
Denotational semantics,
normalisation,

and the simply-typed λµ-calculus

Vladimir Komendantsky

INRIA – Sophia Antipolis

22 June 2007

Table of contents

Contents

1 Basics of a denotational semantics

2 Example model for the λµ-calculus

3 Semantics of normalisation

Basics of a denotational semantics Example model for the λµ-calculus Semantics of normalisation

Contents

1 Basics of a denotational semantics

2 Example model for the λµ-calculus

3 Semantics of normalisation

Basics of a denotational semantics Example model for the λµ-calculus Semantics of normalisation

Denotational semantics for a lambda calculus

Lambda calculus is commonly known as a theory of
computable functions.

The relationship of this theory to actual functions, e.g.
functions between sets, is established by means of a suitable
denotational semantics.

Denotational semantics gives meaning to a language by
assigning mathematical objects as values to its terms.

The λµ-calculus is a lambda calculus with additional
constructs for representing the constructive content of
classical proofs and handling continuations.

We introduce a (strong) normalisation method for
simply-typed λµ-terms that is obtained by constructing an
inverse of the semantic evaluation functional. The method is
inspired by that of Berger & Schwichtenberg (1991).

Basics of a denotational semantics Example model for the λµ-calculus Semantics of normalisation

Typing rules of the λµ-calculus

Γ ` x : A | ∆
if x:A ∈ Γ

Γ ` cA : A | ∆

Γ ` M : BA | ∆ Γ ` N : A | ∆

Γ ` MN : B | ∆

Γ, x:A ` M : B | ∆

Γ ` λxA .M : BA | ∆

Γ ` M : A | ∆

Γ ` [α]M : ⊥ | ∆
if α:A ∈ ∆

Γ ` M : ⊥ | α:A ,∆

Γ ` µαA .M : A | ∆

Γ ` M : A | ∆

Γ′ ` M : A | ∆′
if Γ ⊆ Γ′, ∆ ⊆ ∆′

Basics of a denotational semantics Example model for the λµ-calculus Semantics of normalisation

Decision problem for the λµ-calculus
For any possibly open λµ-terms M and N of type A, decide
whether Γ ` M = N : A | ∆, where = denotes the equality of
λµ-terms in context.
With each λµ-term M we associate its abstract normal form nf(M),
for which there exists a reverse function fn from normal forms to
terms such that

(NF1, completeness) Γ ` fn(nf(M)) = M : A | ∆
(NF2, soundness) Γ ` M = N : A | ∆ implies nfΓ,∆(M) ≡ nfΓ,∆(N)

Note
nf is allowed not to be injective and hence there is no inverse function nf−1 in general.

Why this gives a semantics of normalisation
The conditions (NF1) and (NF2) imply the soundness and
completeness property:

Γ ` M = N : A | ∆ iff nfΓ,∆(M) ≡ nfΓ,∆(N)

Basics of a denotational semantics Example model for the λµ-calculus Semantics of normalisation

Connections to the continuation semantics
(Strachey & Wadsworth 1974)
Continuation semantics is a method to formalise the notion of a
control flow in programming languages. Any term is evaluated in a
context which represents the “rest of computation”. Such context is
called continuation.

(Lafont, Streicher & Reus 1993; Hofmann & Streicher 1998;
Selinger 1999)
By the call-by-name continuation passing style translation, a
judgement of the λµ-calculus

x1:B1, . . . , xn:Bn ` M : A | α1:A1, . . . , αm:Am (1)

is translated to the judgement of the λR×-calculus

x1:CB1 , . . . , xn:CBn , α1:KA1 , . . . , αm:KAm ` M : CA (2)

Basics of a denotational semantics Example model for the λµ-calculus Semantics of normalisation

Call-by-name continuation passing style translation

The taget calculus of the CPS translation has a pair of types

KA – the type of continuations of type A
CA – the type of computations of type A

for each type A of the λµ-calculus, defined as follows:

Kσ = σ where σ is a type constant

KBA = CA × KB

K⊥ = 1

CA = RKA

The CPS translation is defined by means of inductive rules.

Basics of a denotational semantics Example model for the λµ-calculus Semantics of normalisation

Contents

1 Basics of a denotational semantics

2 Example model for the λµ-calculus

3 Semantics of normalisation

Basics of a denotational semantics Example model for the λµ-calculus Semantics of normalisation

Complete partial orders

A subset P of a partial order is directed if every finite subset of P
has an upper bound in P.
A complete partial order (cpo) is a partial order having least upper
bounds (lubs) of all directed subsets but not necessarily a least
element.
A function between two cpos is Scott-continuous if it preserves
lubs of directed sets.
A pointed cpo (also, domain) is a cpo that has also a least element
called the bottom element.
By BA we mean the space of Scott-continuous functions from A to
B.

