
Computation of Normal Logic Programs by

Fibring Neural Networks

Vladimir Komendantsky1 and Anthony Seda2

1 Boole Centre for Research in Informatics, University College Cork, Cork, Ireland
Postal address: BCRI, 20 South Bank, Crosses Green, Cork, Ireland

v.komendantsky@bcri.ucc.ie
2 Department of Mathematics, University College Cork, Cork, Ireland

a.seda@ucc.ie? ??

Abstract. In this paper, we develop a theory of the integration of fibring neural net-
works (a generalization of conventional neural networks) into model-theoretic semantics
for logic programming. We present some ideas and results about the approximate com-
putation by fibring neural networks of semantic immediate consequence operators TP

and TP , where TP denotes a generalization of TP relative to a many-valued logic analo-
gous to Kleene’s strong logic. We establish a minimal-fixed-point semantics for normal
logic programs somewhat analogous to the least-fixed-point semantics for definite logic
programs. We argue that the class of logic programs for which the approximation by
fibring neural networks may be employed to compute minimal fixed points of TP and
of TP is the class of normal programs. Our theorems on the approximation of TP and
TP for normal programs extend recent results on approximation of these operators for
definite programs by conventional neural networks.
Key words: logic programs, fibring neural networks, immediate consequence opera-
tors, least-fixed-point semantics, Kleene’s strong logic.

1 Introduction

The central problem we address here is the integration of logic-based systems
and connectionist systems. In brief, this problem is concerned with how one may
give a logical interpretation of neural networks (NN, for short), how one may
interpret logical reasoning within neural networks, and how one may combine
the advantages of each within a single system, see [8].

In this paper, we study generalized neural networks called fibring neural net-
works (fNNs, for short). These were first introduced in [3] where the definition
allows one to treat subnetworks as separate neurons, but in fact we employ fNN
as discussed in [1] since the fNNs of the latter paper are more flexible and more
suited to our purposes. Indeed, the class of such fNNs may be viewed as a fur-
ther generalization of the fNNs of [3]. We propose algebraic definitions of NNs as
well as of fNNs in a procedural rather than a functional way, and we believe our

? The authors thank the Boole Centre for Research in Informatics (BCRI) at University College
Cork for substantial support in presenting this paper. They also thank two anonymous referees
whose valuable remarks led to a considerable improvement in the paper.

?? To appear in the Proceedings of the Seventh International Workshop on First-Order Theorem
Proving (FTP’05), Koblenz, Germany, September 14 - 17, 2005.

treatment of neural networks is well-suited to the task of presenting the proofs
of our theorems. The alternative geometic way of describing NNs by means of
diagrams (employed in [3, 1]) could be modelled by extracting diagrams from the
algebraic notation. On the other hand, one might find the converse extraction
difficult, or even impossible, especially in cases where fNNs are concerned, be-
cause fNNs commonly have a complicated structure and would therefore require
large complicated diagrams. A fibring NN is not a conventional NN (we add the
term “conventional” to distinguish between NNs and fNNs). In fact, fibring NNs
are more expressive and more powerful then conventional NNs, and for example
the fNNs from [3] (and therefore, the fNNs from [1]) can compute polynomial
functions over an unbounded domain unlike the case of conventional NNs.

This paper is concerned with the (approximate) computation of the fixed
points of semantic operators determined by logic programs, a problem which
has been considered by a number of authors, see for example [1, 8, 9, 2]. Specif-
ically, we show how one may use fNNs to compute the minimal fixed points of
immediate consequence operators determined by normal logic programs, and this
is important in that the minimal-fixed-point semantics can be taken to capture
the meaning of first-order normal logic programs.

The overall structure of the paper is as follows. In 2.1, we give preliminary
definitions of logic programs with particular attention paid to model-theoretic
semantics of logic programming in the form due to van Emden and Kowalski,
see [10]. Our notation differs slightly from that to be found in the common
reference [10], and is close to Miller’s notation [11] as employed in a number
of papers concerned with proof-theoretic treatments of logic programming. In
2.2, we define some notions concerning metric spaces and topology [15] used
in the semantics of logic programming as discussed in [12]. Next, in 2.3, we
give our definitions of neural networks. In 3.1 and in 3.2, we give an overview of
recent results on the approximate computation by NNs of semantic operators TP
and TP for definite programs. In 3.3, we develop a many-valued generalization
of the stable model semantics for logic programming originally due to Gelfond
and Lifschitz [5]. Also in 3.3, the minimal-fixed-point semantics is established
as our adaptation of the least-fixed-point semantics of definite programs to the
more general class of normal programs. This approach to semantics is somewhat
original in that it comprises an application of certain key structures from the
semantics, where Scott continuity holds [10], to the analysis of normal programs,
where Scott continuity does not hold, as also well-known [10]. Finally, in 3.4 and
in 3.5 we present our approach to the approximate computation of immediate
consequence operators TP and TP for normal first-order programs using the
ideas of many-valued stable model semantics. Indeed, in 3.4 and 3.5 we clarify
the intended meaning of the phrase “computation of normal logic programs”
appearing in the title of our paper. In fact, by this term we mean the approximate

computation (up to arbitrarily small error) of the set of minimal fixed points of
an immediate consequence operator for a normal logic program.

