First example. The source file is described here. This file was produced in Jan. 2004 Some line breaks were inserted, they are marked by red underscores.
<?xml version='1.0' encoding='iso-8859-1'?> <!DOCTYPE tpa SYSTEM 'tpa.dtd'> <!-- translated from latex by tralics 1.9t--> <tpa from_type='OK' from-tpa='ok' language='english'> <titlepage a2='b2' a1='b1' att2='foo2' att1='foo'> __<title-element tea='tea-val'>Titlepage customisation __in Tralics</title-element> <utitle-element tea='utea-val'>No title</utitle-element> <autL bl='blval' al='alval'><aut auta='autaval'>José Grimm</aut> <aut auta='autaval'>Knuth</aut> <aut auta='autaval'>JG</aut> <aut auta='autaval'>DEK</aut> </autL> <uautL bl='blval' al='alval'><aut auta='autaval'>No authors</aut></uautL> <abstract ab='AB1'><p> This is an abstract with </p> <p>some paragraphs in it</p> <p>ok ? </p></abstract> <abstract ab='AB2'> This is an abstract without paragraphs in it </abstract> <abstract ab='AB3'><p>Another abstract </p> <p>with </p> <p>in it</p></abstract> <abstract ab='AB4'>Another abstract without par</abstract> <uabstract ab='AB5'>no abstract1</uabstract> <uabstract ab='AB6'>no abstract2</uabstract> <uabstract ab='AB7'>no abstract3</uabstract> <uabstract ab='AB8'>no abstract4</uabstract> <UR><Rocq></Rocq> <URsop></URsop> </UR> <sUR en='research unit' fr='unité de recherche'><Rocq en='nearparis'></Rocq> <sURsop fr='dans le sud'></sURsop> <sURlor fr=' dans l'est'></sURlor> </sUR> <Address>somewhere</Address> <cmdp>nodefault</cmdp> <cmdA>CMDA</cmdA> <cmdB>CMDB</cmdB> <cmdC>CMDC</cmdC> </titlepage> <p></p></tpa>
First example, new syntax
<?xml version='1.0' encoding='iso-8859-1'?> <!DOCTYPE tpa SYSTEM 'tpa.dtd'> <!-- translated from latex by tralics 2.8--> <tpa from_type='OK' from-tpa='ok'> <titlepage a2='b2' a1='b1' att2='foo2' att1='foo'><title-element tea='tea-val'>Titlepage customisation in Tralics</title-element> <utitle-element tea='utea-val'>No title</utitle-element> <autL bl='blval' al='alval'><aut auta='autaval'>José Grimm</aut> <aut auta='autaval'>Knuth</aut> <aut auta='autaval'>JG</aut> <aut auta='autaval'>DEK</aut> </autL> <uautL bl='blval' al='alval'><aut auta='autaval'>No authors</aut></uautL> <abstract ab='AB1'><p> This is an abstract with</p> <p>some paragraphs in it</p> <p>ok ? </p></abstract> <abstract ab='AB2'> This is an abstract without paragraphs in it </abstract> <abstract ab='AB3'><p>Another abstract</p> <p>with</p> <p>in it</p></abstract> <abstract ab='AB4'>Another abstract without par</abstract> <uabstract ab='AB5'>no abstract1</uabstract> <uabstract ab='AB6'>no abstract2</uabstract> <uabstract ab='AB7'>no abstract3</uabstract> <uabstract ab='AB8'>no abstract4</uabstract> <UR> <Rocq/> <URsop/> </UR> <sUR en='research unit' fr='unité de recherche'> <Rocq en='nearparis'/> <sURsop fr='dans le sud'/> <sURlor fr=' dans l'est'/> </sUR> <Address>somewhere</Address> <cmdp>nodefault</cmdp> <cmdA>CMDA</cmdA> <cmdB>CMDB</cmdB> <cmdC>CMDC</cmdC> </titlepage> <p/> </tpa>
Second example file for the titlepage command. Some line breaks were inserted, they are marked by red underscores.
