
Categorical semantics of normalization in

λC-calculus

Vladimir Komendantsky∗

Boole Centre for Research in Informatics
University College Cork

v.komendantsky@bcri.ucc.ie

Abstract

We investigate normalization in call-by-name formulation of λC-cal-
culus, a constructive analogue of classical natural deduction, by inverting
the evaluation functional in a general setting of P-category theory. We
obtain a decision procedure for λC-calculus by comparing normal forms
of λC-terms in this setting.

Keywords: λC-calculus, λµ-calculus, normalization, P-category theory

1 Introduction

λC-Calculus is often viewed as a computational version of Gentzen’s classical
natural deduction system ND [3, 6], and it is also useful for studying continua-
tions [4, 8] in functional programming languages. The first mentioned aspect is
of our primary interest. In this paper we consider normalization in call-by-name
version of λC. The categorical approach to normalization is based on inverting
the evaluation functional and has been developed in relation to λ-calculus, e.g.,
in [1, 2]. Particularly, in [2] there was employed a special case of enriched
categories called P-categories, i.e. categories with partial equivalence relations
on arrows. Also there, P-ccc’s were proved to model normalization in simply-
typed λ-calculus. We extend this approach by considering a notion weaker than
that of a ccc, namely a notion of a category of continuations. This allows us
to model normalization in λC-calculus. Our construction is also applicable to
normalization in λµ-calculus.

2 λC-calculus and λµ-calculus

The λC-calculus is the simply-typed λ-calculus with augmented variable binding:
if t is a λC-term of type ⊥ then Cx¬A.t is a λC-term of type A. The operator
C only binds variables of negated type. The sequent Γ ` t : A where Γ is a set
of variable-type annotations of the kind y : B, means that the λC-term t is a

∗Research funded by a BCRI postdoctoral grant.

1



representation of a classical natural deduction proof of the proposition A whose
undischarged hypotheses are annotated propositions taken from the set Γ.

For technical reasons, we define an algorithm that translates a sequent of
λC-calculus into a sequent of λµ-calculus of the same type. Following Ong [6],
we assume that there is a bijection between variables annotating negated hy-
potheses of the form ¬A, where A 6= ⊥, and µ-variables, given by (−), e.g.
x¬A = αA and x¬A = x¬A, with the inverse being (−). Take a λC-sequent
Γ ` t : A. Let Θ be a subset of Γ consisting only of negated hypotheses. We
define a λµ-term dteΘ by recursion: dxeΘ def= x if x /∈ Θ and λyA.[αA]y other-
wise; dλxA.seΘ def= λxA.dseΘ; drseΘ def= dreΘdseΘ; dCx¬A.seΘ def= µαA.dseΘ,x:¬A.
Applying this algorithm we obtain Γ \Θ ` dteΘ : A | Θ which is a λµ-sequent.

One can think of the λµ-calculus as a variant of ND with ability to distinguish
between hypotheses which ought to be discharged by the classical absurdity rule
(by annotation of µ-variables), and from those which ought to be discharged by
implication introduction (by annotation of λ-variables).

The inverse translation is defined as follows. Take a λµ-sequent Γ ` t : A |
∆. We define a λC-term btc by recursion: bxAc def= xA; bλxA.sc def= λxA.bsc;
brsc def= brcbsc; b[αA]sc def= x¬Absc; bµαA.sc def= Cx¬A.bsc. Thus we obtained a
λC-sequent Γ,∆ ` btc : A. The translation b−c forgets the difference between
the two types of hypotheses, and so it can be argued that the resulting λC-terms
reflect properties of ND-proofs better than the λµ-terms do.

Now, combining argumentation of Ong [6] and of de Groote [3] about the
two translation algorithms we can prove the following theorem.

Theorem 1. (i) For any λC-derivable sequent Γ ` t : A and for any subset
Θ of Γ consisting of negated hypotheses, the sequent Γ \ Θ ` dteΘ : A | Θ
is λµ-derivable. (ii) For any λµ-derivable sequent Γ ` t : A | ∆, the sequent
Γ,∆ ` btc : A is λC-derivable.

