</head>
</figure>

and the HTML result will be:
<div align="center">

<table>
<caption align="bottom">
Figure 1.
Modèle de transducteur.

</caption>
<tr><td><img alt="miaou_transf"

src="image_1.png"></td></tr>
</table>

</div>

A few remarks are needed: the initial LATEX environ-
ment is a floating one, so that the result is outside a
<p> element, and using <div> for grouping is justi-
fied. The figure and its caption are centered. Note
that the image is a cell of a table, because this is the
easiest way to associate a caption to the table.

The è character was transformed into è
by an ad hoc program, because, for some unknown
reasons, the style sheet refused to use latin1 encod-
ing, it used UTF-8 instead, an encoding not under-
stood by the program that indexes Inria’s web site.

The figure was the first one in the file, so that
the style sheet numbered it as figure one (in the
next example, there is no \caption, hence the figure
has an empty <caption>, but nevertheless a unique
number). The HTML translation of \ref{trans}
is something like <a>1. The <a> element has
a href attribute whose value depends on the name
of the label, and the current web page, which was
renamed from ‘resonn’, the name given by the au-
thor, to ‘module7’, which has no meaning (search-
ing for ‘module50’ on Inria’s web site reveals that
three teams have written at least 50 modules). The
important point however is the content of the <a>
element: the value 1 is not computed by Tralics, but
by the style sheet.

Another example is the following.
\begin{figure}[htbp]
\begin{center}
\begin{tabular}{ccc}

1004 TUGboat, Volume 0 (2060), No. 0 — Proceedings of EuroTEX 2003

Tralics, a LATEX to XML translator

\includegraphics[width=3.5cm]{imgl}&
\includegraphics[width=3.5cm]{imgc}&
\includegraphics[width=3.5cm]{imgr}\\

cap l&cap c&cap r
\end{tabular}
\end{center}
\end{figure}

The same effect could be achieved by using the sub-
figure environment, but we wanted to give an exam-
ple of a table. Note that, if more than one image
is to be put in a figure, we suggest using a table,
since there are still unresolved problems regarding
spacing. The translation of the previous example is
the following

<figure rend=’array’ id=’uid9’><p>
<table rend=’inline’> <row>

<cell><figure file=’imgl’/></cell>
<cell><figure file=’imgc’/></cell>
<cell><figure file=’imgr’/></cell>

</row><row>
<cell>cap l</cell>
<cell>cap c</cell>
<cell>cap r</cell>

</row></table></p>
</figure>

In order to reduce the size, we did omit the halign
= center attributes for the six <cell> elements, and
the width=3.5cm, rend=inline attributes of the three
non-toplevel <figure> elements. The HTML trans-
lation is a table in a table, the inner table has no
caption, the outer table has an empty caption. One
of these two tables could be removed.

Math post-processing Note that a table or a fig-
ure is a float (hence is numbered) if and only if
its rend attribute is not inline, on the other hand
math formulas never float, but are numbered only
if they are non-inline, and have a label. In what
follows, we shall distinguish between the math (de-
fined by MathML) and the formula (something we
borrowed from the TEI DTD). It is the formula that
has a label (hence a number), and this explains why
we have some troubles translating environments like
align and commands like \tag. Nevertheless, the
translation of the simple formula K 6= Γ is

<formula type=’inline’><math><mrow>
<mi>K</mi><mo>≠</mo><mi>Γ</mi>
</mrow></math></formula>

For completeness, we show here the xsl-fo stuff that
is used to convert the formula into Pdf (complete
code for the example above, skeleton for a display-
math formula, numbered and unnumbered).

<m:math overflow="scroll"><m:mrow>

<m:mi>K</m:mi>
<m:mo>≠</m:mo>
<m:mi>Γ</m:mi>

</m:mrow></m:math>

<fotex:displaymath>
display-math stuff

</fotex:displaymath>
<fo:inline id="uid11"><fotex:equation>
numbered math stuff

</fotex:equation></fo:inline>

In this case, the Perl script that handles images
and math formulas classifies the formula as a simple
one, formed of three tokens in a row, a Latin letter,
a symbol and a Greek letter. It replaces the formula
by the following XML code.