<?xml version='1.0' encoding='iso-8859-1'?> <!DOCTYPE cedram SYSTEM 'cedram.dtd'> <!-- translated from latex by tralics 2.7c--> <cedram> <article><production> <fichier_tex>bo</fichier_tex> <fichier_bib>bo</fichier_bib> <date_prod>2006-6-16</date_prod></production> <date_reception>2004-06-14</date_reception> <date_acceptation>2004-12-09</date_acceptation> <auteur> <prenom>Donald</prenom> <middlename>E.</middlename> <nom><hi rend='it'>Knuth</hi></nom> <adresse><TeX/> Users Group P.O. Box 869 Santa Barbara, __ CA 93102-0869 USA</adresse> <mel>d.e.knuth@somewhere.on.the.net</mel> </auteur> <titre xml:lang='fr'>Coefficients Fourier pour fonctions __ <formula type='inline'> __<math xmlns='http://www.w3.org/1998/Math/MathML'> __<msup><mi>L</mi> <mi>∞</mi> </msup></math></formula> simples __</titre> <TeXtitre xml:lang='fr'>Coefficients Fourier pour fonctions __$L^\infty $ simple</TeXtitre> <titre xml:lang='en'>Fourier coefficients for simple __ <formula type='inline'><math xmlns='http://www.w3.org/1998/Math/MathML'> __<msup><mi>L</mi> <mi>∞</mi> </msup> __</math></formula> functions</titre> <TeXtitre xml:lang='en'>Fourier coefficients for __simple $L^\infty $ functions</TeXtitre> <langue>en</langue> <resume xml:lang='en'>This is an abstract with a beautiful inline __formule <formula type='inline'> __<math xmlns='http://www.w3.org/1998/Math/MathML'><mrow> __<msub><mi>λ</mi> <mi>n</mi> </msub> __<mrow><mo>(</mo><mi>π</mi><mo>)</mo></mrow> __<mo>=</mo><mfrac><mi>N</mi> <mn>2</mn></mfrac><mi>n</mi> __<mo form='prefix'>log</mo><mi>n</mi><mo>+</mo><msub><mi>C</mi> __<mn>1</mn> </msub><mrow><mo>(</mo><mi>π</mi> __<mo>)</mo><mi>n</mi><mo>+</mo><mi>O</mi> __<mo>(</mo></mrow><msqrt><mi>n</mi></msqrt><mrow> __<mo form='prefix'>log</mo><mi>n</mi><mo>)</mo></mrow> __</mrow></math></formula>, where <formula type='inline'> __<math xmlns='http://www.w3.org/1998/Math/MathML'> __<mrow><msub><mi>C</mi> __<mn>1</mn> </msub><mrow><mo>(</mo><mi>π</mi> __<mo>)</mo></mrow></mrow></math></formula> __is a real-valued constant.</resume> <TEXresume xml:lang='en'>This is an abstract with a beautiful inline __formule $\lambda _n(\pi ) = \frac N2 n \log n + C_1(\pi ) n + __O(\sqrt n\log n)$, where $C_1(\pi )$ __is a real-valued constant.</TEXresume> <resume xml:lang='fr'>Mon résumé avec ma formule <formula type='inline'> __<math xmlns='http://www.w3.org/1998/Math/MathML'> __<mrow><msub><mi>λ</mi> <mi>n</mi> </msub> __<mrow><mo>(</mo><mi>π</mi><mo>)</mo></mrow> __<mo>=</mo><mfrac><mi>N</mi> <mn>2</mn></mfrac> __<mi>n</mi><mo form='prefix'>log</mo><mi>n</mi><mo>+</mo> __<msub><mi>C</mi> <mn>1</mn> </msub><mrow><mo>(</mo> __<mi>π</mi><mo>)</mo><mi>n</mi><mo>+</mo><mi>O</mi> __<mo>(</mo></mrow><msqrt><mi>n</mi></msqrt><mrow> __<mo form='prefix'>log</mo><mi>n</mi><mo>)</mo></mrow></mrow> __</math></formula>, où <formula type='inline'> __<math xmlns='http://www.w3.org/1998/Math/MathML'> __<mrow><msub><mi>C</mi> <mn>1</mn> __ </msub><mrow><mo>(</mo><mi>π</mi><mo>)</mo> __</mrow></mrow></math></formula> est une constante réelle.</resume> <TEXresume xml:lang='fr'>Mon résumé avec ma formule $\lambda _n(\pi ) __= \frac N2 n \log n + C_1(\pi ) n + O(\sqrt n\log n)$, où $C_1(\pi )$ __est une constante réelle.