Categorical semantics of normalization in
AC-calculus

Vladimir Komendantsky*
Boole Centre for Research in Informatics
University College Cork
v.komendantsky@bcri.ucc.ie

Abstract

We investigate normalization in call-by-name formulation of AC-cal-
culus, a constructive analogue of classical natural deduction, by inverting
the evaluation functional in a general setting of P-category theory. We
obtain a decision procedure for AC-calculus by comparing normal forms
of AC-terms in this setting.

Keywords: AC-calculus, Ap-calculus, normalization, P-category theory

1 Introduction

AC-Calculus is often viewed as a computational version of Gentzen’s classical
natural deduction system ND [3, 6], and it is also useful for studying continua-
tions [4, 8] in functional programming languages. The first mentioned aspect is
of our primary interest. In this paper we consider normalization in call-by-name
version of AC. The categorical approach to normalization is based on inverting
the evaluation functional and has been developed in relation to A-calculus, e.g.,
in [1, 2]. Particularly, in [2] there was employed a special case of enriched
categories called P-categories, i.e. categories with partial equivalence relations
on arrows. Also there, P-ccc’s were proved to model normalization in simply-
typed A-calculus. We extend this approach by considering a notion weaker than
that of a ccc, namely a notion of a category of continuations. This allows us
to model normalization in AC-calculus. Our construction is also applicable to
normalization in Apu-calculus.

2 MAC-calculus and Apu-calculus

The AC-calculus is the simply-typed A-calculus with augmented variable binding:
if t is a AC-term of type L then Cz~4.t is a A\C-term of type A. The operator
C only binds variables of negated type. The sequent I" - ¢ : A where I is a set
of variable-type annotations of the kind y : B, means that the AC-term ¢ is a

*Research funded by a BCRI postdoctoral grant.

representation of a classical natural deduction proof of the proposition A whose
undischarged hypotheses are annotated propositions taken from the set I'.

For technical reasons, we define an algorithm that translates a sequent of
AC-calculus into a sequent of Au-calculus of the same type. Following Ong [6],
we assume that there is a bijection between variables annotating negated hy-
potheses of the form —A, where A # 1, and p-variables, given by (—), e.g.

774 = o® and 274 = 274, with the inverse being (—). Take a AC-sequent

I't: A Let © be a subset of I' consisting only of negated hypotheses. We
define a Ap-term [¢]© by recursion: [x]© Cyifx ¢ © and \y?.[a]y other-
wise; [AzA.5]® L AzA.[5]9; [rs]® e [r19[s19; [Ca™4.5]° e pal [s]OmimA,
Applying this algorithm we obtain '\ © I- [¢]® : A | © which is a Au-sequent.

One can think of the Ap-calculus as a variant of ND with ability to distinguish
between hypotheses which ought to be discharged by the classical absurdity rule
(by annotation of p-variables), and from those which ought to be discharged by
implication introduction (by annotation of A-variables).

The inverse translation is defined as follows. Take a Au-sequent I' - ¢ : A |
A. We define a A\C-term [t| by recursion: |z4| et 4, | AzA.s] def Az |s];
|7rs] wof I7][s]; [[@?]s) Lef g |s]; [pa.s] o Cax™4.|s|. Thus we obtained a
AC-sequent I, A F [¢| : A. The translation |—| forgets the difference between
the two types of hypotheses, and so it can be argued that the resulting AC-terms
reflect properties of ND-proofs better than the Au-terms do.

Now, combining argumentation of Ong [6] and of de Groote [3] about the
two translation algorithms we can prove the following theorem.

Theorem 1. (i) For any AC-derivable sequent I' F ¢ : A and for any subset
© of T' consisting of negated hypotheses, the sequent I'\ © I [t]® : A | ©
is Ap-derivable. (ii) For any Au-derivable sequent T' - ¢ : A | A, the sequent
I AF [t] : Ais AC-derivable.

In fact, AC-calculus and Ap-calculus are isomorphic, as it was first noted by
de Groote [3]. Formally:
Theorem 2. (i) T [[t|]A=t: A|A and (ii) I,0F |[t]®| =t: A.

Assume a signature (B,) consisting of base types (excluding 1) and con-
stants respectively. We define simply-typed call-by-name AC-calculus.
Axioms and rules

(Axiom) TkHz:A ifz:Ael (Const) T'hHe:A ifc:Aek
z:AFt: B . I't: A= B 'ks: A
'FXxAt: A= B (= -elim) I'Hts: B
IEXz4t: A
I'-CxAt: A

Equations in context

(= -intro)

(——-elim)

ifA#1Llandz:—-A¢T

T'kFs=t: A T'kFs=t:A ThHt=r:A
T'Ft=t¢t: A

I'Ft=s:A4 'ks=r:4A4
I'tsy=t1:A= B Thksy=t:A I'z:AFs=t: B
'k s18y =tite : B F'FXzAs=X4t: A= B

FF Az 4s= X"t =—A
FFCxAs=Cx4t: A

) Tk (\axtt)s=t(s/z): B

) Tha'Ca At =tx/2)]: L

(n=) ThHt=Xettz: A= B, ifz:A¢T
) ThCx ™ at=t:A, ifz¢FV()
) Tk (CaU=B) t)s = Cy B a[y((=)s) /(=) : B, ify¢FV(ts)
) Tk (Cx ™ t)s =t[(—)s/z(-)]: L

(¢1) Trat=t{z}:L ifx:—-AeT and t{x} is defined

The renaming function (—){—} is defined in the following cases:

(i) (Ca B 4){y} ¥ tly/a] and (i) AP .){y} < {y}y(AzB.s)/y's] for some
fresh variable y if & occurs in t{y’} only within the scope of y’s, otherwise
(—=){—1 is undefined.

