
MFCSIT 2006

Denotational semantics of call-by-name

normalization in lambda-mu calculus

Vladimir Komendantsky1 ,2

INRIA Sophia Antipolis
2004 rte Lucioles, B.P. 93

06902 Sophia Antipolis cedex, France

Abstract

We study normalization in the simply typed lambda-mu calculus, an extension of lambda calculus with
control flow operators. Using an enriched version of the Yoneda embedding, we obtain a categorical normal
form function for simply typed lambda-mu terms, which gives a special kind of a call-by-name denotational
semantics particularly useful for deciding equalities in the lambda-mu calculus.

Keywords: Yoneda embedding, categorical semantics, categories of continuations, lambda-mu calculus,
normalization, partial equivalence relations

1 Introduction

We study normalization of terms in the simply typed λµ-calculus introduced by

Parigot in [13]. This calculus is an extension of the simply typed λ-calculus with

operators that influence the sequential control flow during the evaluation of a term.

The primary reason for this extension was to provide a constructive notion of a

classical natural deduction proof. Moreover, subsequent studies showed that the

λµ-calculus can also be realized as a calculus of continuations, and that control

operators of certain functional programming languages can be formalized by means

of its µ-abstraction mechanism. A very instructive discussion of possible meanings

of λµ-terms can be found in [14], §4.2. The suggested background reading in λ-

calculus is [2] and [9].

Our approach to normalization is based on a categorical technique called the

normalization by the Yoneda embedding, whose motivation is clearly explained in

Introduction to the paper [4]. This technique employs category theory, and our

reference on this subject is Mac Lane’s book [10].

1 Funded by the Boole Centre for Research in Informatics postdoc grant and the Royal Society & Royal
Irish Academy grant “Category theory and nature inspired models of computation”.
2 Email: Vladimir.Komendantsky@sophia.inria.fr

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:Vladimir.Komendantsky@sophia.inria.fr


Komendantsky

Before embarking in the technical exposition we would like to discuss some

important topics which are particularly relevant in the context of our paper.

Continuations and classical logic. Continuations in programming languages

generalize the notion of a control flow. In functional languages continuations are es-

pecially important tools providing rich expressivity. A characteristic example is the

operator call-with-current-continuation, or call/cc, of the language Scheme.

A common approach to semantics of languages with continuations (such as those

providing labels and jumps, e.g., our simply typed λµ-calculus) involves a transla-

tion of a given language into a language that represents continuations as functions.

Such translations are known as continuation passing style (CPS) translations. Stud-

ies of continuations in programming languages and CPS translations of λ-calculus

commenced in early 70’s (the relevant references could be found in [16]); e.g., in

1975 Plotkin introduced a call-by-name variant of the CPS translation. Notably,

the well-known Gödel’s and Kolmogoroff’s ¬¬-translations of classical logic into

intuitionistic one correspond, on the level of propositions-as-types, respectively to

call-by-name CPS translation with values and call-by-value CPS translation, which

were studied starting from mid 80’s by Felleisen and his co-workers in relationship

to the λ-calculus with control operator, cf. [16]. In our paper we employ yet another

CPS translation, an elegant call-by-name CPS translation studied in [8,6,14] which

was motivated by Lafont’s ¬¬-translation of classical logic into the ¬∧-fragment

of intuitionistic logic. Classical logic has several variants of proof-theoretic seman-

tics given by the above mentioned translations of classical into constructive logic;

such semantics were studied, e.g., in [5,11,12,16]. Our work can also be seen as a

contribution to those studies of proof-theoretic semantics of classical logic.

Minimal-sized definition for response categories and categories of con-

tinuations. Our normalization method is based on an enriched case of categories

of continuations. These categories are traditionally constructed from so-called cate-

gories of responses, as it was done, e.g., by Selinger in [14]. Categories of responses

are essentially a categorical version of CPS semantics of λ-calculus. In [15] Selinger

remarks on the minimal-sized definition for categories of responses. The enriched

version of a category of responses we define in this paper is in fact based on the

minimal-sized definition from the latter source. In our case the minimality is crucial

since redundancies in the definition of a category of responses, such as presence of

coproducts, can lead to a failure of the normalization function. This can happen

because the Yoneda embedding which is used extensively in our semantics does

not preserve coproducts. Therefore our definition of an enriched response cate-

gory corresponds to a simple generalization of a cartesian closed category without

coproducts, in which only a single fixed object is required to have exponentials.

Denotational semantics of the λµ-calculus. Lambda calculus is usually

introduced as a theory of computable functions. The relationship of this theory to

actual functions, e.g., functions between sets, is established by means of a suitable

denotational semantics. Denotational semantics gives meaning to a language, in

our case the simply typed λµ-calculus, by assigning mathematical objects as values

to its terms. If M is a λµ-term, we will write JMK for the meaning of M under

a given interpretation function J−K, and ≡ will be some congruence relation on

interpretations (≡ can be an equality, but in general it suffices to be just a decidable

2



Komendantsky

congruence relation such as α-congruence). Consider some equality predicate =t on

λµ-terms. Given a particular interpretation function, soundness is the property

that M =t N implies JMK ≡ JNK. Then completeness is the property JMK ≡ JNK

implies M =t N .

The decision problem for the λµ-calculus can be formulated as follows: For any

possibly open λµ-terms M and N of type A, an object context Γ, and a control

context ∆, decide whether M =Γ,∆ N , where =Γ,∆ denotes the equality of λµ-terms

in the context of Γ and ∆. With each λµ-term M in context Γ,∆ we associate its

abstract normal form nfΓ,∆(M), for which there exists a reverse function fnΓ,∆ from

normal forms to terms, such that the following properties hold:

(NF1) fnΓ,∆(nfΓ,∆(M)) =Γ,∆ M,

(NF2) M =Γ,∆ N implies nfΓ,∆(M) ≡ nfΓ,∆(N).

Note that nf is allowed not to be injective and hence there is no inverse function

nf−1 in general. Since the conditions (NF1) and (NF2) imply M =Γ,∆ N if and

only if nfΓ,∆(M) ≡ nfΓ,∆(N) (that is the soundness and completeness property),

comparing such abstract normal forms can yield a denotational semantics and a

decision procedure for the λµ-calculus, with (NF1) corresponding to the complete-

ness property and (NF2) corresponding to the soundness property. Our (NF1) and

(NF2) are similar to those appeared in [1] and applied there to normalization by

the Yoneda embedding in simply typed λ-calculus with coproducts. However, our

categorical techniques are different from those of [1].