<hi rend=’it’>K</hi>
<img src=’img_other_ne.png’ alt=’\ne’
width=’14’ height=’26’ align=’middle’/>

<img src=’img_Gamma.png’ alt=’Γ’
width=’12’ height=’13’ align=’bottom’/>

Images for Greek letters and other symbols were pre-
computed (by latex2html). The dimensions given
here are nearly twice the size of a ten-point 6= and
Γ, except that the depth of the 6= should be 4, and
there is no way to indicate a depth in HTML. That’s
the reason why we indicate a total height plus depth
of 26, together with an ‘align=middle’ attribute. The
resulting HTML is ugly (too much blank space with
the line and the following one), and uses a depre-
cated feature, but we do not know how to do better.
The resulting HTML is

K
<IMG width="14" height="26" align="middle"
border="0" alt="\ne"
src="../images/img_other_ne.png">
<IMG width="12" height="13" align="bottom"
border="0" alt="Γ"
src="../images/img_Gamma.png">

Let’s give another example: L2 → L∞ is trans-
lated into MathML as

<math><mrow>
<msup><mi>L</mi><mn>2</mn> </msup>
<mo>→</mo>
<msup><mi>L</mi><mi>∞</mi></msup>

</mrow></math>

The result here is a single image:

<img align = ’bottom’
width =’71’ height =’13’

TUGboat, Volume 0 (2060), No. 0 —Proceedings of EuroTEX 2003 1005

José Grimm

src=’math_image_1.png’ border=’0’
alt=’Im1 ${L^2\rightarrow L^\infin }$’/>

A formula of the form ab or ab is considered sim-
ple (and translates to <sup> or <sub>) in the case
where b is an HTML character. Here, one exponent
is infinity, hence an image is needed. Note how the
alt field is constructed: we try to reconstruct the
TEX formula from the MathML element. The first
token, the Im1, indicates the image number, and is
only useful for debugging. Constructing the image
is not so trivial. First, a file is created that contains
lines of the form
<formula id="1"><math><mrow>
<msup><mi>L</mi> <mn>2</mn></msup>
<mo>→</mo>
<msup><mi>L</mi><mi>∞</mi></msup>

</mrow></math></formula>

In fact, the file contains all formulas that need to
be converted, with a unique id identifying the im-
age. The xmllint processor is used to replace entity
names by their Unicode values. The resulting file is
processed by LATEX, in the same fashion as the main
document, in order to get a dvi file. The interpreta-
tion of the <formula> element (which is absent from
the xsl-fo file) uses code borrowed from latex2html,
which has two side effects. First, the log file contains
a line like
l2hSize :1:8.14003pt::0.0pt::48.73616pt.

and second, each page of the dvi file contains a single
math formula in its upper left corner. For each such
page a PostScript file is generated by dvips and it
is converted to png via the pstoimg utilities, which
uses the size information shown above. After a mag-
nification factor of 40%, this gives a resulting image
of 13 by 71 pixels, and this information is pushed
back in the XML file.

The structure of a LATEX document

Tralics assumes that the document to be translated
conforms to LATEX standards, said otherwise that
there is a line with \documentclass followed by
some lines containing \usepackage commands, fol-
lowed by a document environment. This is a very
special environment, because its content is at brace
level zero (as in standard LATEX), and the tokens
read by \AtBeginDocument and \AtEndDocument
are inserted at the right place, for instance
\documentclass{article}
\usepackage{calc}
\AtBeginDocument{start}
\AtEndDocument{end}
\newlength{\foo}

\AtEndDocument{\AtEndDocument{ realend}}
\begin{document}
\setlength{\foo}{1cm+3pt}
\the\foo
\end{document}
This line is not translated

would produce essentially the following
<p>start
31.45274pt
end realend</p>

There is a special hack here: a special \endinput
token is inserted, whose effect is to stop transla-
tion of the current file (after the tokens remembered
by the document hook), but the job of the trans-
lator continues, because it is at this moment that
the bibliography is translated: Tralics has the list
of all \cite commands, it can do the equivalent of
BibTEX (the resulting bibliography is inserted where
the \bibliography command is located). It is an
error if a \cite command is seen after the end of
the document (i.e. comes from a BibTEX file).