</TEXresume> <motcle xml:lang='fr'>fonctions <formula type='inline'> __<math xmlns='http://www.w3.org/1998/Math/MathML'><msup><mi>L</mi> __ <mi>∞</mi> </msup></math></formula> __ simples, fonction lambda</motcle> <motcle xml:lang='en'>simple <formula type='inline'> __<math xmlns='http://www.w3.org/1998/Math/MathML'><msup> __<mi>L</mi> <mi>∞</mi> </msup></math></formula> functions, lambda __ function</motcle> <msc>11M26, 11M36, 11S40</msc> </article> <p/> __<biblio> <citation from='year' key='Bar03' id='bid0' __userid='cite:Ba03' type='article'> <bauteurs><nom>Barnes</nom><prenom>E. W.</prenom><initiale>E. W.</initiale> __<particule/><junior/></bauteurs> <title>On the expression of Euler's constant as a definite integral</title> <bjournal>Messenger of Math.</bjournal> <bvolume>33</bvolume> <byear>1903</byear> <bpages>59–61</bpages> </citation> __ <citation from='year' key='Bom00' id='bid2' __userid='cite:Bo99' type='article'> <bauteurs><nom>Bombieri</nom><prenom>E.</prenom> __<initiale>E.</initiale><particule/><junior/></bauteurs> <title>Remarks on Weil's quadratic functional in the theory __ of prime numbers I</title> <bjournal>Rend. Mat. Acc. Lincei, Ser. IX</bjournal> <bvolume>11</bvolume> <byear>2000</byear> <bpages>183–233</bpages> </citation> __ <citation from='year' key='BPY01' id='bid1' __userid='cite:BPY01' type='article'> <bauteurs><nom>Biane</nom><prenom>P.</prenom><initiale>P.</initiale> __<particule/><junior/><nom>Pitman</nom><prenom>J.</prenom> __<initiale>J.</initiale><particule/><junior/><nom>Yor</nom> __<prenom>M.</prenom><initiale>M.</initiale><particule/><junior/> __</bauteurs> <title>Probability laws related to the Jacobi $\theta $ and Riemann __ $\zeta $ functions, and Brownian excursions</title> <bjournal>Bull. Amer. Math. Soc.</bjournal> <bvolume>38</bvolume> <byear>2001</byear> <bpages>435–465</bpages> </citation></biblio></cedram>
<?xml version='1.0' encoding='iso-8859-1'?> <!DOCTYPE cedram SYSTEM 'cedram.dtd'> <!-- translated from latex by tralics 2.8--> <cedram> <article><production> <fichier_tex>bo</fichier_tex> <fichier_bib>bo</fichier_bib> <date_prod>2006-7-18</date_prod></production> <date_reception>2004-06-14</date_reception> <date_acceptation>2004-12-09</date_acceptation> <auteur> <prenom>Donald</prenom> <middlename>E.</middlename> <nom><hi rend='it'>Knuth</hi></nom> <adresse><TeX/> Users Group P.O. Box 869 Santa Barbara, __CA 93102-0869 USA</adresse> <mel>d.e.knuth@somewhere.on.the.net</mel> </auteur> <titre xml:lang='fr'>Coefficients Fourier pour fonctions __<formula type='inline'><math xmlns='http://www.w3.org/1998/Math/MathML'> __<msup><mi>L</mi> <mi>∞</mi> </msup></math></formula> simples</titre> <TeXtitre xml:lang='fr'>Coefficients Fourier pour fonctions __<texmath type='inline'>L^\infty </texmath> simples</TeXtitre> <titre xml:lang='en'>Fourier coefficients for simple __<formula type='inline'><math xmlns='http://www.w3.org/1998/Math/MathML'> __<msup><mi>L</mi> <mi>∞</mi> </msup></math></formula> functions</titre> <TeXtitre xml:lang='en'>Fourier coefficients for simple __<texmath type='inline'>L^\infty </texmath> functions</TeXtitre> <langue>en</langue> <resume xml:lang='en'>This is an abstract with a beautiful inline formula __<formula type='inline'><math xmlns='http://www.w3.org/1998/Math/MathML'> __<mrow><msub><mi>λ</mi> <mi>n</mi> </msub><mrow><mo>(</mo> __<mi>π</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mi>N</mi> <mn>2</mn> __</mfrac><mi>n</mi><mo form='prefix'>log</mo><mi>n</mi><mo>+</mo><msub> __<mi>C</mi> <mn>1</mn> </msub><mrow><mo>(</mo><mi>π</mi><mo>) __</mo><mi>n</mi><mo>+</mo><mi>O</mi><mo>(</mo></mrow><msqrt><mi>n</mi> __</msqrt><mrow><mo form='prefix'>log</mo><mi>n</mi><mo>)</mo></mrow> __</mrow></math></formula>, where <formula