Normalization by the Yoneda embedding and normalization by eval-

uation. The fact that normalization by the Yoneda embedding is closely related

to the algorithm of normalization by evaluation due to Berger and Schwichtenberg

[3] was noted in [4]. The correspondence is that the free interpretation, T−U in

our notation, corresponds to the “evaluation functional” of [3], and the components

ι and ι−1 of the natural isomorphism between the interpretation of generators by

the Yoneda embedding and its free extension T−U correspond respectively to the

functionals “procedure → expression”, p→e, and “make self evaluating”, mse. The

difference of course is that, unlike in the normalization by evaluation method, in

normalization by Yoneda one does not mention any rewriting techniques.

In Sec. 2, following Kelly [7] we give definitions for a special instance of enriched

category theory, category theory enriched over the category with objects being

sets equipped with partial equivalence relations and morphisms being functions

preserving these relations. Specifically, in §2.4 we develop an enriched version of

categories of continuations. The idea of such an enrichment appeared in [4]; however,

our definitions are different and in fact are just instances of more general definitions

given by Kelly. In Sec. 3, we define the simply typed λµ-calculus, the call-by-name

CPS translation and the categorical interpretation function. The aim of Sec. 3 is

to show how the λµ-calculus can be embedded into the λR×-calculus. Finally, in

Sec. 4 we obtain the normal form function for simply typed λµ-terms. In §4.3, we

characterize the obtained normal form function and sketch the proofs for soundness

and completeness theorems, thus showing that our normal form function induces a

special kind of a call-by-name denotational semantics for the λµ-calculus which is

particularly useful for deciding equalities in the λµ-calculus.

3



Komendantsky

2 PSet-enriched category theory

2.1 Per-sets and PSet-categories

A per-set A is a pair A = (|A|,∼A), where |A| is a set and ∼A is a partial equiva-

lence relation (per) on |A|. A per-function between the per-sets A = (|A|,∼A) and

B = (|B|,∼B) is a function f : |A| → |B| such that a ∼A a′ implies f(a) ∼B f(a′),

for all a, a′ ∈ |A|.

Specifically, we will need the following kinds of per-sets:

• the one-point per-set 1 = ({∗},∼1), where ∗ ∼1 ∗;

• the cartesian product of two per-sets A and B, that is the per-set A × B =

(|A| × |B|,∼A×B), where 〈a, b〉 ∼A×B 〈a′, b′〉 if a ∼A a′ and b ∼B b′, for all

a, a′ ∈ |A| and b, b′ ∈ |B|;

• the exponential of a per-set B by a per-set A, that is the per-set BA = (|B||A|,∼BA),

where f ∼BA g if, for all a, a′ ∈ |A|, a ∼A a′ implies f(a) ∼B g(a′), for all

f, g ∈ |B||A|.

A cartesian category is a category with finite products and the terminal ob-

ject. A cartesian closed category (ccc) C is a cartesian category in which each

functor −× A : C → C has a right adjoint (−)A.

Per-sets and per-functions form a cartesian closed category, denoted PSet0,

whose objects are (small) per-sets and whose morphisms are per-functions between

per-sets. The cartesian closedness of PSet0 means that there is an adjunction

PSet0(C × A,B) ∼= PSet0(C,BA), (1)

which is a bijection natural in C and B, with unit d : C → (C × A)A and counit

e : BA × A → B.

A PSet-enriched category (or, shorter, a PSet-category) A consists of

• a set ob(A) of objects,

• a hom-object A(A,B) ∈ ob(PSet0), for each pair of objects of A (the elements

of the hom-object are called morphisms from A to B),

• a per-function ◦ = ◦A,B,C : A(B,C) × A(A,B) → A(A,C), for each triple of

objects A,B,C ∈ ob(A) (called the composition law of A,B,C),

• and a per-function id = idA : 1 → A(A,A), for each object A ∈ ob(A) (called

the identity element of A);

each of the above subject to the associativity and unit axioms expressed by the

commutativity of the following two diagrams:

(A(C,D) ×A(B,C)) ×A(A,B)

◦×1
��

a //A(C,D) × (A(B,C) ×A(A,B))

1×◦
��

A(B,D) ×A(A,B)

◦
**VVVVVVVVVVVVVVVVVV A(C,D) ×A(A,C)

◦
tthhhhhhhhhhhhhhhhhh

A(A,D)
(2)

4



Komendantsky

and

A(B,B) ×A(A,B) ◦ // A(A,B) A(A,B) ×A(A,A)◦oo

1 ×A(A,B)

id×1

OO

l

66lllllllllllll

A(A,B) × 1

1×id

OO

r

hhRRRRRRRRRRRRR

(3)

For PSet-categories A and B, a PSet-functor F : A → B consists of

• a function F : ob(A) → ob(B),

• and, for each pair A,B ∈ ob(A), a map FA,B : A(A,B) → B(FA,FB);

subject to the compatibility with composition and identities expressed by the com-

mutativity of

A(B,C) ×A(A,B)

F×F

��

◦ // A(A,C)

F
��

B(FB,FC) × B(FA,FB) ◦
// B(FA,FC)

and A(A,A)

F

��

I

id
99tttttttttt

id %%KKKKKKKKKK

B(FA,FA)

(4)

The PSet-functor F : A → B is said to be fully faithful if each FA,B is an

isomorphism.

For PSet-functors F,G : A → B, a PSet-natural transformation α : F →

G : A → B is an ob(A)-indexed family of components αA : 1 → B(FA,GA)

satisfying the PSet-naturality condition expressed by the commutativity of

1 ×A(A,B)
αB×F // B(FB,GB) × B(FA,FB)

◦

**TTTTTTTTTTTTTTTT

A(A,B)

l−1

77ooooooooooo

r−1
''OOOOOOOOOOO

B(FA,GB)

A(A,B) × 1
G×αA

// B(GA,GB) × B(FA,GA)

◦

44jjjjjjjjjjjjjjjj

(5)

For α : F → G : A → B and β : G → H : A → B, their “vertical” composite

β ◦ α has the component (β ◦ α)A given by

1 ∼= 1× 1
βA×αA−−−−−→ B(GA,HA) × B(FA,GA)

◦
−→ B(FA,HA) (6)

The composite of α with Q : B → C has for its component (Qα)A the composite

1
αA−−→ B(FA,GA)

Q
−−→ C(QFA,QGA) (7)

while the composite of α with R : D → A has for its component (αR)D simply

αRD.

Given two PSet-categories A and B, and two PSet-functors F : A → B and U :

B → A, a PSet-adjunction between F (the left adjoint) and U (the right adjoint)

5



Komendantsky

consists of PSet-natural transformations η : 1 → FU (the unit) and ε : UF → 1

(the counit) satisfying the equations Fε ◦ ηF = 1 and εU ◦ Uη = 1.