Parameterization The first job of Tralics is to
read the source file, and find a \documentclass
command, in order to apply document specific rules
found in the .tralics_rc file (the configuration file,
it can be in the current directory or homedir). In
the case where the configuration file contains
BeginType article
on package loaded calc CALC = "true"
on package loaded foo/bar FOO = "true"

End

then, whenever the document class is ‘article’ (trail-
ing digits are ignored in the name) the two lines
are executed. It follows that the root element of
the resulting XML document will have the attribute
CALC set to true, in case the calc package is loaded,
and FOO is set to true in case the foo package is
loaded with the bar option. By default, the attribute
language is set (to french or english), in case Tral-
ics is able to determine the main language, either
because (as in this document), english is an option
to \documentclass, or because the babel package
is loaded with recognized parameters. Finally, the
meaning of \setlength depends on whether the calc
package is loaded or not.

Sectioning Commands The XML model of Tral-
ics is based on the notion of paragraph (\par com-
mand, <p> element). This element can contain in-
line stuff (text, images, tables, math formulas), it
is at the same level as non-inline stuff (images, ta-
bles, math, notes, bibliographic entries), and can be
contained in a sectioning command (for instance the

1006 TUGboat, Volume 0 (2060), No. 0 — Proceedings of EuroTEX 2003

Tralics, a LATEX to XML translator

paragraph is in a subsection in a section in a chapter
in a part). These elements have in general a number
(computed by an external program rather than de-
fined by the user, never computed by Tralics), and
can be referenced. The translation of a sectioning
command is a <divi > element, where i is an integer
between 0 and 6. Example:
\section{x}A\label{a}
\subsection{y}
B\label{b}C\label{c}D
\paragraph{z}
\ref{a}\ref{b}
\subsection{t}

gives
<div0 id=’uid1’><head>x</head>
<p>A</p>
<div1 id=’uid2’><head>y</head>
<p>BCD</p>
<div3 id=’uid3’><head>z</head>
<p><ref target=’uid1’/>

<ref target=’uid2’/></p>
</div3>

</div1>
<div1 id=’uid4’><head>t</head>...

By default, \section is the top-level division, but
chapters are allowed in a report, and parts in a book.
The ‘...’ is not part of the output, it just indicates
the current position in the XML tree. Note that
Tralics is in outer vertical mode, said otherwise, the
occurrence of a character will imply the creation of
a <p> element; in LATEX, the current mode would
depend on the document class. This is one reason
why \ifvmode is not implemented. The example
shows a logical error: there is a <div3> element in
a <div1> element. It would be numbered 1.1.0.1 in
LATEX, and 1.1.1 (without the zeros) using an xslt
processor.

Cross references Tralics implements \label and
\ref but not \pageref. The basic idea is to put a
mark in the XML document, and use references to
this mark. The mark is an attribute of type ID, and
there are some limitations in XML that do not ex-
ist in LATEX (for instance no element type may have
more than one ID attribute specified, and an ID can-
not start with a digit). In order to remove these dif-
ficulties, Tralics uses its own list of IDs (uid1, uid2,
etc.) Associated to the mark is a value, produced
by \p@foo\thefoo. This mechanism is not imple-
mented in Tralics: the value associated to a label is
not in the XML document but must be computed
by the application (the style sheet for instance). In
order to distinguish between Figure 4 or Table 5,
the label must be associated to a figure or a table

(a footnote, an item in a list, a formula, a division,
that’s all). Hence the following changes with LATEX:
inside a figure or table environment, there must be
at most one label, and it can be before or after the
caption. A math formula can have a label only if it
is a display math equation, and it is numbered only
if it has a label. See example above. There is no
need to call Tralics twice or more: a single pass is
enough.