2 Preliminaries

2.1 Logic Programs

Let the variable A range over the atomic formulae, or atoms, in some fixed first-
order signature Σ. In this section, we specify classes of formulae called logic
programs, clauses, and bodies in two modes: normal and definite. We let P
range over logic programs, we let D range over clauses, and we let G range over
bodies of clauses (sometimes also called goals). When convenient, we will allow
the use of subscripts on any of these syntactic variables.

Definition 1. A normal logic program P is given by the following recursive
assignments:

P ::=D | (P1 ∧ P2) , (1)

D ::= A | (A← G) , (2)

G ::= A | (¬A) | (G1 ∧G2) . (3)

Note that P may contain free object variables. These free variables are all thought
of as universally quantified, and we omit the quantifiers, as is normally done.

All such normal programs P form the language Lnorm. (We will omit brackets
where possible.) Alternatively, P can be viewed as a finite set of clauses written
in the form A ← L1, . . . , Ln, where A is an atomic formula called the head
of the clause, and L1, . . . , Ln denotes a conjunction of literals Li (atoms or
negated atoms), for 1 ≤ i ≤ n, called the body of the clause. The case n ≥ 0
is allowed and interpreted to mean empty body, that is, the unit clause or fact
A. Note that in the present context the original Definition 1 is required, and
not its alternative version, because we employ different connectives other than
classical conjunction in clause bodies due to our many-valued treatments of logic
programs, cf. Definition 5.

Definition 2. A logic program P is called definite if it satisfies (1), (2), and
the following assignment:

G ::= A | (G1 ∧G2) . (4)

Thus, each literal Li in each clause is an atom. We denote the language consisting
of all definite logic programs by Ldef . (Recall that we work over a fixed first-order
signature Σ.)

Remark 1. As can be easily seen, Ldef may be obtained from Lnorm by remov-
ing all programs containing occurrences of ¬ in their clauses. This observation
applies to further definitions for normal programs: to obtain the definite version
we just drop ¬ from the language.

We let BP denote the Herbrand base of the program P , namely, the set of
all variable free, or ground, instances of atoms formed from the symbols in the
signature Σ, and we let ground(P) denote the set of all ground instances of
clauses of P . We allow interpretations for logic programs to be many-valued in a
specific sense, rather then just two-valued, and we make the following definition.

Definition 3. An algebra A of truth values is a triple (V ,V ′,O), where V is a
set of truth values, V ′ ⊂ V is a set of designated truth values, and O is a set of
operators such that, for all o ∈ O, o : On → O for some n ∈ IN, n ≥ 1.

Remark 2. In the present paper, we always assume that V is finite, and that
O = {∧,∨,¬}, where the operators ∧ and ∨ are associative, commutative,
idempotent, and distributive with respect to each other, and ¬ is a self-dual
operator, that is, ¬(¬v) = v for all v ∈ V . Additionally, we restrict the class
of possible operators to those which satisfy De Morgan’s law: (¬v1 ∧ ¬v2) =
¬(v1 ∨ v2). In other words, (V ,∧,∨,¬) is a complete distributive lattice with
self-dual pseudocomplements (cf. [6], Chapter II, §6), where the lattice ordering
is given by v1 ≤ v2 if and only if v1 ∨ v2 = v2. We use the same symbols
for denoting algebraic operators and logical connectives whenever no ambiguity
results.

Definition 4. By an (Herbrand) interpretation I for a normal logic program P
in an algebra A = (V ,V ′,O) we mean a mapping I : BP → V which assigns to
each ground atom A in BP a truth value in V. We denote by IP,A the set of all
interpretations I : BP → V. We extend an interpretation I to normal clauses
and to sets of normal clauses by means of the usual inductive definitions. Finally,
we call such an interpretation I an (Herbrand) model for P if, for all clauses
D in P , we have I(D) ∈ V ′.

Let us further note that IP,A forms a complete lattice whose ordering is given
by I1 ≤ I2 if and only if I1(A) ≤ I2(A) for all A ∈ BP .

In order to introduce the general immediate consequence operator TP , we
first specify a language of normal logic pseudo-programs Lnorm

ψ , and then define a
translation function from the language of programs into the language of pseudo-
programs.

Definition 5. A normal logic pseudo-program P is given by the following as-
signments:

P ::=D | (P1 ∧ P2) , (5)

D ::= (A← 0) | (A← C) , (6)

C ::= 1 | G | (C1 ∨ C2) , (7)

G ::= A | (¬A) | (G1 ∧G2) , (8)

where 1 and 0 are nullary connectives, and D in (6) ranges over the class of
so called normal pseudo-clauses. We allow P , D, and C in this definition to be
countably infinite.

