
On uniform proof-theoretic operational semantics

for logic programming∗

Ekaterina Komendantskaya† Vladimir Komendantsky‡

October 31, 2006

Abstract

We study a general proof-theoretic framework for logic program-
ming, the so-called uniform proofs. We consider several logic pro-
gramming systems derived in a natural way from logical proof systems
(namely, from classical, intuitionistic, minimal, positive, relevance and
paranormal sequent calculi). Our result is the construction of proof-
theoretic logic programming systems for philosophically significant log-
ics.
Keywords: logic programming, uniform proofs, classical logic, lattice
relevance logic, paranormal logic, non-deterministic closure operator,
non-deterministic substitution.
MSC: 03B35, 68T15, 03B10, 03B47, 03B53

1 Introduction

The concept of uniform proofs is one of the computational paradigms behind
logic programming. It was introduced by Miller in mid-80’s. There is an
easily accessible paper [5] covering this subject. This concept is probably
more familiar to logicians studying logic programming than to computer
scientists studying the same field because, in the case of first-order logics,
uniform proofs mirror the structural features of sequent calculi into the
language of first-order Horn clauses. So, using uniform proofs one can do
logic programming staying very close to sequent calculi (as opposed to the
alternative resolution-based paradigm [4]).

There were some variations on Miller’s account, including a modal exten-
sion of uniform proofs [1] and a linear logic extension [3]. Those extensions

∗The paper is based on a talk given by the authors during UNILOG-05, 26 March–
3 April, 2005, Montreux, Switzerland.

†Maths Department, University College Cork, Ireland;
e.komendantskaya@mars.ucc.ie.

‡Boole Centre for Research in Informatics, University College Cork, Ireland;
v.komendantsky@bcri.ucc.ie.

1

involved some changes made to the language of clauses (adding modalities,
connectives, etc.). In the present paper we keep the language the same as it
was in [5], but we modify the set of inference rules of the original system of
logic programming in order to adapt it to other sequent calculi, in particular,
to calculi of classical logic (Subsection 3.1), relevance logic (Subsection 3.2),
paranormal logic and intuitionistic paranormal logic (Subsection 3.3). As a
result, we get logic programming systems, where, for instance, one can de-
rive his favourite law of excluded middle, or can reason in resource-conscious
conditions, or can manage databases with inconsistent contents.

2 Operational semantics

In this section we present the operational semantics of uniform proofs in an
almost identical fashion to [5]. Later we will reuse certain definitions from
this section to produce other variations of proof-theoretic semantics.

Let A denote a first-order atomic formula. Let a clause D and a goal
formula G be given by the following mutually recursive definition:

D ::= ⊥ | A | G ⊃ A | G ⊃ ⊥ | ∀xD | D1 ∧D2 ,

G ::= ⊥ | A | G1 ∧G2 | G1 ∨G2 | ∃xG | D ⊃ G .

Define a logic program to be a finite set (a conjunction) of clauses.
Let P be a logic program. Define a closure of P, denoted [P], be the

smallest set of formulas satisfying the following recursive conditions:

• P ⊆ [P];

• if D1 ∧D2 ∈ [P] then D1 ∈ [P] and D2 ∈ [P];

• if ∀xD ∈ [P] then D{x/t} ∈ [P] for all terms t.

Here D{x/t} denotes the result of substituting the term t for all free occur-
rences of the variable x in D.

We use the expression P ` G to say that G can be derived from P,
or that G is an output of P. Logical connectives will be interpreted as
search instructions. Additionally, we will use the subscript notation for
the derivability relation ` to distinguish between different systems of these
instructions. One can accept operational inference system Î (originally de-
noted O′ in Miller’s notation), consisting of the so-called search instructions
listed below:

Î.1 P `bI A if A ∈ [P];

Î.2 P `bI A if there is a formula (G ⊃ A) ∈ [P] and P `bI G;

Î.3 P `bI G1 ∨G2 if P `bI G1 or P `bI G2;

2

Î.4 P `bI G1 ∧G2 if P `bI G1 and P `bI G2;

Î.5 P `bI ∃xG if there is some term t such that P `bI G{x/t};

Î.6 P `bI D ⊃ G if P ∪ {D} `bI G;

Î.7 P `bI ⊥ if ⊥ ∈ [P];

Î.8 P `bI ⊥ if there is a formula (G ⊃ ⊥) ∈ [P] and P `bI G;

Î.9 P `bI G if P `bI ⊥;

We say that a goal G has an Î-derivation from a program P if it has been de-
rived from P using instructions Î.1–Î.9. We say that G has an M̂-derivation
(respectively, P̂-derivation) if it has been derived from P using instructions
Î.1–Î.8 (respectively, Î.1–Î.6). Note that the instructions Î.7–Î.8 express the
implication of minimal logic, and, as the reader can see, are reformulations
of Î.1 and Î.2, given for the constant ⊥ instead of an atomic formula A. The
search instruction Î.9 represents intuitionistic negation.