References to external documents are under-
stood. In the following example, we switch to French
in order to show the behavior of special characters
(like colon and underscore) with or without the \url
command:

\language=1
\href{http://foo_ba}{http://foo_bar}
\href{\url{http://foo_ba}}{http://foo_bar}

The translation is

<xref url=’http://foo_bar’>
http ://foo_ba</xref>

<xref url=’http://foo_bar’>http://foo_ba
</xref>

Basic formatting tools

The following example is from (Knuth, 1984) page
218, with an addition to verify that the number of
calls of \trialdivision is really 132.
\tracingall

\countdef\td 4 \td=0

\newif\ifprime \newif\ifunknown

\newcount\n \newcount\p \newcount\d

\newcount\a

\def\primes#1{2,~3% assume that #1 >= 3

\n=#1 \advance\n by-2 % n more to go

\p=5 % odd primes starting with p

\loop\ifnum\n>0 \printifprime

\advance\p by2 \repeat}

\def\printp{, %

\ifnum\n=1 and~\fi %

\number\p \advance\n by -1 }

\def\printifprime{\testprimality

\ifprime\printp\fi}

\def\testprimality{{\d=3 \global\primetrue

\loop\trialdivision

\ifunknown\advance\d by2 \repeat}}

\def\trialdivision{\a=\p

\global\advance\td by 1

\divide\a by\d

\ifnum\a>\d \unknowntrue\else\unknownfalse\fi

\multiply\a by\d

\ifnum\a=\p \global\primefalse

\unknownfalse\fi}

The first thirty prime numbers are \primes{30}.

trialdivision macro was expanded \the\td\ times

TUGboat, Volume 0 (2060), No. 0 —Proceedings of EuroTEX 2003 1007

José Grimm

This example works in LATEX and in Tralics. All
TEX primitives that start with ‘tracing’ are imple-
mented, most of them refer to behavior that is not
implemented in Tralics. If you run Tralics on the
previous example, the log file will contain:

[706] \countdef\td 4 \td=0
{\countdef}
+scanint for \countdef->4
{\td}
+scanint for \td->0
[709] \newcount\a
{\countdef \a=1550}

You can see the input source line whenever it is read,
with its line number, and the commands that are
evaluated. In the TEXbook page 269, you can see
the definition of an integer. This is so complicated
that Tralics prints the value whenever scanned. The
last line shows that the \a command will access the
internal tables at position 1550.

\iterate->\ifnum \n >0 \printifprime
\advance \p by2 \relax \expandafter
\iterate \fi

+\ifnum
+scanint for \ifnum->28
+scanint for \ifnum->0
+iftest true

Here we can see that the \loop macro is imple-
mented as in LATEX and not as in plain TEX. The
\iterate token is a private one, the \loop macro
does not kill your command (but the loop inside
the loop will modify it, and this explains why extra
braces are needed).

{begin group character}
+stack: level + 2

The first line indicates that Tralics has seen an open
brace (technically, a character of catcode one), and
that it creates a new frame on the save stack (the
outer level is numbered 1, as in TEX).

{end group character}
{Text:, 5}
+stack: restoring \ifunknown
+stack: restoring integer value 1550 0
+stack: restoring \iterate
+stack: restoring integer value 1549 0
+stack: level - 2

And this is done when Tralics sees the closing brace.
It restores two commands and the two registers \a
and \d (the association between \d and the number
1549 can be found in the log file). A side effect of
seeing the closing brace is to flush the XML buffer
(what follows the ‘Text:’ on the second line), for the
case where the current font might change.

List structures Standard LATEX lists are imple-
mented, they are not customizable. The only non
trivial part is that the optional argument of the
\item command should be evaluated in a group. As
an example:
\begin{itemize}
\item a
\item [\it b] c
\begin{enumerate}

\item d
\begin{description}
\item e

\end{description}
\end{enumerate}
\end{itemize}

This will translate to
<list type=’simple’>
<item id=’uid14’><p>a</p></item>
<label><hi rend=’it’>b</hi></label>
<item id=’uid15’>
<p>c</p>
<list type=’ordered’>
<item id=’uid16’><p>d</p>
<list type=’description’>
<item id=’uid17’><p>e</p>
</item>

</list>
</item>
</list>

</item>
</list>

Note: in order to make the XML output more read-
able, we added and removed some space and newline
tokens. The general rule for Tralics is to output one
space (or newline character), whenever TEX would
output one space character. In particular, the TEX
scanner converts two consecutive newline characters
in a space character and a \par token. This space
character will be output by Tralics as a newline char-
acter.