Additionally, for any interpretation I, we require that I(1) ∈ V ′, and that I(0) =
¬I(1). The translation function ψ : Lnorm → Lnorm

ψ is defined as follows. Given
a (countable) conjunction of normal clauses P , first, put in ψ(P) all clauses in
P whose bodies are non-empty; second, for each unit clause A in P , put A← 1
in ψ(P), and, for each atom A which occurs in P but not in the head of any
clause in P , put A ← 0 in ψ(P). Finally, whenever there are several clauses
A ← C1, A ← C2, . . . in ψ(P), replace them in ψ(P) with the pseudo-clause
A← C1∨C2∨ Note that A← C1∨C2∨ . . . may be written as A←

∨
iCi.

Definition 6 (cf. [13]). Let P be a normal logic program and let A be a truth-
value algebra. We define TP,A : IP,A → IP,A as follows. For any I ∈ IP,A and
A ∈ BP , we set

TP,A(I)(A) = I (
∨
iCi),

where A←
∨
iCi is the unique pseudo-clause in ψ(ground(P)) whose head is A.

In fact, we will often use the classical two-valued immediate consequence
operator TP which can be viewed as a particular case of TP,A.

Definition 7 (cf. [10]). Let P be a normal logic program, and let B be the
Boolean algebra ({0, 1}, {1}, {∧,∨,¬}). We define TP : IP,B → IP,B as follows.
For any I ∈ IP,B and A ∈ BP , we set TP (I)(A) = 1 if and only if either there
is a clause A ← G in ground(P) such that I(G) = 1 or there is a unit clause
A←; otherwise TP (I)(A) = 0.

Definition 8. A level mapping for a normal logic program P is a function
λ : BP → IN. If λ(A) = k, for k ∈ IN, we say that the level of A is k.

We assume that, given P and n ∈ IN, we can effectively find the set of all A ∈ BP

such that λ(A) = k. Such a mapping always exists for any first-order language
L, and, for example, λ may be defined by taking λ(A) to be the number of pairs
of brackets used in forming A by means of the usual definitions of term and of
atomic formula in L.

2.2 Metrics

Below we introduce background material on metrics. This material is essential
for understanding Theorems 2, 3, 6, and 7. We place it here in order to provide
a basis for further notation. A metric on a set X is a mapping d : X ×X → IR
such that d(x, y) = 0 iff x = y, d(x, y) = d(y, x), and d(x, y) ≤ d(x, z) + d(z, y).
The pair (X, d) is called a metric space.

Definition 9 ([4, 13]). Consider a normal logic program P , an algebra A, and
a level mapping λ for P . We define the (ultra)metric δ : IP,A × IP,A → IR as
follows: given I, J ∈ IP,A, if I = J we set δ(I, J) = 0, and if I 6= J we set
δ(I, J) = 2−k, where k is such that I and J differ on some ground atom of level
k and agree on all atoms of level less than k relative to the level mapping λ.

A topological space X is a Hausdorff space if and only if whenever x and y
are distinct points of X, there are disjoint open sets U and V in X with x ∈ U
and y ∈ V . A space X is compact if and only if each open cover of X has a
finite subcover. The set IP,A can be viewed as the product space VBP , where V
has the discrete topology, and the product space is then a compact Hausdorff
space. This topology on IP,A is called the Cantor topology. The following fact is
known from the topological semantics of logic programming.

Proposition 1 ([13]). For any level mapping λ, the metric δ generates the
Cantor topology on IP,A, and (IP,A, δ) is a compact metric space homeomorphic
to the Cantor set in the closed unit interval in IR.

Definition 10 (cf. [13]). Let (X, d) be a metric space, where d is a bounded
metric, and let T1, T2 : X → X. We define ρ(T1, T2) = supx∈X d(T1(x), T2(x)).

2.3 Neural Networks

We give next a quite general definition of neural networks in the form in which
we use them, see also [7, 8, 2, 14] and the references there.

Definition 11. Let l,m ∈ IN with l,m ≥ 1. A conventional neural network C is
a system (N ,N in,N out, C, Φ,Θ,W) consisting of a set N = {n1, n2, . . . , nl} of
neurons (or nodes, commonly called vertices in graph theory); a set N in ⊆ N
of input neurons; a set N out ⊆ N of output neurons; a set C = {c1, c2, . . . , cm}
of connections (or edges, in graph theory); a set Φ = {φ1, φ2, . . . , φl} of signal
functions associated with the neurons, where φi : IR → IR for 1 ≤ i ≤ l; a
set Θ = {θ1, θ2, . . . , θl} of thresholds, where θi ∈ IR for 1 ≤ i ≤ l; and a set
W = {w1, w2, . . . , wm} of weights associated with the connections, where wi ∈ IR
for 1 ≤ i ≤ m. Each connection ci, for 1 ≤ i ≤ m, is associated with an ordered
pair 〈nj, nk〉 of neurons, for some 1 ≤ j, k ≤ l. The first of these is the source
nj = src(ci) of the connection, and the second is the target nk = trg(ci). For
1 ≤ i, j ≤ m, all ci, cj ∈ C satisfy src(ci) 6= src(cj) or trg(ci) 6= trg(cj) whenever
i 6= j.