2.2 The PSet-category PSet

Now we will give the standard argument in the style of [7] to exhibit the PSet-

category PSet.

Lemma 2.1 There is a PSet-category PSet, whose objects are per-sets and where

PSet(A,B) = BA.

Proof. Putting C = 1 in the adjunction (1), using the isomorphism l : 1×A ∼= A,

and writing P for the ordinary set-valued functor PSet0(1,−) : PSet0 → Set, we

get the natural isomorphism

PSet0(A,B) ∼= P (BA). (8)

which gives an equivalence between PSet0 and the underlying ordinary category of

the PSet-category, which we will denote PSet, whose objects are those of PSet0,

and whose hom-object PSet(A,B) is BA. Since BA is thus exhibited as a lifting

through P of the hom-set PSet0(A,B), it is the internal hom of A and B of PSet.

The important point here is that the internal hom of PSet makes PSet itself into

a PSet-category. Its composition law ◦ : BA ×AC → BC corresponds under (1) to

the composite

(BA × AC) × C
a
−→ BA × (AC × C)

1×e
−−−→ BA × A

e
−→ B (9)

and the identity element idA : 1 → AA corresponds under (1) to l : 1 × A → A.

Verification of the axioms (2) and (3) is easy since the definition (9) of ◦ is equivalent

to e(◦ × 1) = e(1 × e)a. 2

2.3 The PSet-functor category BA and the PSet-enriched Yoneda lemma

Let A and B be PSet-categories. The PSet-functor category BA is defined as

follows:

• objects of BA are all PSet-functors from A to B;

• for two such functors F,G : A → B, their hom-object BA(F,G) is a per-set

of ob(A)-indexed families of components αA in |B(FA,GA)|, with the per on

families defined by α ∼BA(F,G) β if α and β satisfy the PSet-naturality condition

and, for all A, αA ∼B(FA,GA) βA;

• ◦F,G,H(α, β) is defined componentwise by ◦F,G,H(α, β)A = ◦FA,GA,HA(αA, βA);

• idF : 1 → BA(F,F ) is defined componentwise by (idF )A = idFA.

We define the PSet-enriched Yoneda functor Y : A → PSetA
op

by Y A =

A(−, A). Below we instantiate Kelly’s V-enriched (strong) Yoneda lemma [7] with

our data. The parameter V becomes PSet. The Yoneda lemma is given for reference

purposes, and hence without proof which can be found in [7] (for the case of the

covariant Yoneda functor). In this paper we use the Yoneda lemma by way of its

Corollary 2.3.

6



Komendantsky

Lemma 2.2 (PSet-enriched Yoneda) Let A be a PSet-category, K an object

of A, and F : Aop → PSet. The transformation φA : FK → (FA)Y KA, PSet-

natural in A, expresses FK as the equalizer

PSetA
op

(Y K,F )
E

−−−−−→
∏

A∈ob(A)

(FA)Y KA ρ
−−−−−−→−−−−−−→

σ

∏

A,B∈ob(A)

(

(FB)Y KA
)Aop(A,B)

where ρA,B and σA,B are the transformations of
(

(F−)Y KA
)

A,B
and

(

(FB)Y K−
)

B,A

respectively; so that we have the following isomorphism PSet-natural in K and F :

φ : FK ∼= PSetA
op

(Y K,F ).

Corollary 2.3 For any PSet-category A, the PSet-functor Y : A → PSetA
op

is

fully faithful.

Due to this corollary Y is called the PSet-enriched Yoneda embedding. The

fact that it is full justifies that a morphism Y A → Y B in PSetA
op

is essentially

the same as A → B in A. Note that PSetA
op

always exists since, by definition, A

is locally small (its hom-objects are small per-sets).

2.4 PSet-categories of continuations

A PSet-category of responses is a PSet-category C with finite products and

exponentials of the form RA for a fixed object of responses R and any object A

of C. The latter means that there is a canonical isomorphism

C(B,RA) ∼= C(B × A,R) (10)

PSet-natural in A.

Given a PSet-category of responses C (and the exponentiable object R of C),

we construct its PSet-category of continuations CR as follows:

• objects of CR are n-tuples of objects of C, for n ≥ 0;

• for all A = 〈A1, . . . , An〉 and B = 〈B1, . . . , Bm〉 in ob(CR), their hom-object

CR(A,B) is C(
∏

i R
Ai ,

∏

j RBj ).

Therefore CR is the full subcategory of C on objects of the kind RA1 × · · · × RAn ,

which we abbreviate to RA. It follows that, in CR, the composition ◦A,B,C :

CR(B,C) × CR(A,B) → CR(A,C) coincides with the composition ◦RA,RB,RC :

C(RB ,RC) × C(RA,RB) → C(RA,RC) in C, and the identity element idA : 1 →

CR(A,A) coincides with the identity element idRA : 1 → C(RA,RA) in C. Thus CR

satisfies the axioms of PSet-categories (2) and (3) in the trivial way.

We note that PSet-categories of continuations are cartesian closed PSet-categories.

Indeed, given CR, one has finite products in CR as a consequence of it being a full

subcategory of C. Next, if A = 〈A1, . . . , An〉 and B = 〈B1, . . . , Bm〉 then the ob-

ject BA =
∏

j RBj×
Q

i RAi is their exponential in C, and thus CR is closed under

exponentiation, and there is an isomorphism

PSet(
∏

k

RCk ×
∏

i

RAi ,
∏

j

RBj ) ∼= PSet(
∏

k

RCk ,
∏

j

RBj×
Q

i RAi ), (11)

7



Komendantsky

PSet-natural in Ck and Bj , giving rise to a PSet-adjunction with unit η and counit

ε, respectively:

η :
∏

k

RCk →
∏

k

RCk×
Q

i RAi ×
∏

i

RAi×
Q

i RAi
,

ε :
∏

j

RBj×
Q

i RAi ×
∏

i

RAi →
∏

j

RBj .

Hence we will use standard notation for the PSet-categorical analogues of structural

ccc-morphisms.

Given two PSet-categories of continuations CR and DR′ , and a PSet-functor

from the first to the second, an obvious question arises about whether F in its

image preserves the structure of the first category, for instance, whether the ex-

ponentiable object of responses retains its qualities in the image. We make this

precise in the following definition. Given two PSet-categories of continuations CR

and DR′ , a PSet-functor of PSet-categories of continuations, or, in short, a

PSet-coc functor, is a PSet-functor F : CR → DR′ , together with PSet-natural

isomorphisms, for n ≥ 0,

rR
〈A1,...,An〉

: R′FA1 × · · · × R′FAn
∼=

−−→ F (RA1 × · · · × RAn)

r×A1,...,An
: R′FA1×···×FAn

∼=
−−→ R′F (A1×···×An)

(12)

commuting with the morphism structure in all the evident ways. Note that despite

some notational clumsiness arising from the presence of the exponentiable object,

the meaning of the isomorphisms is very clear since rR
〈A1,...,An〉

is an element of the

hom-object

DR′(〈FA1, . . . , FAn〉, F 〈A1, . . . , An〉),

and r×A1,...,An
is an element of the hom-object

DR′(FA1 × · · · × FAn, F (A1 × · · · × An)).