Basics of a denotational semantics Example model for the λµ-calculus Semantics of normalisation

Negated domains

A negated domain is an object of the form RA , where A is a cpo
and R is some chosen domain (= pointed cpo) of “responses”.
The domain R � R1 is the meaning of the proposition ⊥ (false).
The denotation of a λ-term is an object of a domain RA mapping
elements of A (continuations) to elements of R
(responses/answers).

Remark
In order to guarantee for negated domains parametrised by R to
have a least-fixed-point operator, one should assume that R has a
least element.

Basics of a denotational semantics Example model for the λµ-calculus Semantics of normalisation

Continuation semantics in the setting of negated domains

Due to isomorphism (RB)RA
� RRA×B , the cpo of continuations for

the exponential (RB)RA
is RA × B, which means that a

continuation for a function f from RA to RB is a pair 〈d, k 〉, where
d ∈ RA is an argument for f and k ∈ B is a continuation for f(d).
Negation is defined as ¬RA := RA ⇒ R1. We have
¬RA � RRA×1 � RRA

.
There is a canonical map from RRRA

to RA which provides an
interpretation of the classical law ¬¬P ⇒ P (reductio ad
absurdum). This interpretation can be assigned as meaning to the
control operator C of λC-calculus (Felleisen 1986; Griffin 1990).

Basics of a denotational semantics Example model for the λµ-calculus Semantics of normalisation

Interpretation of λµ-calculus lexical constructs

Naming [α]M is interpreted as application of the meaning of M
(that is an element of a domain RA) to the continuation bound
to α (that is an element of a cpo A) thus resulting in an
element of R.

µ-abstraction µα.M is interpreted as functional abstraction
over the continuation variable α at the level of continuation
semantics.

Basics of a denotational semantics Example model for the λµ-calculus Semantics of normalisation

Contents

1 Basics of a denotational semantics

2 Example model for the λµ-calculus

3 Semantics of normalisation

Basics of a denotational semantics Example model for the λµ-calculus Semantics of normalisation

Long βη-normal form

The set of λ-terms in long βη-normal form is inductively defined by

(xM1 . . .Mn) : σ λx.M

where σ is a base type.

The idea of our method is to compute the long βη-n.f. by evaluating
a λµ-term in an appropriate continuation model.

Basics of a denotational semantics Example model for the λµ-calculus Semantics of normalisation

Sets equipped with partial equivalence relations

A per-set A is a pair A = (|A |,∼A), where |A | is a set and ∼A is a
partial equivalence relation (per), that is a symmetric and transitive
relation, on |A |.
A per-function between per-sets A = (|A |,∼A) and B = (|B |,∼B) is
a function f : |A | → |B | such that a ∼A a′ implies f(a) ∼B f(a′), for
all a, a′ ∈ |A |.

Basics of a denotational semantics Example model for the λµ-calculus Semantics of normalisation

Obtaining the semantics of normalisation
1 Consider a simple denotational semantics for λµ-calculus with

a given signature (base types and constants) and a fixed
response object R.

2 Annotate interpretations of contexts and terms by sequences
of object/control variables.

3 Relate interpretations of βη-convertible terms by a per.
4 Construct an annotated canonical model (and hence find the

canonical interpretation of the λµ-calculus in that model).
5 Consider two naturally isomorphic interpretations: the

presheaf interpretation of the canonical model by the Yoneda
embedding, and the interpretation freely extending the
interpretation of objects of the canonical model by the Yoneda
embedding.

6 The normalisation function can then be obtained by “dipping”
the free presheaf interpretation of a λµ-term into the natural
isomorphism above.

Basics of a denotational semantics Example model for the λµ-calculus Semantics of normalisation

Soundness and completeness of the normalisation
function

Theorem (Completeness, NF1)
There is a function fn from abstract normal forms to terms such
that, for a well-typed λµ-judgement Γ ` M : C | ∆,

Γ ` fn(nf(~Γ ` M : C | ∆�0)) = M : C | ∆

is a valid equation of the λµ-calculus.

Theorem (Soundness, NF2)
For a valid equation Γ ` M = N : C | ∆ of the λµ-calculus, it holds
that

nf(~Γ ` M : C | ∆�0) ≡ nf(~Γ ` N : C | ∆�0) .

CPS translation

Contents

4 CPS translation

CPS translation

Inductive rules for the call-by-name continuation passing
style translation

x = λk KA .xk where x : A

cA = λk KA .ck

MN = λk KB .M〈N, k 〉 where M : BA , N : A

λxA .M = λ〈x, k 〉KBA .Mk where M : B

[α]M = λk K⊥ .Mα where M : A

µαA .M = λαKA .M ∗ where M : ⊥

	Table of contents
	Main talk
	Basics of a denotational semantics
	Example model for the -calculus
	Semantics of normalisation

	Appendix
	CPS translation