Consider a discrete timescale consisting of equidistant moments of time t =
0, 1, 2, In the general case, for a neuron ni, the activation potential πi at
the time t is given by

πi(0) := 0, πi(t) :=

(∑
j∈Di

wi,jσj(t)

)
− θi + ιi(t) if t > 0, (9)

where Di is the set of indices of all those neurons nj which serve as sources for
the connections whose target is ni; wi,j is the weight of the connection from nj to
ni at time t; σj(t) is the output signal emitted by the neuron nj at the moment
of time t; and ιi(t) is an external input signal received by ni at the moment of
time t (we set ιi(t) = 0 if ni /∈ N in). The output signal σi of a neuron ni at time
t is computed by evaluating the corresponding signal function and taking the
previous time moment’s activation potential of that neuron as the argument,
thus

σi(0) := 0 , σi(t) := φi(πi(t− 1)) if t > 0. (10)

Let C = (N ,N in,N out, C, Φ,Θ,W) be a conventional NN with the property
that there is a partition N ′

1,N ′
2, . . . ,N ′

k of its set of neurons satisfying the prop-
erties N ′

1 = N in, and N ′
k = N out. We call C a k-layer feedforward NN if, for

1 ≤ i ≤ m, ci ∈ C is such that src(ci) ∈ N ′
j and trg(ci) ∈ N ′

j+1, for some j with
1 ≤ j ≤ k − 1. The following fact is well-known.

Theorem 1 ([9]). For each propositional normal logic program P , it is possible
to construct a 3-layer feedforward NN which computes TP .

The calculation of fixed points of immediate consequence operators for logic
programs is usually done by using 3-layer feedforward NNs with the same number
of neurons inN in and inN out, and by adding to the set of connections C, for each
1 ≤ j ≤ |N out| = |N in|, a connection cj with src(cj) = nout

j and trg(cj) = nin
j ,

where nout
j ∈ N out and nin

j ∈ N in. Such NNs are called 3-layer feedforward
recurrent NNs.

Remark 3. It is worth noting that there is an uncountable number of different
NNs C = (N ,N in,N out, C, Φ,Θ,W), for any fixed sets N ,N in,N out, C, Φ, and
Θ. By convention in neural network theory, in certain cases two NNs which are
identical to each other except in their sets of weights are treated as the same
NN if one of these sets of weights is obtained from the other by some number of
applications of a learning algorithm. Though we do not define the general notion
of learning and do not use it in this paper, we have a learning-like process in the
definition of a fibring NN, as follows.

Definition 12. Let C1 and C2 be two conventional neural networks. A function
γi : IN× IRm2+1 → IRm2 such that γi : (t, πi,1(t),W2) 7→ W+

2 , for t = 1, 2, ... , is
called a fibring function from C1 to C2, denoted by γi : C1 ./ C2, where m2 is the
number of connections in C2; πi,1(t) is the activation potential of the neuron ni
in C1 at time t; W2 is the set of weights for C2 at time t; and W+

2 is the new
set of weights for C2 at time t+ 1.

Thus, in this definition, we substitute the set of weightsW2 in C2 with a new set
W+

2 and still treat the resulting network to be C2 by the convention of Remark
3.

Definition 13. Let C1 and C2 be two conventional neural networks. We say
that C2 is fibred into C1 with the fibring function γi if γi is a fibring function
from C1 to C2. We call the system F = (C1,C2, γi) a fibring neural network
(or fNN). In the general case, we will call a fibring neural network a system
(C1,C2, γi1 , . . . ,C2k−1,C2k, γi2k−1

) where C1, . . . ,C2k are conventional neural net-
works, and γi2j−1

: C2j−1 ./ C2j for 1 ≤ j ≤ k.

Remark 4. Note that we adopt the following convention concerning the priority
in which fibring functions are to be evaluated in order to avoid ambiguity. If in
an fNN at some time t there is a connection whose weight w gets changed by
fibring functions γi1 , . . . , γik , for k ∈ IN, then: (1) first, amongst all the γij such
that γij(t, πij ,1(t), w) is constant, with value w+ say, for varying w, only that
fibring function with minimum value w+ is applied; (2) second, the γij such that
γi1 , . . . , γik is non-constant for varying w are applied in arbitrary order; (3) no
other fibring functions are applied.

3 Integration of fNNs into Fixed-Point Semantics

3.1 Computation by NNs of TP for Definite Programs

We begin describing our approach to the integration of fNNs into least-fixed-
point semantics by defining the basic case of the integration, namely, the case
of definite programs.

Definition 14 ([13]). Let C be a 3-layer feedforward NN with m units in the
input layer, and k units in the output layer. We consider the input-output map-
ping fC of C as a mapping fC : IP,A → IP,A as follows. Given I ∈ IP,A, we
present the vector (I(Ai1), . . . , I(Aim)) to the input layer at time t := t′. After
propagation through the network, at time t := t′ + 3 we determine fC(I) by tak-
ing the value of fC(I)(Aoj

) to be the value in the j-th unit in the output layer,
j = 1, . . . , k, and by taking all other values of fC(I)(Aoj

) to be a fixed value v
such that v = ¬v′, for some v′ ∈ V ′.