In the following we will be especially interested in actions of the Yoneda embed-

ding Y on a PSet-category of continuations CR. In this situation the image of Y on

CR is a PSet-category which will be later shown to be a PSet-category of contin-

uations. However, it is more convenient to define Y not just on CR but on C itself,

so we have Y : C → PSetC
op

, where PSetC
op

is obtained as a usual PSet-functor

category and is clearly a PSet-category of responses with the object of responses

being Y R = C(−, R). As for the corresponding PSet-category of continuations,

denoted PSetC
op

Y R, we obtain it as follows 3 :

• objects of PSetC
op

Y R are n-tuples 〈Y A1, . . . , Y An〉, for n ≥ 0 and 〈A1, . . . , An〉 ∈

ob(CR);

• hom-objects of PSetC
op

Y R are PSetC
op

Y R(〈Y A1, . . . , Y An〉, 〈Y B1, . . . , Y Bm〉) =

PSetC
op

((Y R)Y A1 × · · · × (Y R)Y An , (Y R)Y B1 × · · · × (Y R)Y Bm), for n,m ≥ 0,

〈A1, . . . , An〉 ∈ ob(CR) and 〈B1, . . . , Bm〉 ∈ ob(CR);

3 The notation PSet
Cop

Y R is handy but ambiguous in that Y R can be understood differently; the only correct
understanding is [Cop,PSet]Y R.

8



Komendantsky

• the composition law and the identity element are defined in the obvious way;

• the object of responses is Y R = C(−, R) ∈ ob(PSetC
op

).

The statement about the object of responses might seem not straightforward, there-

fore we will give it some more attention. Note that in PSetC
op

the object of re-

sponses Y R = C(−, R) is isomorphic to (Y R)Y 1 = C(−, R)C(−,1) since Y 1 is terminal

in PSetC
op

. Also observe that, for any A ∈ ob(C), the isomorphism C(−, RA) ∼=
C(−, RA)C(−,1) ∼= C(−, R)C(−,A) holds. This allows one to consider the full subcate-

gory of PSetC
op

on objects of the kind C(−, R)C(−,A1) × · · · × C(−, R)C(−,An), which

is precisely our PSetC
op

Y R. The result can be stated in the following lemma.

Lemma 2.4 For a PSet-category of continuations CR, the PSet-category PSetC
op

Y R

is a PSet-category of continuations with the object of responses being C(−, R) ∈

ob(PSetC
op

).

The Yoneda embedding Y : C → PSetC
op

restricts on CR to a PSet-functor

YR : CR → PSetC
op

Y R which consists of

• a function YR : ob(CR) → ob(PSetC
op

Y R) which sends an n-tuple 〈A1, . . . , An〉 to

the n-tuple 〈Y A1, . . . , Y An〉;

• for each pair of tuples A,B ∈ ob(CR), a map (YR)A,B : CR(A,B) → PSetC
op

Y R(YRA,YRB)

which sends each f ∈ CR(A,B) = C(RA1 × · · · × RAn , RB1 × · · · × RBm) to

Y f ∈ PSetC
op

Y R((Y R)Y A1 × · · · × (Y R)Y An , (Y R)Y B1 × · · · × (Y R)Y Bm), and such

that, for f, g ∈ CR(A,B), YR(f) ∼ YR(g) if and only if f ∼ g.

This YR is not actually the Yoneda embedding any more, but it is still an embed-

ding and, moreover, a PSet-coc functor since one has the required PSet-natural

isomorphisms in PSetC
op

Y R due to the fact that Y preserves finite products:

rR
〈A1,...,An〉

: C(−, R)C(−,A1) × · · · × C(−, R)C(−,An) ∼=
−−→ C(−, RA1 × · · · × RAn)

r×A1,...,An
: C(−, R)C(−,A1)×···×C(−,An) ∼=

−−→ C(−, R)C(−,A1×···×An)

Hence one has the following lemma.

Lemma 2.5 Let C be a PSet-category of responses with the object of responses R,

so that CR is a PSet-category of continuations. The restriction YR : CR → PSetC
op

Y R

of the PSet-categorical Yoneda embedding Y : C → PSetC
op

on the full subcategory

CR is a PSet-coc functor.

3 λµ-calculus

3.1 Syntax of the λµ-calculus

Let σ, σ1, . . . range over a set ΣT of type constants. Types, ranged over by

A,B, . . . , are constructed by the grammar:

A ::= σ | BA | ⊥

Let Vo and Vc be two given countable disjoint sets of object variables x, y, . . . and

control variables α, β, . . . , respectively. Let ΣK be a set of typed object con-

9



Komendantsky

stants cA, cB
1 , . . . The pair (ΣT ,ΣK) is called a signature of the λµ-calculus, and

denoted by Σ. Terms, ranged over by M,N, . . . , are constructed by the grammar:

M ::= x | cA | MN | λxA.M | [α]M | µαA.M

Terms of the form MN , λxA.M , µαA.M and [α]M are called respectively an ap-

plication, a λ-abstraction, a µ-abstraction and a named term. In the terms

λxA.M and µαA.M , the object variable x, respectively the control variable α, is

bound.

Now we define typing of the λµ-calculus. An object context is a finite,

possibly empty sequence Γ = x1:B1, x2:B2, . . . , xn:Bn of pairs of an object vari-

able and a type, such that xi 6= xj, for all i 6= j. A control context ∆ =

α1:A1, α2:A2, . . . , αm:Am is defined analogously. A typing judgement is an ex-

pression of the form Γ ⊢ M : A | ∆. Such a judgement has an interpretation in

sequent calculus for classical logic, with ⊢ interpreted as entailment symbol (for-

mally corresponding to implication) and | interpreted as disjunction. Valid typing

judgements are derived using the typing rules in Table 1. An equation is an

expression of the form Γ ⊢ M = N : A, where Γ ⊢ M : A | ∆ and Γ ⊢ N : A | ∆

are valid typing judgements. We do not discuss here what a valid equation could

be because we use an analogous notion of call-by-name equivalence introduced in

§3.2.