In fact, these operational instructions correspond to inference schemas of
a sequent calculus. Consider, for example, a familiar sequent calculus with
antecedents and succedents being sets of first-order formulas [9]:

Γ ` ∆, B Γ ` ∆, C

Γ ` ∆, B ∧ C
∧r

B,C,∆ ` Θ
B ∧ C,∆ ` Θ

∧l

Γ ` ∆, B

Γ ` ∆, B ∨ C
∨r

Γ ` ∆, C

Γ ` ∆, B ∨ C
∨r

B,∆ ` Θ C,∆ ` Θ
B ∨ C,∆ ` Θ

∨l

Γ ` Θ, B C,Γ ` ∆
B ⊃ C,Γ ` ∆ ∪Θ

⊃l
B,Γ ` Θ, C

Γ ` Θ, B ⊃ C
⊃r

B{x/t},Γ ` Θ
∀xB, Γ ` Θ

∀l
Γ ` Θ, B{x/t}
Γ ` Θ,∃xB

∃r

B{x/c},Γ ` Θ
∃xB, Γ ` Θ

∃l
Γ ` Θ, B{x/c}

Γ ` Θ,∀xB
∀r

Γ ` Θ,⊥
Γ ` Θ, B

⊥r

A proof for a sequent Γ ` Θ is a finite tree constructed using these
inference schemas and such that the root is labelled with Γ ` Θ and the
leaves are labelled with initial sequents, or axioms, i.e., sequents Γ ` Θ such
that the intersection Γ ∩Θ contains either ⊥ or an atomic formula.

3

An arbitrary proof with axioms of the kind

B,Γ ` Θ, B or ⊥,Γ ` Θ,⊥
is called a C-proof. A C-proof in which each sequent occurrence has a
singleton set succedent is called an I-proof. If an I-proof contains no instance
of the schema ⊥r, it is called an M-proof. An M-proof which contains
no occurrence of the constant ⊥ is called a P-proof. In our notation the
expressions C-proof, I-proof, M-proof and P-proof stand respectively for
proofs in classical, intuitionistic, minimal and positive logics.

Note that no structural rules are mentioned here, because we treat for-
mulas appearing in the sequents as sets, and not as sequences. This makes
rules of interchange and contraction inessential for uniform proofs. As for
the weakening rule, the following lemma from [5] establishes an analog of
weakening in antecedent.

Lemma 1. Let Ξ be a proof of Γ ` Θ and let Γ′ be a set of formulas. Let
Ξ+Γ′ be the tree of sequents obtained by adding Γ′ to the antecedent of all
sequents in Ξ. Then Ξ + Γ′ is a proof for Γ ∪ Γ′ ` Θ.

Now we can relate the system of search instructions Î and I-proofs: there
is a strict correspondence between rules Î.3 and ∨r, Î.4 and ∧r, Î.5 and ∃r, Î.6
and ⊃r, Î.9 and ⊥r. Rules ∧l and ∀l correspond to the use of [P] instead of P
in the proof rules Î.1 and Î.2. However, the match between inference figures
Î.2 and ⊃l is not direct. Given the sequent G′ ⊃ A,P ` G, Î.2 is applicable
only if G = A while ⊃l has no such restriction. In fact, ⊃l generates an
entire subproof for A,P ` G which is not present in instances of search
instruction Î.2. As a result of this difference, Miller needed to introduce the
following definitions and a lemma which we reproduce as Lemma 2 below.

Instances of ⊃l in a proof are at the root of two smaller proofs. These
two proofs are called the left subproof and the right subproof of this instance
of ⊃l. An instance of ⊃l in a proof is simple if its right subproof has height 1.
Otherwise, the instance is complex. A proof in which all instances of ⊃l are
simple is a simple proof. It is the simple instances of ⊃l which correspond
to uses of inference figure Î.2.

Lemma 2. Let P be a set of definite clauses and let G be a goal formula.
If the sequent P ` G has an I-proof then it has a simple I-proof.

The following lemma and theorems presented in this section were proved
in [5]. We state these here to show how the argument is being developed.

Lemma 3. A sequent has an I-proof with no occurrence of ⊥ iff it has a
P-proof.

Theorem 4. A goal G has an M̂-derivation from a program P iff the sequent
P ` G has an M-proof.

Theorem 5. A goal G has an Î-derivation from a program P iff the sequent
P ` G has an I-proof.

4

3 Further extensions of operational semantics

Now we begin to investigate the question of possible extensions of the con-
cept of a uniform proof provided that there is no change made to the lan-
guage of logic programming. We present logic programming systems for
reasoning in logics such as classical, relevant and paranormal.