type='inline'> __<math xmlns='http://www.w3.org/1998/Math/MathML'><mrow><msub><mi>C</mi> __ <mn>1</mn> </msub><mrow><mo>(</mo><mi>π</mi><mo>)</mo></mrow></mrow> __</math></formula> is a real-valued constant. </resume> <TEXresume xml:lang='en'>This is an abstract with a beautiful __inline formula <texmath type='inline'>\lambda _n(\pi ) = \frac{N}{2} __n \log n + C_1(\pi ) n + __ O(\sqrt{n}\log {n})</texmath>, where <texmath type='inline'>C_1(\pi ) __</texmath> is a real-valued constant. </TEXresume> <resume xml:lang='fr'>Mon résumé avec ma formule <formula type='inline'><math xmlns='http://www.w3.org/1998/Math/MathML'> __<mrow><msub><mi>λ</mi> <mi>n</mi> </msub><mrow><mo>(</mo> __<mi>π</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mi>N</mi> <mn>2</mn> __</mfrac><mi>n</mi><mo form='prefix'>log</mo><mi>n</mi><mo>+</mo> __<msub><mi>C</mi> <mn>1</mn> </msub><mrow><mo>(</mo><mi>π</mi><mo>) __</mo><mi>n</mi><mo>+</mo><mi>O</mi><mo>(</mo></mrow><msqrt><mi>n</mi> __</msqrt><mrow><mo form='prefix'>log</mo><mi>n</mi><mo>)</mo></mrow> __</mrow></math></formula>, où <formula type='inline'> __<math xmlns='http://www.w3.org/1998/Math/MathML'><mrow><msub> __<mi>C</mi> <mn>1</mn> </msub><mrow><mo>(</mo><mi>π</mi><mo>)</mo> __</mrow></mrow></math></formula> est une constante réelle. </resume> <TEXresume xml:lang='fr'>Mon résumé avec ma formule <texmath type='inline'>\lambda _n(\pi ) = \frac{N}{2} n \log n __+ C_1(\pi ) n + O(\sqrt{n}\log {n})</texmath>, où __<texmath type='inline'>C_1(\pi )</texmath> est une constante réelle. </TEXresume> <motcle xml:lang='fr'>fonctions <formula type='inline'> __<math xmlns='http://www.w3.org/1998/Math/MathML'><msup><mi>L</mi> __<mi>∞</mi> </msup></math></formula> simples, fonction lambda</motcle> __ <motcle xml:lang='en'>simple <formula type='inline'> __<math xmlns='http://www.w3.org/1998/Math/MathML'><msup> __<mi>L</mi> <mi>∞</mi> </msup></math></formula> functions, __lambda function</motcle> <msc>11M26, 11M36, 11S40</msc> </article> <p/><biblio> <citation from='year' key='Bar03' id='bid0' userid='cite:Ba03' __type='article'> <bauteurs><nom>Barnes</nom><prenom>E. W.</prenom> __<initiale>E. W.</initiale><particule/><junior/></bauteurs> <title>On the expression of Euler's constant as a definite integral</title> <bjournal>Messenger of Math.</bjournal> <bvolume>33</bvolume> <byear>1903</byear> <bpages>59–61</bpages> </citation> <citation from='year' key='Bom00' id='bid2' userid='cite:Bo99' __type='article'> <bauteurs><nom>Bombieri</nom><prenom>E.</prenom> __<initiale>E.</initiale><particule/><junior/></bauteurs> <title>Remarks on Weil's quadratic functional in the theory of __prime numbers I</title> <bjournal>Rend. Mat. Acc. Lincei, Ser. IX</bjournal> <bvolume>11</bvolume> <byear>2000</byear> <bpages>183–233</bpages> </citation> <citation from='year' key='BPY01' id='bid1' userid='cite:BPY01' __type='article'> <bauteurs><nom>Biane</nom><prenom>P.</prenom><initiale>P.</initiale> __<particule/><junior/><nom>Pitman</nom><prenom>J.</prenom> __<initiale>J.</initiale><particule/><junior/><nom>Yor</nom> __<prenom>M.</prenom><initiale>M.</initiale><particule/><junior/></bauteurs> <title>Probability laws related to the Jacobi $\theta $ and __Riemann $\zeta $ functions, and Brownian excursions</title> <bjournal>Bull. Amer. Math. Soc.</bjournal> <bvolume>38</bvolume> <byear>2001</byear> <bpages>435–465</bpages> </citation></biblio></cedram>
back to home page © INRIA 2006 Last modified $Date: 2006/07/18 14:07:31 $