In fact, λC-calculus and λµ-calculus are isomorphic, as it was first noted by
de Groote [3]. Formally:

Theorem 2. (i) Γ ` dbtce∆ = t : A | ∆ and (ii) Γ,Θ ` bdteΘc = t : A.

Assume a signature (B,K) consisting of base types (excluding ⊥) and con-
stants respectively. We define simply-typed call-by-name λC-calculus.
Axioms and rules

(Axiom) Γ ` x : A if x : A ∈ Γ (Const) Γ ` c : A if c : A ∈ K

(⇒ -intro)
Γ, x : A ` t : B

Γ ` λxA.t : A ⇒ B
(⇒ -elim)

Γ ` t : A ⇒ B Γ ` s : A

Γ ` ts : B

(¬¬-elim)
Γ ` λx¬A.t : ¬¬A

Γ ` Cx¬A.t : A
if A 6= ⊥ and x : ¬A /∈ Γ

Equations in context

Γ ` t = t : A
Γ ` s = t : A

Γ ` t = s : A

Γ ` s = t : A Γ ` t = r : A

Γ ` s = r : A
Γ ` s1 = t1 : A ⇒ B Γ ` s2 = t2 : A

Γ ` s1s2 = t1t2 : B

Γ, x : A ` s = t : B

Γ ` λxA.s = λxA.t : A ⇒ B

Γ ` λx¬As = λx¬A.t : ¬¬A

Γ ` Cx¬A.s = Cx¬A.t : A

2



(β⇒) Γ ` (λxA.t)s = t(s/x) : B

(β⊥) Γ ` x′Cx¬A.t = t[x/x′] : ⊥
(η⇒) Γ ` t = λxA.tx : A ⇒ B, if x : A /∈ Γ

(η⊥) Γ ` Cx¬A.xt = t : A, if x /∈ FV(t)

(ζ⇒) Γ ` (Cx¬(A⇒B).t)s = Cy¬B .t[y((−)s)/x(−)] : B, if y /∈ FV(ts)

(ζ⊥⇒) Γ ` (Cx¬¬A.t)s = t[(−)s/x(−)] : ⊥
(ζ⊥) Γ ` xt = t{x} : ⊥ if x : ¬A ∈ Γ and t{x} is defined

The renaming function (−){−} is defined in the following cases:
(i) (Cx¬B .t){y} def= t[y/x] and (ii) (λxB .t){y} def= t{y′}[y(λxB .s)/y′s] for some
fresh variable y if x occurs in t{y′} only within the scope of y′s, otherwise
(−){−} is undefined.

Pym and Ritter [7] gave a confluent (i.e. any two reducts of a term have a
common reduct) and strongly normalizing (i.e. all reduction sequences of any
given term are terminating) call-by-name rewriting semantics for the λµ-calculus
based on the translations of the above axioms. Therefore, due to Theorems 1
and 2, we can state the properties of confluence and strong normalization for the
λC-calculus which are crucial for our discussion of the normalization algorithm.

3 The idea of a normal form algorithm

The decision problem for λC-calculus can be formulated as follows: For any
possibly open λC-terms t and s of type A, decide whether Γ ` t = s : A.
With each λC-term t we associate its abstract normal form nf(t) such that the
following properties hold:

(NF1) Γ ` nf−1(nf(t)) = t : A, (NF2) Γ ` t = s : A implies nf(t) = nf(s).

Since the conditions (NF1) and (NF2) imply Γ ` t = s : A iff nf(t) = nf(s),
comparing abstract normal forms can yield a decision procedure for λC-calculus.