Notes The translation of
\footnote{a}
\footnote{Y \AddAttToLast{x}{y}b\par
\AddAttToCurrent*{place}{here}c}

is
<note id=’uid14’ place=’foot’>a</note>
<note place=’here’ id=’uid15’>
<p x=’y’>Y b</p>
<p>c</p>
</note>

Two remarks: each note has an uid, hence can be
referenced, but there is nothing special about it (no

1008 TUGboat, Volume 0 (2060), No. 0 — Proceedings of EuroTEX 2003

Tralics, a LATEX to XML translator

counter, no mark, no restrictions). On the other
hand, the example shows how to add an attribute
to an XML element, either the element created latest
(here the <p> element that contains the text of the
footnote), or the current element (the footnote, since
the translation of \par does not create a new <p>
element, it is the translation of the character c that
forces a second <p> in the note). In the unlikely
event that the element has already an attribute of
the same name (for instance, a footnote has a default
place attribute), the command is ignored, unless you
use its starred form to overwrite.

New elements It is easy to use new elements, just
say

\begin{xmlelement}{main-elt}
\begin{xmlelement}{sub-elt1}
text1
\end{xmlelement}
\begin{xmlelement}{sub-elt2}
text2
\end{xmlelement}
\AddAttToLast{sb2-att}{value1}
\AddAttToCurrent{foo-att}{att-value’’}
\end{xmlelement}

and you will get

<main-elt foo-att=’att-value''’>
<sub-elt1>
text1
</sub-elt1>
<sub-elt2 sb2-att=’value1’>
text2
</sub-elt2>
</main-elt>

You can also try

\hbox{a\it b}
\vbox{c\it d}
\newcommand\AGtest{AG}
\setbox0=\xbox{myelt}
{\aftergroup\AGtest e\it f}

\copy0 \copy0

This will work in Tralics, since an \hbox and a \vbox
is just an unnamed \xbox. The braces serve for
grouping, and as argument delimiters. The result is

a<hi rend=’it’>b</hi>
c<hi rend=’it’>d</hi>
AG
<myelt>e<hi rend=’it’>f</hi></myelt>
<myelt>e<hi rend=’it’>f</hi></myelt></p>

Note: when Tralics constructs a element, the equiv-
alent of a box in TEX, it is a special mode, that does
not match any of TEX’s modes.

Verbatim material A document like this one uses
lots of verbatim material, hence Tralics is familiar
with standard verbatim environments, and some ex-
tensions. For instance, the translation of

\DefineShortVerb{\|}
you can say |\foo| or \verb*+foo bar+.
\begin{Verbatim}
verb line1
$<&\>
\end{Verbatim}

would be

you can say <hi rend=’tt’>\foo</hi>
or <hi rend=’tt’>foo␣bar</hi>.</p>
<p noindent=’true’><hi rend=’tt’>

verb line1</hi></p>
<p noindent=’true’><hi rend=’tt’>

$<&\></hi></p>
<p noindent=’true’>

Note that here the \end commands checks whether
the environment is followed by an empty line. If it
is not, a \noindent token is inserted.

The layout of the page

The essential idea of Tralics is that the result of the
translation is independent of the layout of the page.

But if you give 0.8\textwidth as the width of
a figure, Tralics will replace this by 12cm, because
something has to be done. Optional arguments of
sectioning commands are ignored: in general one
would use then for marking the document. We have
implemented the TEX marking commands, but they
do nothing; we think of extending the functionalities
of the title-page mechanism of Tralics. In fact, if the
title-page specifies something like:

\address p<address> "no address"

(see opening example), then there is a command
\address, that takes one argument, whose trans-
lation is put in <address> element, and recorded.
The ‘p’ marker says that paragraphs are allowed,
an ‘E’ marker indicates that the command is an en-
vironment, a ‘+’ that the command can be issued
more than once, etc. As you can see, there is still
work to be done.

Tabular material

There are essentially four points to be considered:
tables in math mode, (described later), standard
LATEX tabular (see earlier example), the tabbing en-
vironment (not implemented, because it implies to
implement all packages that typeset algorithms), the
\halign primitive, which is much too complicated
to implement.

TUGboat, Volume 0 (2060), No. 0 —Proceedings of EuroTEX 2003 1009

José Grimm

One problem is, given the table specification
r||l, how to translate it. Tralics understands that
there are two columns, right and left justified, with
a rule on the right and the left, but this is impossible
to translate into HTML, that knows only |r|l| or
rl. The \hline and \cline are implemented, but
suffer from the same limitations.