3.1 Classical sequent calculus and operational semantics

In this subsection we introduce the system of search instructions which cor-
responds to the sequent calculus for classical logic. As a starting point, we
drop the requirement that goals should be represented by single formulas
and allow goals to be sets of formulas. We will denote a single goal by G
and sets of goals by G. Consider the following instructions:

Ĉ.1 P `bC G ∪ {A} if A ∈ [P];

Ĉ.2 P `bC G∪{A} if there is a formula (G ⊃ A) ∈ [P] and P `bC G∪{G};

Ĉ.3 P `bC G ∪ {G1 ∨G2} if P `bC G ∪ {G1} or P `bC G ∪ {G2};

Ĉ.4 P `bC G ∪ {G1 ∧G2} if P `bC G ∪ {G1} and P `bC G ∪ {G2};

Ĉ.5 P `bC G∪{∃xG} if there is some term t such that P `bC G∪{G{x/t}};

Ĉ.6 P `bC G ∪ {D ⊃ G} if P ∪ {D} `bC G ∪ {G};

Ĉ.7 P `bC G ∪ {⊥} if, ⊥ ∈ [P];

Ĉ.8 P `bC G∪{⊥} if there is a formula (G ⊃ ⊥) ∈ [P] and P `bC G∪{G};

Ĉ.9 P `bC G ∪ {⊥} if P `bC G ∪ {G};

Ĉ.10 P ∪ {G ⊃ ⊥} `bC G if P `bC G ∪ {G};

Ĉ.11 P `bC G ∪ {D ⊃ ⊥} if P ∪ {D} `bC G.

Allowing for some loose notation, we say that a goal G (or a set of goals
G) has a Ĉ-derivation from a program P if G (respectively, G) has been
derived from P using instructions Ĉ.1–Ĉ.11. Note that the instructions
Ĉ.1–Ĉ.9 are precisely instructions Î.1–Î.9, which are modified to allow for
multiple goals. Instructions Ĉ.10–Ĉ.11 introduce classical negation.

• The search instruction Ĉ.10 would work as follows. Suppose we need to
prove that a set of goals G can be derived from a program P∪{G ⊃ ⊥}.
Then either G ⊃ ⊥ does not influence the inference of G, and then G
can be derived from P; or, if we cannot deduce G from P, we conclude

5

that G ⊃ ⊥ influences the proof of G and now it suffices to show that
G can be derived from P. Then if we add G ⊃ ⊥ to the program,
we will get a contradiction and from this contradiction we will be
able to derive any set of goals, in particular, the desired set G. Thus,
instruction Ĉ.10 subsumes instruction Ĉ.9.

• The search instruction Ĉ.11 says that the negation of a formula D can
be derived from P if, being added to P, this formula does not generate
new consequences of P.

These two instructions would correspond to the following rules in classical
sequent calculus:

Γ ` Θ, B

B ⊃ ⊥,Γ ` Θ
¬l

B,Γ ` Θ
Γ ` Θ, B ⊃ ⊥

¬r .

Axioms of Ĉ are respectively

P `bC G ∪ {A}, where A ∈ [P] or P `bC G ∪ {⊥}, where ⊥ ∈ [P] .

We can show that the rule ¬l can in fact substitute the rule ⊥r.

⊥ ` ⊥ ⊃l` ⊥ ⊃ ⊥

Ξ
Γ ` Θ,⊥

weakening
Γ ` Θ,⊥, B ¬l⊥ ⊃ ⊥,Γ ` Θ, B

cutΓ ` Θ, B

This suggests that the instruction Ĉ.9 can be derived using instruction Ĉ.10.

Lemma 6. If a goal G has an Î-derivation from P, it has a Ĉ-derivation
from P, but not converse.

To prove that the converse part of Lemma 6 does not hold, it is sufficient
to show that a goal A1 has a Ĉ-derivation from the program {(A1 ⊃ A2) ⊃
A1}, but does not have any Î-derivations, because only single formulas are
allowed to appear in the goals of Î-instructions.

The following two lemmas will be useful when allowing more then one
formula in succedent. First one is the analog of the succedent weakening.

Lemma 7. Let Ξ be a proof of Γ ` Θ and let Θ′ be a set of formulas. Let
Ξ + Θ′ be the tree of sequents obtained by adding Θ′ to the succedent of all
sequents in Ξ. Then Ξ + Θ′ is a proof for Γ ` Θ ∪Θ′.

Now the instruction Ĉ.11 can be derived from the rule Ĉ.6 and the
lemma 7, namely from the fact that in a derivation of any goal (or set
of goals) ⊥ can be added to the initial program through all the steps of
inference. This is why from now on we will think of Ĉ as being defined by

6

search instructions Ĉ.1–Ĉ.10. And Ĉ-derivation will stand for the derivation
which uses instructions Ĉ.1–Ĉ.10.