Pym and Ritter [7] gave a confluent (i.e. any two reducts of a term have a
common reduct) and strongly normalizing (i.e. all reduction sequences of any
given term are terminating) call-by-name rewriting semantics for the Au-calculus
based on the translations of the above axioms. Therefore, due to Theorems 1
and 2, we can state the properties of confluence and strong normalization for the
AC-calculus which are crucial for our discussion of the normalization algorithm.

3 The idea of a normal form algorithm

The decision problem for AC-calculus can be formulated as follows: For any
possibly open AC-terms ¢t and s of type A, decide whether I' F ¢ = s : A.
With each AC-term t we associate its abstract normal form nf(t) such that the
following properties hold:

(NF1) T nf ! (nf(t)) =t: A, (NF2)I'Ft=s: A implies nf(t) = nf(s).

Since the conditions (NF1) and (NF2) imply I' F ¢t = s : A iff nf(¢) = nf(s),
comparing abstract normal forms can yield a decision procedure for A\C-calculus.

A categorical model of A\C-calculus is a category of continuations. According
to [1], such a category C has a distinguished class 7 of objects of C called type
objects and a distinguished type object R of responses, provided that 7 contains
an interpretation of the base types B. Additionally, there is a chosen cartesian
product I'- A for every object I and a type object A, and chosen terminal objects
[[and 1 in 7. Also for each type object A there is a chosen exponential R4 € 7T,
and for any two type objects A and B a chosen cartesian product R4 x B € 7.
A \C-sequent T',© F ¢ : A is interpreted in C as a map RI'l. [0] — R[4l An
objects of C is an interpretation of a continuation context ©; a morphism from
O to A is a AC-term t such that © F ¢ : —A.

Let us denote a free P-category of continuations on the signature ¥ = (B, K)
as Fy. The universal property of a free P-category of continuations Fy is as
follows: for any P-category of continuations C, and any interpretation of the
signature ¥ in C, there is a unique up to isomorphism structure preserving
P-functor [-] : Fy — C freely extending this interpretation. There are two
straightforward P-functors preserving the structure of P-categories of contin-
uations: P-categorical Yoneda embedding YV : Fy — PSet¥=" and the free
extension to the P-functor [-] : Fy — PSetF="" By the universal property,

there is a P-natural isomorphism ¢ : [-] — Y. To obtain a function nf we in-
vert the P-natural Yoneda isomorphism ¢. Given a sequent I' -t : A we define
(leaving out the square brackets in subscripts to improve readability)

nf(t) = gar([tIr(gr r(idr))) -

Since [—] is an interpretation, we have (NF2), that is " - ¢ = s implies [t] = [s],
and (NF1) is proved by a straightforward induction on ¢t. Therefore [—] is a
sound and complete interpretation. Hence we have the following theorem.

Theorem 3. (i) For each I' ¢ : A, nf(t) is an element of NF(I', A). (ii) Every
element of NF(T', A) is nf(t) for some t.

Among the possible future directions we would wish to address elsewhere we
emphasise the following: 1) an application of the P-categorical approach to nor-
malization to A\u-categories [6] or control categories [8]; 2) a study of normaliza-
tion in call-by-value formulation of A\C, e.g., in the setting of precartesian-closed
abstract Kleisli categories of Fithrmann and Thielecke [4]; 3) an analysis of P-
categorical models of AC-calculus in a higher category theory setting (this may
be analogous to a bicategorical analysis of E-categories given by Kinoshita [5]).

References

[1] T. Altenkirch, M. Hofmann, and T. Streicher. Categorical reconstruction
of a reduction-free normalization proof. In Proc. CTCS 95, volume 953 of
LNCS, pages 182-199. Springer, 1995.

[2] D. Cubrié, P. Dybjer, and P. Scott. Normalization and the Yoneda embed-
ding. Mathematical Structures in Computer Science, 8(2):153-192, 1998.

[3] P. de Groote. On the relation between the Ap-calculus and the syntactic
theory of sequential control. In F. Pfenning, editor, Proc. 5th Intl. Conf.
Logic Programming and Automated Reasoning (LPAR’94), volume 822 of
LNCS, pages 3143, 1994.

[4] C. Fithrmann and H. Thielecke. On the call-by-value CPS transform and its
semantics. Information and Computation, 188(2):241-283, 2004.

[5] Y. Kinoshita. A bicategorical analysis of E-categories. Mathematica Japon-
ica, 47(1):157-169, 1998.

[6] C.-H. L. Ong. A semantic view of classical proofs: Type-theoretic, categor-
ical, and denotational characterizations. In Proc. 11th Annual IEEE Symp.
on Logic in Computer Science, pages 230—241, 1996.

[7] D. Pym and E. Ritter. On the semantics of classical disjunction. J. Pure
and Applied Algebra, 159:315-338, 2001.

[8] P. Selinger. Control categories and duality: on the categorical semantics of
the lambda-mu calculus. Math. Struct. Comp. Science, 11:207-260, 2001.