Mastering floats

There is in general enough flexibility for adding or
removing one line on the current page, so that, for
instance, TEX is not faced to the dilemma of either
putting a section title at the bottom of a page, or
generating an awfully bad underfull page. The sit-
uation is quite different for tables or images, which
can be much larger, and this is the reason why they
can float (i.e. items are put in the output in a differ-
ent order). Handling of floats is non-trivial, in some
cases, the best thing to do is to resize (the image,
or even the text).

The philosophy of Tralics is the following: in
the case where the XML is translated into HTML,
no object has to float. On the other hand, since the
author of the document is not the person that does
the final typesetting, no fine tuning of floats can be
achieved. As a result, Tralics just ignores optional
arguments of float environments, float parameters,
and things like wrapfig environments.

Font selection

The introductory example shows some features of
Tralics. For instance, the default input encoding
of the document is latin1, and this is the same as
the output encoding: the translation of é\oe will be
éœ, you can also say \’e\.E if you want éĖ;
all Unicode characters with code less than x180 are
recognized. If you need other characters, you must
use a construct like
Hàn Th\xmllatex{&\#x1ebf;}{\’{\^e}} Thành

The command \xmllatex takes two arguments, the
first one is ignored by standard LATEX, and the sec-
ond one by Tralics. Note how the sharp sign is pro-
tected. See the Unicode manual (The Unicode Con-
sortium, 2000) for the numeric value ‘x1ebf’. There
is no way to construct a logo, like the TEX logo, with
\kern or \lower, but instead, you could say
\newcommand\MyLogo{\xmlemptyelt{MyLogo}}

and define a <MyLogo/> element in your DTD. You
could also use a parameterized version of the logo,
like this
\newcommand\ParLogo[1]{\xmlelt{PLogo}{#1}}
\MyLogo
\ParLogo{2ε}

The resulting XML document will contain
<MyLogo/>
<PLogo>2<formula type=’inline’><math>
<mi>ϵ</mi></math></formula></PLogo>

As explained above, Tralics knows of the \font
command, but this command should not be used. It
is much better to say something like
{\bfseries a\itshape b\small c\ttfamily d}

which translates into:
<hi rend=’bold’>a</hi>
<hi rend=’it’><hi rend=’bold’>b</hi></hi>
<hi rend=’small’><hi rend=’it’>
<hi rend=’bold’>c</hi></hi></hi>

<hi rend=’small’><hi rend=’it’>
<hi rend=’tt’><hi rend=’bold’>d</hi>

</hi></hi></hi>

As this example shows, a font is defined by a size,
shape, series and family, nothing more (is it possi-
ble to put convert to HTML a document written in
Computer Modern Funny Roman using the U en-
coding?) Tralics understands all ten standard font
sizes, but uses only three (a normal size, a larger
one, and a smaller one); there are some bugs in the
implementation. In an example like this
{\it a\par b}

a new paragraph is created when the b character is
sensed, and a font element must be inserted in this
paragraph, since the current font is not the default
one. The commands \it, \textit, \itshape have
the same meaning as in LATEX. The \em command
also (but Tralics does not know if the current font is
slanted or not, and may generate the wrong result).

Higher mathematics

TEX has a reputation of producing very high quality
mathematics, and people at the AMS have worked
hard to make it easy to use. As a result, trying to
translate the whole AMS stuff to MathML is nearly
impossible (too many features have no equivalent);
on the other hand, converting the MathML into Pdf
was a challenge (there are still unresolved problem,
like tables in tables, missing characters, etc.), and
the rendering by tools like Amaya were a bit strange.