Analogously to the case of operational inference system for intuitionistic
logic, in the case of classical logic we do not introduce a search instruction
corresponding to ⊃l of classical sequent calculus. Instead, we make use of
the reduction of C-proofs to simple C-proofs. For this purpose the following
extension of Lemma 11 from [5] to C-proofs suffices.

Lemma 8. Assume that Ξ is a C-proof of the form

Ξ1

P ` G1, G
′

Ξ2

A,P ` G2, G ⊃l
G′ ⊃ A,P ` G1 ∪ G2, G

where Ξ1 and Ξ2 are simple C-proofs. Then there exists a simple C-proof
for

G′ ⊃ A,P ` G1 ∪ G2, G . (1)

Additionally, if A is replaced with ⊥ in the above proof tree then there exists
a simple C-proof for

G′ ⊃ ⊥,P ` G1 ∪ G2, G . (2)

Proof. The proof proceeds by induction on the height of Ξ2. If the height is
1 then Ξ2 consists only of its root sequent, the right premise of the instance
of ⊃l, and therefore this instance of ⊃l is simple. For the inductive step,
assume that the height of Ξ2 is n > 1. To complete the proof it suffices
to show that this complex instance of ⊃l commutes with the last inference
schema instance in Ξ2, or, in other words, to show that the instance of
sequent (1) (or (2), for the case of ⊥) has another C-proof in which all the
instances of the schema ⊃l have their right C-subproofs being of height less
than n (and hence, the root sequents of these instances would yield simple
C-proofs by the induction hypothesis).

Consider, for instance, the case ∧r. Assume Ξ is a proof of the following
form.

Ξ1

P ` G1, G
′

Ξ′
2

A,P ` G2, G1

Ξ′′
2

A,P ` G2, G2 ∧r
A,P ` G2, G1 ∧G2 ⊃l

G′ ⊃ A,P ` G1 ∪ G2, G1 ∧G2

In this case ⊃l perfectly commutes with ∧r as shown below.

Ξ1

P ` G1, G
′

Ξ′
2

A,P ` G2, G1 ⊃l
G′ ⊃ A,P ` G1 ∪ G2, G1

Ξ1

P ` G1, G
′

Ξ′′
2

A,P ` G2, G2 ⊃l
G′ ⊃ A,P ` G1 ∪ G2, G2 ∧r

G′ ⊃ A,P ` G1 ∪ G2, G1 ∧G2

7

Obviously, this commutativity also holds if ⊥ has been taken instead of A.
The cases ⊃r, ∨r, ∃r, ∀l and ∧l are obtainable using the same method.

These cases are also straightforward generalizations of those from Lemma
11 in [5].

Consider the case ⊃l. Assume Ξ is the following proof tree.

Ξ1

G1 ⊃ A1,P ′ ` G1, G
′

Ξ′
2

A,P ′ ` G′
2, G1 A,A1,P ′ ` G′′

2 , G ⊃l
A,G1 ⊃ A1,P ′ ` G′

2 ∪ G′′
2 , G ⊃l

G′ ⊃ A,G1 ⊃ A1,P ′ ` G1 ∪ G′
2 ∪ G′′

2 , G

The topmost right sequent is initial; hence, either (a) P ′ ∩ ({G} ∪ G′′
2) 6= ∅,

or (b) A ∈ {G} ∪ G′′
2 , or (c) A1 ∈ {G} ∪ G′′

2 . In the case (a) the root sequent
of Ξ is an instance of an axiom. For (b), the simple C-proof has the form

Ξ1

G1 ⊃ A1,P ′ ` G1, G
′ A,G1 ⊃ A1,P ′ ` G′

2 ∪ G′′
2 , G ⊃l

G′ ⊃ A,G1 ⊃ A1,P ′ ` G1 ∪ G′
2 ∪ G′′

2 , G

and, for (c), the corresponding simple C-proof is of the kind

Ξ1

G1 ⊃ A1,P ′ ` G1, G
′

Ξ′
2 + {G1 ⊃ A1}

A,G1 ⊃ A1,P ′ ` G′
2, G1 ⊃l

G′ ⊃ A,G1 ⊃ A1,P ′ ` G1 ∪ G′
2, G1 A1, G

′ ⊃ A,P ′ ` G′′
2 , G⊃l

G′ ⊃ A,G1 ⊃ A1,P ′ ` G1 ∪ G′
2 ∪ G′′

2 , G

where Ξ′
2 + {G1 ⊃ A1} is shorter than Ξ2 and, by the inductive hypothesis,

has a simple C-proof.
The last two cases ¬l and ¬r are straightforward since ⊃l commutes with

¬l and with ¬r without any problems.

Lemma 9. If P ` G has a C-proof then it has a simple C-proof.

Proof. Follows by induction on the number of complex instances of ⊃l in
a C-proof of P ` G. According to Lemma 8, the complex instances which
have only simple left and right subproofs can be converted into simple ones.
Hence, all the complex instances can be removed.