Γ ⊢ x : A | ∆
if x:A ∈ Γ

Γ ⊢ cA : A | ∆

Γ ⊢ M : BA | ∆ Γ ⊢ N : A | ∆

Γ ⊢ MN : B | ∆

Γ, x:A ⊢ M : B | ∆

Γ ⊢ λxA.M : BA | ∆

Γ ⊢ M : A | ∆

Γ ⊢ [α]M : ⊥ | ∆
if α:A ∈ ∆

Γ ⊢ M : ⊥ | α:A,∆

Γ ⊢ µαA.M : A | ∆

Γ ⊢ M : A | ∆

Γ′ ⊢ M : A | ∆′
if Γ ⊆ Γ′, ∆ ⊆ ∆′

Table 1
Typing rules of the λµ-calculus

3.2 Call-by-came continuation passing style translation

Consider the λµ-calculus over a given signature Σ = (ΣT ,ΣK). We will review

the call-by-name semantics of this calculus by the continuation passing style (CPS)

translation obtained in [6] and [14]. The target language of the CPS translation is

a λR×-calculus, that is a λ-calculus with products and a distinguished type R of

responses. We assume that the target calculus has

• a type constant σ̃ for each type constant σ ∈ ΣT of the λµ-calculus;

• a pair of types KA (the type of continuations of type A) and CA (the type of

computations of type A) for each type A of the λµ-calculus, defined as follows:

10



Komendantsky

Kσ = σ̃ where σ is a type constant

CA = RKA

KBA = CA × KB

K⊥ = 1

• a constant c̃ for each object constant cA ∈ ΣK of the λµ-calculus;

• a distinct variable x̃ and a distinct variable α̃ for each object variable x and each

control variable α, respectively.

The call-by-name CPS translation M of a typed term M is given in Table 2.

x = λkKA .x̃k where x : A

cA = λkKA .c̃k

MN = λkKB .M 〈N, k〉 where M : BA, N : A

λxA.M = λ〈x̃, k〉KBA .Mk where M : B

[α]M = λkK⊥ .Mα̃ where M : A

µαA.M = λα̃KA .M ∗ where M : ⊥

Table 2
The call-by-name CPS translation of the λµ-calculus

As can be easily seen, the CPS translation respects the typing in the sense

that a judgement of the λµ-calculus

x1:B1, . . . , xn:Bn ⊢ M : A | α1:A1, . . . , αm:Am (13)

is translated to the judgement of the λR×-calculus

x̃1:CB1
, . . . , x̃n:CBn , α̃1:KA1

, . . . , α̃m:KAm ⊢ M : CA . (14)

Analogously, it respects the typing of equations. Therefore we can consistently

use the notation Γ ⊢ M : A | ∆ for the translation of a typing judgement, and

Γ ⊢ M = N : A | ∆ for the translation of an equation.

Let M and N be the terms of the λµ-calculus such that Γ ⊢ M : A | ∆ and

Γ ⊢ N : A | ∆. We say that M and N are call-by-name equivalent, and

then write M =Γ,∆ N , if Γ ⊢ M = N : A | ∆, that is if the CPS translation of M

is βη-equivalent in the context to the CPS translation of N . The call-by-name

λµ-theory determined by a λR×-theory T is then defined to be the set of all

equations E of the λµ-calculus such that E ∈ T .

3.3 Categorical call-by-name interpretation of the λµ-calculus

The target λR×-calculus of the above call-by-name CPS translation will now be

interpreted in a PSet-category of responses C. We give the PSet-enriched general-

ization of the construction that was originally developed for the ordinary category

case in [6] and [14].

Since the CPS translation is type respecting, a typing λµ-judgement of the form

(13) gives rise to a morphism in C: CB1
×· · ·×CBn ×KA1

×· · ·×KAm → CA, which

11



Komendantsky

in turn, using CA = RKA and then using the canonical isomorphism (10), amounts

to a morphism RKB1 × · · · ×RKBn → RKA×KA1
×···×KAm , which now lies within the

PSet-category of continuations CR. Note that we do not mention the computation

types of the form CA any more. Henceforth we will simply write A instead of KA

in the context of the CPS translation.

Let CR be a PSet-category of continuations, and let Σ = (ΣT ,ΣK) be the

signature of the λµ-calculus. Assume now a choice of an object σ̃ ∈ ob(C) for every

type constant σ ∈ ΣT . Each type constructor is interpreted by the corresponding

object constructor of PSet-categories of continuations:

JσK = σ̃, where σ is a type constant,

JBAK = RJAK × JBK,

J⊥K = 1

(15)

If Γ = x1:B1, . . . , xn:Bn is an object context, its interpretation in the PSet-category

of continuations C is RJB1K×· · ·×RJBnK which we abbreviate simply to
∏

i RJBiK, and

we denote the l-th projection map by πl :
∏

i R
JBiK → RJBlK. If ∆ = α1:A1, . . . , αm:Am

is a control context, its interpretation in C is RJA1K×···×JAmK, abbreviated to R
Q

jJAjK,

and we denote its l-th weakening map by wl = Rπl : RJAlK → R
Q

jJAjK. As-

sume also a choice in CR of a morphism c̃ : 1 → RJAK for each object constant

cA ∈ ΣK . Now we can interpret a typing judgement Γ ⊢ M : A | ∆ as a morphism

JΓ ⊢ M : A | ∆K :
∏

i R
JBiK → RJAK×

Q

jJAjK which can be abbreviated to JMK when

the context allows. The inductive definition for the PSet-categorical interpretation

is given in Table 3.

JΓ ⊢ xl : Bl | ∆K =
∏

i

RJBiK πl−→ RJBlK w
−→ RJBlK×

Q

jJAjK

JΓ ⊢ cA : A | ∆K =
∏

i

RJBiK 0
−→ 1

c̃
−→ RJAK w

−→ RJAK×
Q

jJAjK

JΓ ⊢ MN : B | ∆K =
∏

i

RJBiK 〈JMK,JNK〉
−−−−−−→ RRJAK×JBK×

Q

jJAjK × RJAK×
Q

jJAjK

ε
Q

jJAjK

−−−−−→ RJBK×
Q

jJAjK

JΓ ⊢ λxA.M : BA | ∆K =
∏

i

RJBiK JMK∗

−−−→ RRJAK×JBK×
Q

jJAjK

JΓ ⊢ [αl]M : ⊥ | ∆K =
∏

i

RJBiK JMK
−−→ RJAlK×

Q

jJAjK (wl)
Q

jJAjK

−−−−−−−→ R
Q

jJAjK×
Q

jJAjK

R
〈

Q

j idJAjK,
Q

j idJAjK〉

−−−−−−−−−−−−−−→ R
Q

jJAjK ∼=
−→ R1×

Q

jJAjK

JΓ ⊢ µαA.M : A | ∆K =
∏

i

RJBiK JMK
−−→ R1×JAK×

Q

jJAjK ∼=
−→ RJAK×

Q

jJAjK

Table 3
The call-by-name interpretation of the λµ-calculus in a PSet-category of responses

Until now the description of the PSet-categorical interpretation did not differ

12



Komendantsky

from the ordinary categorical one [14] in any significant way. But the present in-

terpretation does differ if one considers λµ-theories. In this case we define partial

equivalence relations between morphisms to be given by the call-by-name equiva-

lence in a λµ-theory, with the composition law defined componentwise, and with the

obvious choice of identity elements (each of these being the unique morphism from

a fixed variable of a given type to itself). This will be made precise in the definition

of a syntactic PSet-category of continuations in 4.1. Meanwhile, analogously to the

case of the ordinary categorical interpretation (cf. [14], Lemma 5.4) we relate the

CPS and the PSet-categorical interpretations of the λµ-calculus by the following

lemma, which can be proved by the straightforward induction on the complexity of

λµ-terms.