The translation of
∫∞
0
F(x)2 dx is unsatisfac-

tory to us. In particular, Tralics fails to notice that
the exponent applies to the ‘F(x)’, and we wonder
whether an expert system should be used (consider
the scope of the <mrow> element in the translation
below).
<math>
<mrow>
<msubsup><mo>∫</mo>

1010 TUGboat, Volume 0 (2060), No. 0 — Proceedings of EuroTEX 2003

Tralics, a LATEX to XML translator

<mn>0</mn> <mi>∞</mi>
</msubsup>
<mrow><mi>ℱ</mi><mo>(</mo>
<mi>x</mi> </mrow>
<msup><mo>)</mo><mn>2</mn> </msup>
<mspace width=’3pt’/><mi> d </mi>
<mi>x</mi>

</mrow></math>

LATEX in a multilingual environment

Inria’s Rapport d’Activité is, by nature and law, a
French document. The RA, or the RAWEB, being
just its scientific annex, can be in English (with a
French summary). It was decided that next year (i.e
year 2003), the whole thing (the source document,
the web site, the logo, the these-pages-in-French-
only pointers) will be in English. Thus a special at-
tention was given to this problem in Tralics. For in-
stance, whether the title of the bibliography should
be “References” or “Références” does not depend
on Tralics, but on the style sheet (or the DTD). On
the other hand, one may imagine a document (like
this one) that has an abstract in two languages, and
that the first abstract should be in the main lan-
guage. Using the title page mechanism of Tralics
will give you a fixed order for the XML result, but
as the introductory example shows, the main lan-
guage is an attribute of the root element (and it is
the \maketitle command that selects the current
language as main language).

In fact, TEX provides a \setlanguage com-
mand, which is ignored by Tralics, and a \language
command that selects a language: Tralics assumes
that English has number zero, French has number
one, and your favorite language has number two (in
fact, only two languages are really supported). The
BibTEX translator (see below) uses the value of the
current language for the interpretation of strings like
‘jan’. The following example shows the differences
between French and English:

\language =1
<<guill’’ ponctuation;
\verb+<<guill’’ ponctuation;+
a\xspace b\xspace !
\language=0
<<guill’’ ponctuation;
a\xspace b\xspace !

The translation is

« guill » ponctuation ;
<hi rend=’tt’><<guill
’​’​
ponctuation;</hi>
a b !

« guill’’ ponctuation;
a b!

The important points are the following: a space is
added before some punctuation characters (colon,
semi-colon, guillemets, etc), even when the xspace
package (language independent) thinks it useless.
Everything that looks like opening or closing double
quotes are converted to French guillemets, with the
proper spacing. Note the translation of the \verb
command: the two single quotes are followed by a
special (invisible) character, the purpose of which is
to avoid ligatures in the case where the XML is pro-
cessed by TEX; the line breaks were manually added
in order to avoid overfull lines.

Portable graphics in LATEX

We tried to implement some commands, for instance

\setlength{\unitlength}{.0075\textwidth}
\begin{picture}(90,50)
\put(40,25){\framebox(10,10){$H(s)$}}
\put(19,30){\vector(1,0){9}}
\put(60,15){\vector(-1,0){10}}
\put(17.75,0.5){\oval(1.5,1.5)[r]}
\end{picture}

The result is given below. However, for the RA,
we copied the content of the picture environment in
a file, called LATEX on it, and replaced the picture
by a reference to the PostScript file.

<picture width=’90.0pt’ height=’50.0pt’>
<put xpos=’40.0pt’ ypos=’25.0pt’>
<box width=’10.0pt’ height=’10.0pt’>
<formula type=’inline’><math>
<mrow><mi>H</mi><mo>(</mo><mi>s</mi>
<mo>)</mo></mrow></math>

</formula></box></put>
<put xpos=’19.0pt’ ypos=’30.0pt’>
<vector xdir=’1.0pt’ ydir=’0.0pt’
width=’9.0pt’/></put>

<put xpos=’60.0pt’ ypos=’15.0pt’>
<vector xdir=’-1.0pt’ ydir=’0.0pt
width=’10.0pt’/></put>

<put xpos=’17.75pt’ ypos=’0.5pt’>
<oval xpos=’1.5pt’ ypos=’1.5pt’
specs=’r’/></put>

</picture>

Using PostScript

Since our main application uses Pdf in preference of
PostScript, we will not speak about PostScript here
(some people use psfrags in order to replace Post-
Script fonts in their figures by standard LATEX ones,
this is strange).

TUGboat, Volume 0 (2060), No. 0 —Proceedings of EuroTEX 2003 1011

José Grimm

Index generation

Tralics offers no specific tool.