Theorem 10. A set of goals G has a Ĉ-derivation from a program P iff the
sequent P ` G has a C-proof.

To prove this theorem it is only needed to show how, given a C-proof Ξ
for P ` G, we can obtain a Ĉ-derivation for G from P. This can be done by
induction on the height of Ξ using Lemma 9 and considering all the possible
inference schemas in the root of Ξ during the inductive step.

8

We have shown that proof-theoretic operational inference systems can be
extended to the operational system which corresponds to classical sequent
calculus. This extension has its price. In Ĉ-instructions we employed sets
of goals (that is disjunctions of goals). This leads an operational system an-
swering to particular goal formulas in queries (sets of goal formulas) without
making any references to these particular formulas. It shall be unclear in
general the variables in which goal formulas should be substituted by their
values.

3.2 Towards relevance logic

It is widely known that the system R of relevance logic is undecidable even
at the propositional level [2]. However, there exists a sequent calculus for R
defined also in [2]. This fact at least provides us with a possibility to relate
relevance logic and operational inference systems. Unfortunately, even a
brief look at the problem of relating them shows the impossibility of devel-
oping an operational inference system for full R in a way similar to the case
of classical logic. This happens because R has no natural sequent calculus
with antecedent and succedent as sets. In fact, R has a sequent calculus
where succedent is a sequence and antecedent is a sequence of sequences
of sequences! Therefore, let us consider a suitable fragment of R, namely
LR, the so-called “lattice R”. First of all, note that propositional LR is
decidable (with very bad complexity though, as is customary for logics of
relevance), and its sequent calculus enjoys cut elimination.

Using the translation of LR into the implication-conjunction fragment of
R given by Meyer (further references are found in [2], Section 4.8), we define
the sequent calculus for LR with antecedents and succedents as sets of for-
mulas. Taking antecedents and succedents to be sets we lose the possibility
to express multiplicities of formulas in sequents, and, hence, the resulting
sequent calculus is less expressive than sequent calculus for LR with se-
quences. Fortunately, for the purpose of developing an operational inference
system we do not need such expressiveness. To reason about formal sequents
of the kind P ` G, where P is a logic program, and G is a set of goals, we
only need some sequent calculus with antecedents and succedents being sets
of formulas (to check this, simply observe that both P and G are sets).

Consider now the set of inference schemas consisting of ∧r, ∨r, ∨l, ∀l,
∃r, ∀r and ∃l from Section 2, and schemas for negation ¬l and ¬r from
Subsection 3.1 along with new schemas for conjunction:

B,∆ ` Θ
B ∧ C,∆ ` Θ

∧LR
l

C,∆ ` Θ
B ∧ C,∆ ` Θ

∧LR
l

and new schemas for implication:

Γ ` Θ, B C,Γ ` ∆
B ⊃ C,Γ ` ∆ ∪Θ

⊃LR
l

B,Γ ` Θ, C

Γ ` Θ, B ⊃ C
⊃LR

r

9

where in both ⊃LR
l and ⊃LR

r C is not allowed to be ⊥. A proof is to be
called an LRset-proof if it consists of instances of inference schemas listed
in this paragraph, provided that the only axioms of that proof are of the
form

B ` B (including the case ⊥ ` ⊥) .

Restricting axioms to just one-element ones we take control over the
structural rule of weakening which (or, better said, the unavailability of
which) is crucial for relevance logic, and for LR in particular. In other words,
this restriction of axioms in our calculus with antecedents and succedents
as sets corresponds to rejecting the weakening rule in a traditional calculus
with antecedents and succedents as sequences.

Let P be a logic program. Define dPe be the smallest set of formulas
satisfying the following recursive conditions:

• P ⊆ dPe;

• if D1 ∧D2 ∈ dPe then D1 ∈ dPe or D2 ∈ dPe;

• if ∀xD ∈ dPe then D{x/t} ∈ dPe for some term t.

Thus defined dPe might be called the non-deterministic closure of P. The
operation d·e has prominent non-deterministic features which result from a
specific approach to conjunction and universal quantifier.

Now we are in a position to describe an operational inference system L̂R
for logic programming language of lattice relevance logic. Let P, G, A, D, G
and Gi be as above. The set of search instructions for L̂R is the following:

L̂R.1 P `dLR
{A} if, for some P = dPe, A is the only atomic formula in

P;

L̂R.2 P `dLR
G ∪ {A} if there is a formula (G ⊃ A) ∈ dPe and P `dLR

G ∪ {G};

L̂R.3 P `dLR
G ∪ {G1 ∨G2} if P `dLR

G ∪ {G1} or P `dLR
G ∪ {G2};

L̂R.4 P `dLR
G ∪ {G1 ∧G2} if P `dLR

G ∪ {G1} and P `dLR
G ∪ {G2};

L̂R.5 P `dLR
G ∪ {∃xG} if there is some term t such that P `dLR

G ∪
{G{x/t}};

L̂R.6 P `dLR
G ∪{D ⊃ G} if P ∪{D} `dLR

G ∪{G}, provided that G 6= ⊥;

L̂R.7 P `dLR
{⊥} if, for some P = dPe, ⊥ is the only atomic formula in

P;

L̂R.8 P `dLR
G ∪ {⊥} if there is a formula (G ⊃ ⊥) ∈ dPe and P `dLR

G ∪ {G};

10

L̂R.9 P ∪ {G ⊃ ⊥} `dLR
G if P `dLR

G ∪ {G};

L̂R.10 P `dLR
G ∪ {D ⊃ ⊥} if P ∪ {D} `dLR

G.