Lemma 3.1 Given a PSet-category of continuations CR, the PSet-categorical call-

by-name interpretation of the λµ-calculus in CR coincides with the interpretation of

the call-by-name CPS translation in CR.

From this lemma we immediately obtain the following soundness and complete-

ness result for λR×-theories (whose corresponding ordinary category case is Propo-

sition 5.5 of [14]).

Corollary 3.2 The λR×-theories induced on the λµ-calculus by the PSet-categorical

call-by-name interpretation are precisely the λR×-theories induced by the call-by-

name CPS translation.

Therefore λµ-theories intuitively can be seen as embedded into λR×-theories,

and interpreted semantically as λR×-theories of a special kind.

4 Categorical semantics of normalization in λµ-calculus

4.1 Syntactic PSet-category of continuations and canonical call-by-name inter-

pretation of the λµ-calculus

Let x be a fixed object variable. We say that a λR×-judgement is in standard

form if it has the form

x:A1 × · · · × An ⊢ M : B1 × · · · × Bm,

that is if the object context declares exactly the one variable x. Every λR×-

judgement x1:R
A1 , . . . , xn:RAn ⊢ M : RB1 × · · · × RBm has a standard form

x:RA1 × · · · × RAn ⊢ (λx1 . . . xn.M)(π1x) . . . (πnx) : RB1 × · · · × RBm . (16)

Therefore the call-by-name CPS translation of every λµ-judgement has a yet simpler

standard form

x:RA1 × · · · × RAn ⊢ (λx1 . . . xn.M)(π1x) . . . (πnx) : RB. (17)

Using the notion of a standard form, we will define structural operations of

PSet-categories of continuations in a way similar to defining structural operations

13



Komendantsky

of cartesian closed categories by typing judgements of simply typed lambda calculus.

The following lemma can be easily checked case by case.

Lemma 4.1 The structural operations of a PSet-category of responses C with the

object of responses R are defined by the operations on typing judgements shown

in Table 4, with pers on hom-objects defined by id ∼ id, 0 ∼ 0, πl ∼ πl, ε ∼ ε,

JΓ ⊢ M : A | ∆K ∼ JΓ ⊢ N : A | ∆K if M and N are call-by-name equivalent, and

such that all the operations respect ∼.

id =x:A ⊢ x : A

0 =x:A ⊢ ∗ : 1

πl =x:
∏

i

Ai ⊢ πlx : Al

ε =x:RA×B × A ⊢ (π1x)(π2x) : RB

f = x:A ⊢ M : B g = x:B ⊢ N : C

g ◦ f = x:A ⊢ (λxB .N)M : C

f = x:A ⊢ M : B g = x:A ⊢ N : C

〈g, f〉 = x:A ⊢ 〈M,N〉 : B × C

f = x:A × B ⊢ M : RC

f∗ = x:A ⊢ λyB .(λxA×B.M)〈x, y〉 : RB×C

Table 4
Operations of a PSet-category of responses on typing judgements

The following lemma is just an instantiation of Lemma 4.1 (see also Lemma 5.6

of [14] for a closely related case of the structural operations of control categories).

Lemma 4.2 The structural operations of a PSet-category of continuations CR are

defined by the operations on typing judgements shown in Table 5, with pers on hom-

objects defined by id ∼ id, 0 ∼ 0, πl ∼ πl, ε ∼ ε, JΓ ⊢ M : A | ∆K ∼ JΓ ⊢ N : A | ∆K

if M and N are call-by-name equivalent, and such that all the operations respect ∼.

id =x:RA ⊢ x : RA

0 =x:RA ⊢ ∗ : 1

πl =x:
∏

i

RAi ⊢ πlx : RAl

ε =x:RR
A×B × RA ⊢ (π1x)(π2x) : RB

f = x:RA ⊢ M : RB g = x:RB ⊢ N : RC

g ◦ f = x:RA ⊢ (λxRB
.N)M : RC

f = x:RA ⊢ M : RB g = x:RA ⊢ N : RC

〈g, f〉 = x:RA ⊢ 〈M,N〉 : RB × RC

f = x:RA ×RB ⊢ M : RC

f∗ = x:RA ⊢ λyRB
.(λxRA×RB

.M)〈x, y〉 : RRB×C

Table 5
Operations of a PSet-category of continuations on typing judgements

Given a λµ-signature Σ = (ΣT ,ΣK), we construct the syntactic PSet-category

of continuations CΣ
R as follows. First, we define its underlying PSet-category of

responses CΣ to consist of

• objects
∏n

i=1 Ai, for n ≥ 0, where either Ai ∈ ΣT ∪ {R} or Ai = RB , for B an

object;

• hom-objects CΣ(A,B) containing an element f ∈ CΣ(A,B), for each well-typed

standard form λR×-judgement x:A ⊢ M : B, with the per of morphisms from A to

B being the least per containing id ∼ id (if A = B), 0 ∼ 0 (if B = 1), πl ∼ πl (if

14



Komendantsky

B = Al), ε ∼ ε (if A = RC ×C and B = R), JΓ ⊢ M : A | ∆K ∼ JΓ ⊢ N : A | ∆K if

M and N are call-by-name equivalent, and closed under the structural operations

of PSet-categories of responses shown in Table 4;

• for each triple of objects A,B,C, the composition law ◦ = ◦A,B,C defined com-

ponentwise: for f = (x:A ⊢ M : B) and g = (x:B ⊢ N : C), their composition is

g ◦f = (x:A ⊢ (λxB .N)M : C), — and interacting with pers of the corresponding

hom-objects as follows: for f, f ′ ∈ CΣ(A,B) and g, g′ ∈ CΣ(B,C), it holds that

g ◦ f ∼CΣ(A,C) g′ ◦ f ′ if and only if f ∼CΣ(A,B) f ′ and g ∼CΣ(B,C) g′;

• for each object A, the identity element id = idA = (x:A ⊢ x : A).