Bibliography generation

The design of the bibliography of the raweb is still
a subject of research. We were faced to the follow-
ing problems: first, the raweb uses three different
BibTEX files, and the translation of one these files
depends on whether it was put on the web or printed
on paper, and the items in the main bibliography file
are to grouped in different categories, depending on
their type; a total of four bst files are used. One
idea was to parse the bbl files (but, if you look at
the sources of the footbib package, you can see how
hard it is; by the way, bibliographic entries are no
more footnotes). The second idea was to modify
the bst file in order to generate an environment per
item, in order to simplify the parsing. The third idea
was to abandon BibTEX; since there is still no XML

standard for bibliography, and no universal tools,
we just wrote a BibTEX to LATEX translator. For
instance, the TEXbook entry looks like this

\citation{Knu84}{cite:texbook}{year}{book}
\bauteurs{\bpers{D. E.}{}{Knuth}{}}
\cititem{btitle}{The \TeX book}
\cititem{bpublisher}{Addison Wesley}
\cititem{byear}{1984}
\endcitation

This part of the translator reads the BibTEX file,
expands the BibTEXmacros (predefined, or used de-
fined), removes useless stuff, sorts the entries, and
returns the LATEX equivalent (in fact, the stuff is
written in a bbl file, but only for you to see what
happens in case of error). The same entry processed
by BibTEX:

\bibitem[\protect\citeauthoryear{Knuth}
{Knuth}{1984}]{texbook}
Knuth, D.~E.
\newblock {\em The \TeX book}.
\newblock Addison Wesley, 1984
\UseExtraLabel{}.

A comparison shows that BibTEX adds some tokens
that would be very hard to remove: tilda, comma,
period, together with some others (\em, \newblock)
that can be context sensitive. On the other hand,
the LATEX to XML translator generates

<citation from=’year’ key=’Knu84’
id=’cite:texbook’ type=’book’>

<bauteurs>
<bpers prenom=’D. E.’ nom=’Knuth’/>

</bauteurs>
<btitle>The <TeX/>book</btitle>

<bpublisher>Addison Wesley</bpublisher>
<byear>1984</byear>
</citation>

so that it is up to the style sheet to do all the real
work (like: using \em for the title if it’s a book,
use the plural of ‘editor’ if there is more than on).
Each style has it own specificities: the tugboat style
generates a special optional argument for \bibitem,
but the raweb tools need the from and type at-
tributes for sorting (problem here: citations are al-
ready sorted).

Conclusion

We have showed in this paper that a LATEX to XML

translator can be very useful, whenever you have
the tools to manage the resulting XML. We hope
that standardization will continue, so that it will
become easier to write such tools, and adapt them.
Putting high quality mathematics on the web is still
a challenge, and we hope that people will appreciate
our contribution.

References

Carlisle, David, M. Goossens, and S. Rahtz. “De
XML à PDF avec xmltex et PassiveTEX”. In
Cahiers Gutenberg, number 35-36, pages 79–114.
2000.

Carlisle, David, P. Ion, R. Miner, and
N. Poppelier. “Mathematical Markup
Language (MathML) Version 2.0”.
http://www.w3.org/TR/MathML2/, 2001.

Goossens, Michel, F. Mittelbach, and A. Samarin.
The LATEX companion. Addison Wesley, 1993.

Grimm, José. “Outils pour la manipulation du rap-
port d’activité”. Technical Report RT-0265, In-
ria, 2002.

Haralambous, Yannis and J. Place. “Produire du
MathML et autres ...ML à partir d’Ω : Ω se
généralise”. In Cahiers Gutenberg, number 33-
34, pages 173–182. 1999.

Knuth, Donald E. The TEXbook. Addison Wesley,
1984.

Louarn, Philippe. “Une expérience d’utilisation de
LaTeX : le Rapport d’activité de l’INRIA”.
Cahiers Gutenberg (0), 17–24, 1988.

Rahtz, Sebastian. “Passive TEX”. http://www.tei-
c.org.uk/Software/passivetex/, 2003.

The Unicode Consortium. The Unicode Standard,
version 3.0. Addison Wesley, 2000.

Walsh, Norman and L. Muelner. Docbook. The Def-
inite Guide. O’Reilly & Associates, Inc, 1999.

1012 TUGboat, Volume 0 (2060), No. 0 — Proceedings of EuroTEX 2003