Definition 15 ([13]). Suppose that M is a fixed point of TP . We say that a
family C = {Ci | i ∈ I} of 3-layer feedforward recurrent NNs Ci computes M
if there exists I ∈ IP,A such that the following holds: given any ε > 0, there
is an index i ∈ I and a natural number mi such that for all m ≥ mi we have
δ(fmCi

(I),M) < ε where fmCi
(I) denotes the m-th iterate of fCi

applied to I.

Remark 5 ([13]). Suppose that C = {Ci | i ∈ I} computes M, as just defined.
Taking ε = 1

n
, for n = 1, 2, . . ., and applying the definition to each of these values

of ε in turn, we obtain a sequence of elements in of I and a sequence of natural
numbers min such that for all m ≥ min we have δ(fmCin

(I),M) < 1
n
. Write mn

for mCin
and, given any ε > 0, choose n0 so large that 1

n0
< ε. Then we see that

we have a sequence (Cn) of elements of C which satisfies the property that once
a level of approximation is reached, all subsequent approximations are at least
as good.

Theorem 2 ([13]). Let P be an arbitrary definite program, let I denote the least
fixed point of TP and suppose that we are given ε > 0. Then there exists a program
P = P (ε) which is a finite subset of ground(P) such that δ(I, I) < ε, where I
denotes the least fixed point of TP . Therefore, the family {Cn | n ∈ IN} computes
I, where Cn denotes the neural network obtained by applying the algorithm of
Theorem 1 to P (2−n), for n = 1, 2, 3, Furthermore, the sequence (Cn) has
the property stated in Remark 5.

3.2 Computation by NNs of TP,A for Definite Programs

Definition 16 ([13]). We say that a family C = {Ci | i ∈ I} of 3-layer feedfor-
ward recurrent NNs computes TP,A if, given any ε > 0, there is an index i ∈ I
such that ρ(fCi

,TP,A) < ε.

Using Definition 16, we can prove the following theorem by using the fact
that any interpretation I : BP → V , for a finite V , can be embedded into IR by
means of expansions of decimal type with base 2k− 1, where k is the number of
truth values in V , using only the k even numbers 0, 2, . . . , 2k−2 in the expansion.

Theorem 3 ([13]). There is a family C = {Ci | i ∈ I} of 3-layer feedforward
recurrent NNs which computes TP,A if and only if TP,A is continuous in the
Cantor topology on IP,A.

3.3 Stable Models

There are two distinctive features of a normal logic program P which makes
it hard to analyse the denotational meaning of such a program. These are the
discontinuity and non-monotonicity of the immediate consequence operator as-
sociated with the program. The consequences of these “bad” features are, re-
spectively, inaccessibility of the least fixed point of the associated immediate
consequence operator in ω steps, and even the absence of unique fixed points
of this operator in the general case. Despite these consequences, the underlying
operator might still have minimal fixed points. These minimal fixed points are
contained in the set of all stable models for P , as defined in [5]. We recall next
the definition of stable models, modifying it slightly to suit our notation.

Definition 17. Let P be a normal logic program. For a set M = {A1, A2, . . .}
⊆ BP of atoms, let PM be the set of clauses obtained from ground(P) by deleting,
for 1 ≤ i ≤ |M|, each clause A ← C that has ¬Ai in C, where Ai ∈ M, and
then deleting all negative literals in the bodies of the remaining clauses. If a

minimal Herbrand model for PM coincides with M, then we say that M is a
stable model for P . Such models can also be described as the fixed points of the
operator SP defined by the condition: for any set M⊆ BP , SP (M) = TPM.

Note that the program PM in Definition 17 is definite whether or not P is
definite. Now we give a many-valued (Kleene’s strong) version of Definition 17.

Definition 18. Let P be a normal logic program. For any interpretation I ∈
IP,A, let PI be the set of clauses obtained from ground(P) by deleting, for 1 ≤
i ≤ |I|, each clause A ← C that has ¬Ai in C with I(Ai) ∈ V ′, and then
deleting all negative literals in the bodies of the remaining clauses. If a minimal
Herbrand model for PI in the algebra A coincides with I, then we say that I is
a stable (many-valued) model for P with respect to A. Such models can also be
described as the fixed points of the operator SP,A defined by the condition: for
any interpretation I ∈ IP,A, SP,A(I) = TPI ,A.

Again, PI is always a definite program as in Definition 17. As a generalization
of Theorem 1 from [5], we have the following result.

Theorem 4. Any stable many-valued model for a normal program P in an al-
gebra A is a minimal Herbrand model for P in A.

