
Annotated many-valued resolution: from ({↑ v1} : L) ∨ C1 and ({↑ v2} : L) ∨ C2

derive C1 ∨ C2 provided that v1 > v2.

Theorem 1 (Priestley representation theorem, 1970). Let A be a bounded

distributive lattice and D(A) be a set of all prime filters of A ordered by inclusion.

Then A is isomorphic to the lattice O(D(A)) of all closed and open prime filters of

D(A).

Example 1. A,D(A) and O(D(A)).
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Theorem 2 (Sofronie-Stokkermans, 2000). Let A be a bounded distributive

lattice. Then maps and relations on D(A) can be canonically defined.

Theorem 3 (Sofronie-Stokkermans, 2000). Let X = D(A) be a finite partially

ordered set. Then operators on O(X) can be canonically defined.

Resolution based on the Priestley duality: from ({β} : Lf)∨C1 and ({α} : Lt)∨C2

derive C1 ∨ C2 provided that α, β ∈ D(A) and α 6 β.

1



Let Z+ and Z− be the non-negative and non-positive integers, respectively. The

Chang algebra is C = (C,⊕,¬, 0), where C is the lattice

C = {(0, a) : a ∈ Z+} ∪ {(1, b) : b ∈ Z−}.

The zero element is (0, 0) and the unit element is (1, 0). The order is lexicographical.

The addition is given by

(i, a)⊕ (j, b) =


(0, a+ b) if i+ j = 0

(1, 0 ∧ (a+ b)) if i+ j = 1

(1, 0) if i+ j = 2,

and the negation is given by ¬(i, a) = (i+2 1,−a).

Let f be an algebraic operation. We define fσ to be the lower limit of f , and fπ

to be the higher limit of f . The canonical extension of an algebra A is an algebra

resulted from A after the application of σ or π to all its operations and after the

embedding of A into a complete lattice.

The lattice for the canonical extension of C is obtained as follows:

(0, 0) (0, 1) (0, 2) ___ GFED@ABCy /o/o/o GFED@ABCx ___ (1,−2) (1,−1) (1, 0)

Lemma 4 (Gehrke&Priestley, 2001). Let C = (C,⊕,¬, 0) be a Chang algebra

and let f = ⊕. Then fσ 6= fπ.

Proof. From the definition of fσ,

fσ(x, y) =
∨
{fσ(x, (0, a)) : a ∈ Z+} =

∨
{
∧
{(1, 0∧(a+b) : b ∈ Z−} : a ∈ Z+} = x.

Likewise, from the definition of fπ,

fπ(x, y) =
∧
{fπ((1, a), y) : a ∈ Z−} =

∧
{
∨
{(1, 0∧(a+b)) : b ∈ Z+} : a ∈ Z−} = (1, 0).

Consequently, fσ(x, y) = x 6= (1, 0) = fπ(x, y).

Let us prove that the following axiom of MV-algebra is non-canonical:

¬(¬a⊕ b)⊕ b = ¬(¬b⊕ a)⊕ a. (MV6)

Lemma 5 (Gehrke&Priestley, 2001). The equation (MV6) fails in Cσ = (Cσ,⊕σ,¬σ, 0).

Proof.

¬σ(¬σu⊕σ (1, 0))⊕σ (1, 0) = (1, 0).
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Also,

¬σ(¬σ(1, 0)⊕σ y)⊕σ y = ¬σ((0, 0)⊕σ y)⊕σ y = ¬σy ⊕σ y = x⊕σ y = x 6= (1, 0).

Lemma 6 (Gehrke&Priestley, 2001). The equation (MV6) fails in Cπ = (Cπ,⊕π,¬π, 0).

Proof.

¬π(¬πx⊕π y)⊕π y = ¬π(y ⊕π y)⊕π y = ¬πy ⊕π y = x⊕π y = (1, 0).

The right side of the equation yields

¬π(¬πy ⊕π x)⊕π x = ¬π(x⊕π x)⊕π x = ¬π(1, 0)⊕π x = (0, 0)⊕π x = x.

Since x 6= (1, 0), the equation (MV6) fails.

Theorem 7. Let L be a  Lukasiewicz logic, then the resolution method based on the

Priestley duality is sound with respect to L if and only if L is finite valued.

Proof. (⇒) As we have already shown, no non-finitely generated variety of MV-

algebras is canonical. This proves the sufficiency by contraposition.

(⇐) By theorems 2 and 3 we can define canonical operators on O(D(A)). By

lemmata 4, 5 and 6 these operators will preserve axioms of MV-algebra. This proves

the soundness of the resolution rule.

Problem 1. What are the nesessary and sufficient conditions for a given logic whose

set of truth-values is a bounded distributive lattice to have a method of automated

theorem proving based on the Priestley duality?
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