The results analogous to Lemmas 8 and 9 hold in the case of LRset-
proofs. Therefore, Theorem 11 is provable analogously to Theorem 10.

Theorem 11. A set of goals G has an L̂R-derivation from a program P iff
the sequent P ` G has an LRset-proof.

This theorem also justifies the connection between the operational sys-
tem L̂R and the sequent calculus for lattice relevance logic LR as defined
in [2]. The connection is precisely in that a formal sequent {D1, . . . , Dm} `
{G1, . . . , Gn} with sets can be translated into a sequent D1, . . . , Dm `
G1, . . . , Gn with sequences; and then the set of goals {G1, . . . , Gn} is L̂R-
derivable from the logic program {D1, . . . , Dm} if and only if the sequent
{D1, . . . , Dm} ` {G1, . . . , Gn} with sets has an LRset-proof if and only if
the sequent D1, . . . , Dm ` G1, . . . , Gn with sequences has an LR-proof.

3.3 Paranormal logic

Consider the following definition. Given a first-order language L, assume
we have defined a sequent-style proof procedure for formulas determined by
L. A set of all formulas of L which can be obtained from initial sequents
using a given set of rules will be called a theory (denote it by T). If there
is a formula B such that B ∈ T and (B ⊃ ⊥) ∈ T , the theory T is called
inconsistent. If a theory is inconsistent but is not equal to the set of all
formulas over L, it is called paraconsistent. If, for each formula B, either
B ∈ T or (B ⊃ ⊥) ∈ T then T is called complete. If a theory T is incomplete
but every theory T ′ containing T is complete, T is called paracomplete. A
theory which is both paraconsistent and paracomplete is called paranormal.

We refer to [7] and less firmly to [6] for definition of a sequent calculus
for paranormal logic. In fact, the rules ∧r, ∧l, ∨r, ∨l, ⊃r, ⊃l, ∀r, ∀l, ∃r, ∃l

are precisely those which were defined in Section 2. The structural rules are
interchange, contraction, weakening and cut, which can be eliminated. The
only difference is in rules for negation, and they are as follows:

Γ ` Θ, B

B ⊃ ⊥,Γ ` Θ
¬l

B,Γ ` Θ
Γ ` Θ, B ⊃ ⊥

¬r

where B is not atomic, and

Γ ` Θ, B

Γ ` Θ, (B ⊃ ⊥) ⊃ ⊥
¬¬l

B,Γ ` Θ
(B ⊃ ⊥) ⊃ ⊥,Γ ` Θ

¬¬r

where B is atomic.

11

Moreover, we can differentiate between these rules and assert that the
restriction of ¬l (respectively, ¬r) gives us the sequent calculus correspond-
ing to paraconsistent (respectively, paracomplete logic). We will denote
paranormal proofs as PN-proofs.

Now, using Ĉ-instructions, we can introduce the search instructions
which will correspond to the paranormal sequent calculus. We have shown
in Subsection 3.1 that rules ¬r and ¬l correspond to the instructions Ĉ.10
and Ĉ.11. Now we can manipulate these instructions in order to relate
them to paranormal sequent calculus. The instruction Ĉ.11 was shown to
be derivable from the instructions Ĉ.6 and a form of weakening rule, and
we eliminated it from the Ĉ-derivations. This is why it is impossible to
introduce any changes in the rule Ĉ.11. However, we can restrict the rule
Ĉ.6 for implicative formulas containing ⊥ in the consequent of implication
and thus we will establish the desired connection with paranormal logic. We
introduce the following search instructions:

P̂N.1 P `dPN
G ∪ {A} if A ∈ [P];

P̂N.2 P `dPN
G ∪ {A} if there is a formula (G ⊃ A) ∈ [P] and P `dPN

G ∪ {G};

P̂N.3 P `dPN
G ∪ {G1 ∨G2} if P `dPN

G ∪ {G1} or P `dPN
G ∪ {G2};

P̂N.4 P `dPN
G ∪ {G1 ∧G2} if P `dPN

G ∪ {G1} and P `dPN
G ∪ {G2};

P̂N.5 P `dPN
G ∪ {∃xG} if there is some term t such that P `dPN

G ∪
{G{x/t}};