Proof. Consider a stable many-valued model I. First, we must show that I is a
model for P in A. Let D be a clause from ground(P). If the body of D contains a
literal ¬A such that I(A) ∈ V ′, then I(D) ∈ V ′. If the body ofD does not contain
such a literal, consider the clause D1 obtained from D by deleting all negative
literals from its body. Since D1 is one of the clauses of PI , and I is the minimal
model for PI , it is clear that I(D1) ∈ V ′. At the same time, I(D1) ≤ I(D), and
thus I(D) ∈ V ′. To show that I is minimal, let I1 be a model for P such that
I1 ≤ I. We will show that I1 is also a model for PI . Consider any clause D1

from ground(PI). It is obtained from some clause D in ground(P) by deleting
all negative literals from its body, and, in every such literal ¬A, I(A) /∈ V ′.
To show that I1(D1) ∈ V ′, observe that (1) I1(D) ∈ V ′ (since I1 is a model
for P); (2) every negative literal ¬A in the body of D is such that I1(A) /∈ V ′
(since I(A) /∈ V ′ and I1 ≤ I); and (3) D1 is obtained from D by removing these
negative literals. Since I is the minimal model for PI , I1 = I. ut

We base our subsequent results on the following theorem about the relation-
ship between the set of all minimal fixed points of the immediate consequence
operator TP,A and the set of all stable models for P .

Theorem 5. Let P be a normal program. An interpretation I is a minimal fixed
point of TP,A if and only if I is a stable model for P in A and TP,A(I) = I.

Proof. (⇒) If I is a minimal fixed point of TP,A then, by the definition of a
minimal fixed point [10], TP,A(I) = I. Let I be a non-stable model for P . Then

the minimal Herbrand model for PI (as obtained by the algorithm described in
Definition 18) does not coincide with I, that is TPI ,A(I) 6= I. Since, by simple
lattice-theoretical arguments, TPI ,A ≤ TP,A, the inequality TPI ,A(I) 6= I entails
TP,A(I) 6= I. This contradiction shows that I is a stable model for P .
(⇐) Follows from Definition 18, Theorem 4, and the fact that any minimal fixed
point of TP,A is a minimal Herbrand model for P in A. ut

Corollary 1. Let P be a normal program. The set of minimal fixed points of
TP,A is contained in or is equal to the set of stable models for P in A.

The following two results are the obvious restrictions of, respectively, Theo-
rem 5 and Corollary 1 to the case of interpretations in the two-element Boolean
algebra B given in Definition 7.

Corollary 2. Let P be a normal program. An interpretation I is a minimal
fixed point of TP if and only if I is a stable model for P in B and TP (I) = I.

Corollary 3. Let P be a normal program. The set of minimal fixed points of
TP is contained in or is equal to the set of stable models for P in B.

3.4 Computation by fNNs of Minimal Fixed Points of TP for
Normal Programs

Speaking informally, the idea behind the approximate computation of minimal
fixed points of immediate consequence operators for a normal program P is the
following. Given the set M of stable models for P (either two-valued or many-
valued in our restricted sense), we want to know which of these stable models
are also minimal fixed points of an immediate consequence operator for P . For
this purpose, we construct |M| feedforward NNs computing the corresponding
ground definite programs PM , for each M ∈ M. To each such NN, we connect
the NN computing the corresponding ground instance of the original program
P . At time t′, we present input vectors, interpretations for M , to the subnetwork
calculating PM , for each M ∈ M. Once we have reached the fixed point of the
underlying function computed by the NN for PM (let us call this subnetwork
C1), we present (at the time t′ + 3l, for l = 1, 2, . . . , by means of a suitable
set of fibring functions which fibre input and output neurons of C1 into a set
of additional subnetworks having 4 layers and just 4 neurons for determining
the fixed point of fC1) the output vector of this NN to its associated NN (call
this subnetwork C2) computing the corresponding ground instance of the normal
program. The criterion for determining a fixed point of the function computed
by C1 is receipt of the input signal 1 by the neuron in the fourth layer in each
of the additional NNs. Then, at the time t′ + 3l + 4, we read out the output
vector of C2 and compare it with the input vector (given at the time t′ + 3l;
again, a similar construction with fibred subnetworks is used for determining

fixed points of fC2). If these vectors are equal, the fNN composed of C1, C2, and
the additional constructions, outputs the right answer, the output vector of C2,
otherwise the output of C2 is not the required answer. The stable model M is a
minimal fixed point of TP if and only if the corresponding fNN outputs positive
answer. Now let us now present a more detailed description of this process.

Let F be an fNN with m1 input units, and 2m2 output units, where m1,m2 ∈
IN, and m1 ≤ m2. We consider the input-output mapping fF of F as a mapping
fF : IP,A → IP,A as follows. Given I ∈ IP,A, we input the vector (I(Ai1), . . . ,
I(Aim1

)) to the input neurons at time t := t′. After propagation through the
network, at time t := t′ + 3l + 4, where l = 1, 2, . . . , we determine fF(I) by
taking the value of fF(I)(Aoj

) to be the output signal of the j-th output unit,
j = 1, . . . ,m2, and by taking the values of fF(I)(Ak), for Ak /∈ {Aoj

| 1 ≤ j ≤
m2}, to be equal to a fixed value v such that v = ¬v′, for some v′ ∈ V ′. For the
case when A is B, v is 0.

Definition 19. Suppose that M is the set of all minimal fixed points of TP .
We say that a family F = {Fi | i ∈ I} of fNNs Fi computes M if there exists
I ∈ IP,A such that the following holds for any M ∈M: given any ε > 0, there is
an index i ∈ I such that we have δ(fFi

(I),M) < ε.