Second, we construct the required syntactic PSet-category of continuations CΣ
R as

follows:

• objects are n-tuples of objects of CΣ, for n ≥ 0;

• for A,B ∈ ob(CΣ
R), their hom-object CΣ

R(A,B) = CΣ
R(〈A1, . . . , An〉, 〈B1, . . . , Bm〉)

is the hom-object CΣ(RA1 ×· · ·×RAn , RB1 ×· · ·×RBm) of the underlying PSet-

category of responses, named by x:RA ⊢ M : RB ;

• composition laws and identity elements are borrowed from CΣ as usual.

There is a free call-by-name interpretation J−K0 (sometimes also called

a canonical call-by-name interpretation) of the λµ-calculus with signature Σ in

CΣ
R , defined by σ̃ = σ and c̃ = x:1 ⊢ c : RA, for each cA ∈ ΣK . It has the

property that the interpretation of each typing judgement is call-by-name equivalent

to its standard form. The pair (CΣ
R, J−K0) is determined up to isomorphism by the

following universal property: For each call-by-name interpretation J−K in DR′ , which

agrees with J−K0 on generators, there is a unique (up to PSet-natural isomorphism)

PSet-coc functor

Q : CΣ
R → DR′ (18)

such that QJAK0 = JAK for all λµ-types A, and QJΓ ⊢ M : A | ∆K0 = JΓ ⊢ M : A |

∆K for all well-typed judgements Γ ⊢ M : A | ∆.

Assume that H : CΣ
R → DR′ is another PSet-coc functor such that HJ−K0 =

J−K. We will exhibit a PSet-natural isomorphism ι : Q → H by induction on the

complexity of an object of CΣ
R using the structural PSet-natural isomorphisms rR

and r× from (12):

ι〈〉 = rR
〈〉, ι−1

〈〉 = 0H〈〉, ι〈σ〉 = ι−1
〈σ〉 = id〈σ〉, ι〈1〉 = ι−1

〈1〉 = id〈1〉,

ι〈RA〉 = rR
〈A〉(ι〈1〉ε〈π1, ι

−1
〈A〉π2〉)

∗, ι−1
〈RA〉

= (ι−1
〈1〉(Hε)r×

RA,A
〈π1, ι〈A〉π2〉)

∗,

ι〈A1×···×An〉 = ι〈A1〉 × · · · × ι〈An〉, ι−1
〈A1×···×An〉

= ι−1
〈A1〉

× · · · × ι−1
〈An〉

,

ι〈A1,...,An〉 = 〈ι〈A1〉, . . . , ι〈An〉〉, ι−1
〈A1,...,An〉

= 〈ι−1
〈A1〉

, . . . , ι−1
〈An〉

〉,

(19)

where n > 1. The above given components of ι define the required PSet-natural

isomorphism. The fact is easy to establish by checking the condition (5) routinely.

4.2 The normal form function

Henceforth let Y denote the PSet-categorical Yoneda embedding Y : CΣ → PSet(CΣ)op

defined as in 2.3 and discussed further in 2.4. Recall that YR is the restriction of Y

15



Komendantsky

on CΣ
R. We let T−U : CΣ

R → PSet
(CΣ)op

Y R be the PSet-coc functor freely extending the

interpretation of base types by YR. We deliberately chose the bracketed notation for

the free extension functor to emphasize the fact that T−U is also an interpretation

(moreover, a free interpretation) and, besides, to improve readability.

By the universal property of the pair (CΣ
R , J−K0), there is a natural isomorphism

ι : T−U
∼=
−→ YR. Hence, by Corollary 2.3, for each hom-object of CΣ

R, we can construct

the inverse of the interpretation T−U on this hom-object according to the diagram

CΣ
R(A,B)

T−U //

YR

$$IIIIIIIIIIIIIIIIIII PSet
(CΣ)

op

Y R (TAU,TBU)

ιB ◦ T−U ◦ ι−1
A

wwppppppppppppppppppppppp

PSet
(CΣ)

op

Y R (YRA,YRB)

−A(idA)

ddIIIIIIIIIIIIIIIIIII

(20)

Hence, for any f ∈ CΣ
R(A,B), we obtain a PSet-natural transformation

Y A
ι−1
A−−→ TAU

TfU
−−→ TBU

ιB−→ Y B

which, if further evaluated at A, gives

CΣ
R(A,A)

ι−1
A,A

−−−→ TAUA
TfUA−−−→ TBUA

ιB,A
−−−→ CΣ

R(A,B).

Thus we define the normal form function to be

nf(f) = ιB,A(TfUA(ι−1
A,A(idA))), (21)

where f ∈ CΣ
R(A,B) is a morphism named by a λR×-judgement x:RA ⊢ M : RB ,

and idA is the morphism named by x:RA ⊢ x : RA. Note that in (21) we could

equally write the judgements naming the morphisms f and idA. The “functional”

notation nf(f) is especially handy if we note that the typing contexts are implicitly

given in f , thus one should not write them explicitly.

In the setting of a syntactic PSet-category of continuations CΣ
R, nf is a per-

function on λR×-terms (and not just a function on βη-convertibility classes of λR×-

terms, as it would be if one considered only the underlying ordinary categories).

4.3 Characterization of categorical normal forms

We will check whether our nf from 4.2 satisfies the characteristic properties (NF1)

and (NF2) from Introduction.

Recall from 3.2 that, for λµ-terms M and N , we write M = N if M and N are

call-by-name equivalent. Without loss of generality we assume that interpretations

of λµ-terms in the syntactic PSet-category of continuations CΣ
R are given in their

standard forms.

16



Komendantsky

Theorem 4.3 (Completeness, NF1) There is a function fn from abstract nor-

mal forms to terms such that, for a well-typed λµ-judgement Γ ⊢ M : C | ∆, it holds

that fn(nf(JΓ ⊢ M : C | ∆K0)) =Γ,∆ M .

Proof (sketch). Let Γ = x1:A1, . . . , xn:An, ∆ = α1:B1, . . . , αm:Bm and f =

JΓ ⊢ M : C | ∆K0, and let f ∈ CΣ
R(A,B) be of the form

x:RA1 × · · · × RAn ⊢ (λx1 . . . xn.M)(π1x) . . . (πnx) : RC×B1×···×Bm

(by our global assumption interpretations are given in standard form). Since CΣ
R has

the canonical structure of PSet-categories of continuations, we can use induction

on the complexity of M to prove that nf(f) ∼ g for some g in standard form:

g = x:RA1 × · · · × RAn ⊢ (λx1 . . . xn.N)(π1x) . . . (πnx) : RC×B1×···×Bm .