P̂N.6 P `dPN
G∪{D ⊃ G} if P∪{D} `dPN

G∪{G}, where D is not atomic
whenever G = ⊥;

P̂N.7 P `dPN
G ∪ {⊥} if, ⊥ ∈ [P];

P̂N.8 P `dPN
G ∪ {⊥} if there is a formula (G ⊃ ⊥) ∈ [P] and P `dPN

G ∪ {G};

P̂N.9 P ∪ {G ⊃ ⊥} `dPN
G if P `dPN

G ∪ {G}, where G is not atomic;

P̂N.10 P ∪ {D} `dPN
G if P ∪ {(D ⊃ ⊥) ⊃ ⊥} `dPN

G, where D is atomic.

P̂N.11 P `dPN
G ∪ {G} if P `dPN

G ∪ {(G ⊃ ⊥) ⊃ ⊥}, where G is atomic.

We say that a goal G (or a set of goals G) has a P̂N-derivation from a
program P if G (respectively, G) has been derived from P using the search
instructions P̂N.1–P̂N.11. Note that the instructions P̂N.10–P̂N.11 com-
pensate some restrictions made in P̂N.6 and P̂N.9, and thus allow us to
derive, for example, the goal A from a program {(A ⊃ ⊥) ⊃ ⊥}, or the goal
(A ⊃ ⊥) ⊃ ⊥ from a program {A}.

12

Lemma 12. If a goal G has a P̂N-derivation from P, it has a Ĉ-derivation
from P, but not converse.

The converse of this lemma can be disproved if we consider the program
{A1 ⊃ ⊥} and the goal A1 ⊃ A2, where A1 is an atom. This goal has
Ĉ-derivation, but has no P̂N-derivation from the program.

Then the following theorem can be established.

Theorem 13. A set of goals G has a P̂N-derivation from a program P iff
the sequent P ` G has a PN-proof.

The proof is based on Theorem 10. We only need to show the corre-
spondence between search instructions P̂N.6, P̂N.9, P̂N.10, P̂N.11 and,
respectively, restricted rules for ¬l, ¬r, ¬¬l, ¬¬r, which is straightforward.
There are some consequences of Theorem 13 which need to be mentioned.

The paraconsistent operational inference system can work with inconsis-
tencies without making a set of derivable formulas trivial. The paracomplete
operational semantics is capable of handling the possible incompleteness of
a given logic program in case when we need to work with proofs which do
not guarantee for each formula B a derivation for either B or ¬B. These
are the nice properties of paranormal logics which can be useful when one
wishes to employ logic programs to manage his inconsistent and/or incom-
plete databases.

The second consequence concerns the possible relations of the operational
semantics to intuitionistic paranormal logics. The reader can easily check
that the following formulas have P̂N-derivation: B ∨ (B ⊃ ⊥), if B is not
atomic and ((B ⊃ ⊥) ⊃ ⊥) ⊃ B if B is arbitrary. Moreover, P̂N-proofs
along with Ĉ-proofs have the non-deterministic property. All this motivates
us to look for another type of paraconsistent operational inference system.
In [8] was defined a paranormal logic which is intuitionistically acceptable
(we will abbreviate it IPN). The IPN-proof is a PN-proof whose sequents
have only single formulas in succedents and no instances of the rule ¬¬l

occur in the proof. We can obtain the operational semantics corresponding
to this logic by restricting P̂N as follows: we require a set of goals in each
search instruction in ÎPN to consist of a single formula (in the same way
as in Î), and we eliminate the operational rule P̂N.11. We will call this
operational inference system ÎPN. Then we can prove the following lemmas
and a theorem.

Lemma 14. If a goal G has an ÎPN-derivation from P, then it has a P̂N-
derivation from P, but not converse.

To check that converse of the above lemma does not hold, consider, for
example, a program {(B ⊃ ⊥) ⊃ ⊥} and the goal B. The goal has P̂N-
derivation, but has no ÎPN-derivation.

13

Lemma 15. If a goal G has an ÎPN-derivation from P, then it has an
Î-derivation from P, but not converse.

A counterexample to the above lemma is the following. If we take a
program {A1 ⊃ ⊥} and a goal A1 ⊃ A2, where A1 is an atom, the goal will
have an Î derivation, but will not have any ÎPN-derivations.

The following theorem holds.

Theorem 16. A set of goals G has an ÎPN-derivation from a program P
iff the sequent P ` G has an IPN-proof.

Thus we obtained operational inference system which is paraconsistent
and yet intuitionistically acceptable.