Theorem 6. Let P be an arbitrary normal program, let M denote the set of
all minimal fixed points of TP , choose any M ∈ M and suppose that we are
given ε > 0. Then there exists a set of programs P = P(ε) which is a set of
finite subsets of ground(P) such that, for every P ∈ P and, for a minimal fixed
point M of TP , there is a minimal fixed point M of TP such that δ(M,M) < ε.
Therefore, there exists a family F = {Fn,k | n, k ∈ IN} of fNNs which computes
M.

Proof. The existence of a set P(ε) of programs is proved by applying Theorem 2
and Theorem 5 to every element of M and by taking into account the fact that
all the P are sets of definite clauses; thus each P has a unique least fixed point.
This allows one to calculate these least fixed points by means of Theorem 2. Let
M′ be a set of stable models for P . The family F is constructed as a family of
fNNs, where each n-th subfamily {Fn,k | 0 ≤ k ≤ |M′|} consists of |M′| pairwise
different fNNs Fn,k of the kind Fn,k =

(C1+2,Cg1 , γi1 ; . . . ; C1+2,Cgm , γi2m ; Cg1 ,Cgm1+1 , γi2m+1 ; . . . ; Cgm1
,Cg2m1+1 , γi2m+m1

) ,

for each M ′ ∈M′, where

1. C1 is a recurrent 3-layer feedforward NN computing PM ′ constructed accord-
ing to Theorem 1 with m1 neurons in the input layer, and with added output
neurons which represent atoms of P which are absent in PM ′ to the output
layer (these neurons are sending the constant value 0);

2. C2 is a non-recurrent 3-layer feedforward NN computing P withm2 neurons in
the input layer, and with an added fourth layer where the neurons perform
identity mapping on their activation potentials, that is, this added layer
simply retransmits output signals received from the third layer, and thus C2

does indeed consists of four layers;
3. C1+2 is a 7-layer NN composed by connecting output neurons of C1 to the

input neurons of C2 given that the connected pairs of neurons represent the
same ground atoms;

4. m = m1 +m2;
5. Cg1 , . . . ,Cgm are pairwise different additional 4-layer networks each with no

input neurons,m1 without output neurons,m2 with output neurons, and each
with a single neuron per layer: the first neuron outputs a constant signal
1 starting from the time t′, the other neurons retransmit their activation
potentials, and the weights are initially set to the value 1;

6. i1, . . . , im1 in the subscripts of the fibring functions are pairwise different
numbers of input nodes in C1; im1+1, . . . , i2m1 are pairwise different numbers
of output nodes in C1; i2m1+1, . . . , i2m1+m2 are pairwise different numbers
of input nodes in C2; i2m1+m2+1, . . . , i2m are pairwise different numbers of
output nodes in C2; additionally, if γi2j−1

: C1 ./ Ck, for 1 ≤ k ≤ m, then also
γi2j

: C1 ./ Ck, and if γi2j−1
: C2 ./ Ck, for 1 ≤ k ≤ m, then also γi2j

: C2 ./ Ck;
moreover, each of the above mentioned nodes in C1 and in C2 fibres exactly
one additional NN, and, for each additional NN Ck, if it is fibred by some
neuron representing an atom A, then no neuron representing an atom other
than A may fibre Ck;

7. i2m+1, . . . , i2m+m1 are numbers of neurons in the last layer of the correspond-
ing additional NNs Cg1 , . . . ,Cgm1

;
8. for 1 ≤ j ≤ m1, if Cgj

is fibred by a neuron in C1 representing an atom A,
then Cgm1+j

is fibred by a neuron in C2 representing the same atom A;
9. the fibring functions are as follows:

(a) let 1 ≤ j ≤ m, let t denote time, and let q > 0 be some fixed value, then
γi2j−1

: C1+2 ./ Cgj
is such that if W = {w1, w2, w3} is a set of weights of

Cgj
(which connect, respectively, the 1st layer to the 2nd, etc.) then γij

maps w1 to πij(t) + q, and does not change w2 and w3;
(b) next, let j, t, and q be as above, then γi2j

: C1+2 ./ Cgj
is such that if

W = {w1, w2, w3} is a set of weights of Cgj
, then γij does not change w1

and w2, and maps w3 to 1/(πij(t) + q);
(c) let 1 ≤ j ≤ m1, and let t denote time, then γi2m+j

: Cgj
./ Cgm1+j

is such
that if W = {w1, w2, w3} is a set of weights of Cgm1+j

, then γi2m+j
maps

w1 to w1 · (−1) if πi2m+j
(t) 6= 1; otherwise it does not change w1; and in

any case it does not change either w2 or w3.