A categorical model of λC-calculus is a category of continuations. According
to [1], such a category C has a distinguished class T of objects of C called type
objects and a distinguished type object R of responses, provided that T contains
an interpretation of the base types B. Additionally, there is a chosen cartesian
product Γ·A for every object Γ and a type object A, and chosen terminal objects
[] and 1 in T . Also for each type object A there is a chosen exponential RA ∈ T ,
and for any two type objects A and B a chosen cartesian product RA ×B ∈ T .
A λC-sequent Γ,Θ ` t : A is interpreted in C as a map RJΓK · JΘK → RJAK. An
objects of C is an interpretation of a continuation context Θ; a morphism from
Θ to A is a λC-term t such that Θ ` t : ¬A.

Let us denote a free P-category of continuations on the signature Σ = (B,K)
as FΣ. The universal property of a free P-category of continuations FΣ is as
follows: for any P-category of continuations C, and any interpretation of the
signature Σ in C, there is a unique up to isomorphism structure preserving
P-functor J−K : FΣ → C freely extending this interpretation. There are two
straightforward P-functors preserving the structure of P-categories of contin-
uations: P-categorical Yoneda embedding Y : FΣ → PSetFΣ

op
and the free

extension to the P-functor J−K : FΣ → PSetFΣ
op

. By the universal property,

3



there is a P-natural isomorphism q : J−K → Y . To obtain a function nf we in-
vert the P-natural Yoneda isomorphism q. Given a sequent Γ ` t : A we define
(leaving out the square brackets in subscripts to improve readability)

nf(t) = qA,Γ(JtKΓ(q−1
Γ,Γ(idΓ))) .

Since J−K is an interpretation, we have (NF2), that is Γ ` t = s implies JtK = JsK,
and (NF1) is proved by a straightforward induction on t. Therefore J−K is a
sound and complete interpretation. Hence we have the following theorem.

Theorem 3. (i) For each Γ ` t : A, nf(t) is an element of NF(Γ, A). (ii) Every
element of NF(Γ, A) is nf(t) for some t.

Among the possible future directions we would wish to address elsewhere we
emphasise the following: 1) an application of the P-categorical approach to nor-
malization to λµ-categories [6] or control categories [8]; 2) a study of normaliza-
tion in call-by-value formulation of λC, e.g., in the setting of precartesian-closed
abstract Kleisli categories of Führmann and Thielecke [4]; 3) an analysis of P-
categorical models of λC-calculus in a higher category theory setting (this may
be analogous to a bicategorical analysis of E-categories given by Kinoshita [5]).

References

[1] T. Altenkirch, M. Hofmann, and T. Streicher. Categorical reconstruction
of a reduction-free normalization proof. In Proc. CTCS ’95, volume 953 of
LNCS, pages 182–199. Springer, 1995.

[2] D. Čubrić, P. Dybjer, and P. Scott. Normalization and the Yoneda embed-
ding. Mathematical Structures in Computer Science, 8(2):153–192, 1998.

[3] P. de Groote. On the relation between the λµ-calculus and the syntactic
theory of sequential control. In F. Pfenning, editor, Proc. 5th Intl. Conf.
Logic Programming and Automated Reasoning (LPAR’94), volume 822 of
LNCS, pages 31–43, 1994.

[4] C. Führmann and H. Thielecke. On the call-by-value CPS transform and its
semantics. Information and Computation, 188(2):241–283, 2004.

[5] Y. Kinoshita. A bicategorical analysis of E-categories. Mathematica Japon-
ica, 47(1):157–169, 1998.

[6] C.-H. L. Ong. A semantic view of classical proofs: Type-theoretic, categor-
ical, and denotational characterizations. In Proc. 11th Annual IEEE Symp.
on Logic in Computer Science, pages 230–241, 1996.

[7] D. Pym and E. Ritter. On the semantics of classical disjunction. J. Pure
and Applied Algebra, 159:315–338, 2001.

[8] P. Selinger. Control categories and duality: on the categorical semantics of
the lambda-mu calculus. Math. Struct. Comp. Science, 11:207–260, 2001.

4