Since nf is a per preserving function, it follows that f ∼ g, i.e., the λR×-term

naming f is βη-equivalent to the λR×-term naming nf(f). Therefore M and N are

βη-equivalent, and hence M and N are call-by-name equivalent. Thus we can put

fn(nf(JΓ ⊢ M : C | ∆K0)) := N . 2

In the following soundness theorem we employ the method developed in [4],

Section 3.4, for proving the uniqueness property of categorical normal forms there.

We modify this method to suit the case of PSet-categories of continuations.

Theorem 4.4 (Soundness, NF2) If M and N are of type C, and M =Γ,∆ N , it

holds that nf(JΓ ⊢ M : C | ∆K0) ≡ nf(JΓ ⊢ N : C | ∆K0).

Proof. Let f = JΓ ⊢ M : C | ∆K0, g = JΓ ⊢ N : C | ∆K0 and f, g ∈ CΣ
R(A,B). Let

CΣ,≡
R denote the PSet-category of continuations which has the same objects and the

same underlying sets of morphisms as CΣ
R , but whose pers ≡ on morphisms are given

by α-congruence on terms naming the morphisms. Observe that the PSet-category

of responses CΣ,≡ is already given with CΣ,≡
R by construction. By analogy with (20),

consider a PSet-coc functor T−U≡ : CΣ
R → PSet

(CΣ,≡)op

Y R freely extending the inter-

pretation of objects of CΣ
R by Yoneda Y ≡

R : CΣ
R → PSet(CΣ,≡)op . Being a PSet-coc

functor, T−U≡ is such that f ∼ g implies TfU≡ ≡ TgU≡. By the universal property

of (CΣ
R , J−K0), it holds that ιB,ATfU≡

Aι−1
A,A(idA) ≡ ιB,ATgU≡

Aι−1
A,A(idA). Clearly, the

ordinary categories underlying PSet
(CΣ)op

Y R and PSet
(CΣ,≡)op

Y R have the same structure

of categories of continuations. Therefore ιB,ATfU≡Aι−1
A,A(idA) = ιB,ATfUAι−1

A,A(idA)

and ιB,ATgU≡
Aι−1

A,A(idA) = ιB,ATgUAι−1
A,A(idA). Hence nf(f) ≡ nf(g). 2

5 Conclusions

We have shown that the method of normalization by the Yoneda embedding [4,1]

can be successfully applied to the problem of normalization of simply typed λµ-

terms. We obtained a solution for this problem by developing an apparatus of

categories of continuations enriched over the category of sets with partial equivalence

relations and functions preserving these relations. As a result we constructed a

sound and complete denotational semantics of call-by-name normalization in simply

17



Komendantsky

typed λµ-calculus. An important role in this semantics was played by the call-by-

name continuation passing style translation obtained in [6,14].

Future research should be dedicated to algorithmization of the soundness and

completeness theorems (for the purpose of extracting functional programs from

soundness and completeness proofs) and to extensions of the normalization method

onto more expressive calculi such as the simply typed λµ-calculus with products

and coproducts.

Acknowledgement

I wish to thank my joint grantholders Anthony Seda and John Power for their

support, encouragement and helpful discussions.

References

[1] Altenkirch, T., P. Dybjer, M. Hofmann and P. Scott, Normalization by evaluation for typed lambda
calculus with coproducts, in: 16th Annual IEEE Symposium on Logic in Computer Science (LICS’01)
(2001), pp. 303–.

[2] Barendregt, H. P., “The lambda calculus,” Studies in logic 103, North-Holland, 1984.

[3] Berger, U. and H. Schwichtenberg, An inverse to the evaluation functional for typed λ-calculus, in:
Proc. 6th Annual IEEE Symp. on Logic in Computer Science, 1991, pp. 203–211.

[4] Čubrić, D., P. Dybjer and P. Scott, Normalization and the Yoneda embedding, Mathematical Structures
in Computer Science 8 (1998), pp. 153–192.

[5] Griffin, T. G., A formulae-as-types notion of control, in: Proc. 17th ACM/SIGACT-SIGPLAN Symp.
Principles of Programming Languages (POPL), 1990.

[6] Hofmann, M. and T. Streicher, Completeness of continuation models for λµ-calculus, Information and
Computation 179 (2002), pp. 332–355.

[7] Kelly, G. M., “Basic concepts of enriched category theory,” London Mathematical Sosciety Lecture
Notes 64, Cambridge University Press, 1982, published online in Reprints in Theory and Applications
of Categories, No. 10, 2005.

[8] Lafont, Y., B. Reus and T. Streicher, Continuation semantics or expressing implication by negation,
Technical Report 93–27, University of Munich (1993).

[9] Lambek, J. and P. J. Scott, “Introduction to higher-order categorical logic,” Cambridge Studies
in Advanced Mathematics 7, Cambridge University Press, Cambridge, 1988, first paperback (with
corrections) edition.

[10] Mac Lane, S., “Categories for the Working Mathematician,” Springer-Verlag, 1971.

[11] Ogata, I., A proof theoretical account of continuation passing style, in: Proc. CSL’02, LNCS (2002),
pp. 490–505.

[12] Ong, C.-H. L., A semantic view of classical proofs: Type-theoretic, categorical, and denotational
characterizations, in: Proc. 11th Annual IEEE Symp. on Logic in Computer Science, 1996, pp. 230–241.

[13] Parigot, M., λµ-calculus: an algorithmic interpretation of classical natural deduction, in: A. Voronkov,
editor, Proc. Intl. Conf. Logic Programming and Automated Reasoning, LNAI 624 (1992), pp. 190–201.

[14] Selinger, P., Control categories and duality: on the categorical semantics of the lambda-mu calculus,
Math. Struct. Comp. Science 11 (2001), pp. 207–260.

[15] Selinger, P., Some remarks on control categories, Preprint (2003).

[16] Streicher, T. and B. Reus, Classical logic: Continuation semantics and abstract machines, Journal of
Functional Programming 8 (1998), pp. 543–572.

18


	Introduction
	PSet-enriched category theory
	Per-sets and PSet-categories
	The PSet-category PSet
	The PSet-functor category BA and the PSet-enriched Yoneda lemma
	PSet-categories of continuations

	-calculus
	Syntax of the -calculus
	Call-by-came continuation passing style translation
	Categorical call-by-name interpretation of the -calculus

	Categorical semantics of normalization in -calculus
	Syntactic PSet-category of continuations and canonical call-by-name interpretation of the -calculus
	The normal form function
	Characterization of categorical normal forms

	Conclusions
	Acknowledgement 
	References