Using the fNN Fn,k constructed according to the rules above, each time when
the least fixed point M has been calculated by the corresponding C1 at time

t′+3l, for l = 1, 2, . . . , the NN C2 is applied one more time to the output of C1.
If fC2(M) = M at time t′ + 3l + 4, that is, if each of the NNs Cgm1+1 , . . . ,Cgm

outputs 1 at time t′ + 3l + 4, then M is a minimal fixed point of TP , and, as
guaranteed by Theorem 2, δ(M,M) < ε, where M is a minimal fixed point
of TP . ut

3.5 Computation by fNNs of Minimal Fixed Points of TP for
Normal Programs

Definition 20. Given an arbitrary normal program P and a truth-value algebra
A as defined in Remark 2, we say that a family F = {Fi | i ∈ I} of fNNs
computes the set of all minimal fixed points M of TP,A if, for any M ∈M and
any ε > 0, there is an index i ∈ I such that ρ(fFi

,SP,A(M)) = ρ(fFi
,TPM ,A) < ε.

Theorem 7. For an arbitrary normal logic program P and a truth-value algebra
A satisfying the restrictions of Remark 2, there is a family F = {Fn,k | n, k ∈ IN}
of fNNs which computes the set of all minimal fixed points M of TP,A.

Proof (sketch). By analogy with Theorem 3, we again use the fact that any
interpretation I : BP → V , for a finite V , is embeddable into IR by means of
expansions of decimal type with base 2k − 1. Also, we use the fact that the
functions which are computed by Fi,j are all continuous (due to the construction
of P which contains definite pseudo-clauses only, cf. Theorem 6). Thus, the proof
essentially follows the proof of Theorem 3. ut

4 Conclusions and Further Work

We have presented an approach to the approximate computation of normal first-
order logic programs by means of fibring neural networks. Our approach is based
on the definite programs produced by means of the Gelfond–Lifschitz (stable
model) transformation [5], and the approximate computation of these definite
programs by means of conventional neural networks [13]. This is satisfactory in
that we can approximate not just a single step of an immediate consequence
operator, but the class of minimal fixed points of this operator for a given nor-
mal program, and this class can be taken to be the denotational meaning of the
program. One can see several ways of solving the problem of approximate com-
putation of first-order normal logic programs: (1) our fNN-based approximation
using the stable model transformation of normal programs into finite sets of
definite programs; (2) other possible fNN-based approximations using, say, the
well-founded model; (3) NN-based approximation using ideas similar to those
employing definite programs in [13] applied to wider classes of logic programs
(for a treatment of covered programs, see [2]). It would be of interest to compare
these approaches in the future.

References

1. Sebastian Bader, Arthur d’Avila Garcez, and Pascal Hitzler. Computing first-order logic programs
by fibring artificial neural networks. In Proceedings of the 18th International FLAIRS Conference,
Clearwater Beach, Florida, May 2005. To appear.

2. Sebastian Bader, Pascal Hitzler, and Andreas Witzel. Integrating first-order logic programs and
connectionist systems — a constructive approach. In Proceedings of IJCAI NeSy’05, Edinburgh,
August 2005.

3. Artur S. d’Avila Garcez and Dov M. Gabbay. Fibring neural networks. In Proceedings of 19th
National Conference on Artificial Intelligence (AAAI 04). AAAI Press, July 2004.

4. Melvin Fitting. Metric methods: Three examples and a theorem. The Journal of Logic Program-
ming, 21(3):113–127, 1994.

5. Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic programming. In
Robert A. Kowalski and Kenneth A. Bowen, editors, Logic Programming. Proceedings of the 5th
International Conference and Symposium on Logic Programming, pages 1070–1080. MIT Press,
1988.

6. George Grätzer. General lattice theory. Birkhauser-Verlag, Basel, 2nd edition, 1998.
7. Michael J. Healy and Thomas P. Caudell. Neural networks, knowledge, and cognition: a mathe-

matical semantic model based upon category theory. Technical Report EECE-TR-04-020, Depart-
ment of Electrical and Computer Engineering, School of Engineering, University of New Mexico,
2004.

8. Pascal Hitzler, Steffen Hölldobler, and Anthony K. Seda. Logic programs and connectionist
networks. Journal of Applied Logic, 2(3):245–272, 2004.

9. Steffen Hölldobler and Yvonne Kalinke. Towards a new massively parallel computational model
for logic programming. In Proceedings ECAI94 Workshop on Combining Symbolic and Connec-
tionist Processing, pages 68–77. ECCAI, 1994.

10. John W. Lloyd. Foundations of Logic Programming. Springer, Berlin, 1988.
11. Dale Miller. A logical analysis of modules in logic programming. Journal of Logic Programming,

1989.
12. Anthony K. Seda. Quasi-metrics and the semantics of logic programs. Fundamenta Informaticae,

29(1):97–117, 1997.
13. Anthony K. Seda. On the integration of connectionist and logic-based systems. In T. Hurley,

M. Mac an Airchinnigh, M. Schellekens, A. K. Seda, and G. Strong, editors, Proceedings of
MFCSIT2004, Trinity College Dublin, July, 2004, Electronic Notes in Theoretical Computer
Science. Elsevier, 2005. To appear.

14. Anthony K. Seda and Máire Lane. On approximation in the the integration of connectionist
and logic-based systems. In L. Li and K.K. Yen, editors, Proceedings of the third international
conference on information, pages 297–300, November 2004.

15. Stephen Willard. General Topology. Addison-Wesley, Reading, MA, 1970.