4 Conclusions

In the paper we developed several first-order operational inference systems
for logic programming in classical, lattice relevance, paranormal and intu-
itionistically acceptable paranormal logics. The relationships between those
operational systems are schematically represented in Figure 1. The opera-
tional system for classical logic programming arose as an extension of the
operational system for logic programming given by Miller in [5]. For the pur-
poses of extension we employed the fact that the sequent calculus of classical
logic was an extension of the one of intuitionistic logic. Then, treating clas-
sical logic as a universal logic (in a sense that classical logic is maximal
among any other first-order logics of the same signature), we obtained other
operational systems for logics which possessed sequent calculi defined by
means of certain restrictions applied to sequent calculus of classical logic.
Also in Figure 1 there are obvious intersections of proof systems (in dashed
rectangles) which we did not study in particular.

The idea to relate logic programs and sequents allowed us, using a few
simple observations, to derive operational systems straight from sequent cal-
culi in which antecedents and succedents were sets. The derived operational
systems, though clearly weaker than the original sequent calculi, suit much
better for logic programming because they are designed specifically for the
language of logic programming which is definitionally equivalent to the lan-
guage of first-order Horn clauses. In Figure 1, the proof systems are placed
according to two orderings. One orders the systems by their deductive power
in the direction from bottom to top. Another orders them by determinism
of their inference rules from the leftmost bottom corner to the rightmost
top corner. The latter ordering is probably the most curious one since it
shows that “the most philosophical” system of logical programming there,
L̂R, is the less deterministic. More precisely, already in the case of P̂L
there is a non-determinism in that an answer (a substitution for individual

14

more
powerful

less
powerful

deterministic

non-deterministic

C

PN

IPN

I

M

LRset

M ∩ LRset
_ _ _ _ _ _�
�

�
�

_ _ _ _ _ _P

P ∩ LRset
_ _ _ _ _�
�

�
�

_ _ _ _ _

xxxxxxxxxxxxxxxx

""
""
""
""
"

((
((
((
((
((
(

JJJJJJJJJJJJJJJJ

��
��
��
��
�

LLLLLLLLLLLLLLLLLLLLLLLLL

||
||

||
||

||
||

||
||

||
||

||
||

|

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
�

EEEEEEEEEEEE

��
��
��

��
��

��

QQQQQ

��
��

��
�

C — classical (Ĉ) PN — paranormal (P̂N)
I — intuitionistic (̂I) IPN — intuitionistic paranormal (ÎPN)
M — minimal (M̂) LRset — lattice relevance with sets (L̂R)
P — positive (M̂)

Figure 1: Relationship between the proof systems with respect to deductive
power and determinism of inference rules

variables) in a logic program to a set of goals doesn’t carry any informa-
tion about which formula in the set of goals it is a substitution for. In
L̂R this non-deterministic feature persists, and, moreover, another strong
non-determinism appears in the closure operator.

At the extent presented here, the studies of operational inference sys-
tems for philosophical logics are in a purely theoretical phase. But once
we have spoken of logic programming we can envisage some practical im-
plementations of these operational systems. Therefore, among the possible
directions for further research there are studies of different search strategies
for search instructions, including assigning priorities to search instructions.
And, certainly, the most interesting practical aim (and, in fact, the most

15

practical one) is building a working interpreter for logic programming in
philosophical logics.

Acknowledgements. The authors thank Oleg Grigoriev and Dmitri Za-
itsev for a timely supply of reading materials. The first author acknowledges
the partial support of the School of Mathematics, Applied Mathematics and
Statistics, UCC; and the second author acknowledges the support of BCRI,
UCC.

References

[1] M. Baldoni, L. Giordano, and A. Martelli. A multimodal logic to de-
fine modules in logic programming. In D. Miller, editor, Proc. of the
International Logic Programming Symposium, ILPS’93, pages 473–487,
Vancouver, 1993. The MIT Press.

[2] J. M. Dunn and G. Restall. Relevance logic. In D. Gabbay and F. Guen-
ther, editors, The Handbook of Philosophical Logic, volume 6, pages 1–
136. Kluwer, 2nd edition, 2002.

[3] J. A. Harland and D. J. Pym. A uniform proof-theoretic investigation of
linear logic programming. Journal of Logic and Computation, 4(2):175–
207, 1994.

[4] J. W. Lloyd. Foundations of Logic Programming. Springer, Berlin, 2nd
edition, 1988.

[5] D. Miller. A logical analysis of modules in logic programming. Journal
of Logic Programming, 6(1–2):79–108, 1989.

[6] V. M. Popov. On the logics related to Arruda’s system V1. Logic and
Logical Philosophy, 7, 1999.

[7] V. M. Popov. On a four-valued paranormal logic. In Proc. of IV All-
Russian Philosophical Congress, Moscow State University, 24–28 May
2005. In Russian.

[8] V. M. Popov and G. N. Shuklin. Intuitionistically admissible paranormal
logic. In Logicheskiye Issledovaniya, volume 11, pages 243–246. Nauka,
Moscow, 2003. In Russian.

[9] D. Prawitz. Natural Deduction. Almqvist & Wiksell, Uppsala, 1965.

16

