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ﬂ Basics of a denotational semantics



Basics of a denotational semantics

Denotational semantics for a lambda calculus

@ Lambda calculus is commonly known as a theory of
computable functions.

@ The relationship of this theory to actual functions, e.g.
functions between sets, is established by means of a suitable
denotational semantics.

@ Denotational semantics gives meaning to a language by
assigning mathematical objects as values to its terms.

@ The Au-calculus is a lambda calculus with additional
constructs for representing the constructive content of
classical proofs and handling continuations.

@ We introduce a (strong) normalisation method for
simply-typed Au-terms that is obtained by constructing an
inverse of the semantic evaluation functional. The method is
inspired by that of Berger & Schwichtenberg (1991).
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Example model for the Au-calculus

Semantics of normalisation

Typing rules of the Au-calculus
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Basics of a denotational semantics

Decision problem for the Au-calculus
For any possibly open Au-terms M and N of type A, decide
whetherT + M= N : A | A, where = denotes the equality of
Au-terms in context.
With each Au-term M we associate its abstract normal form nf(M),
for which there exists a reverse function fn from normal forms to
terms such that
(NF1, completeness) I' + fn(nf(M)) = M: A | A
(NF2, soundness) T+M=N:A|A implies nfr ao(M) = nfr a(N)

Note

nf is allowed not to be injective and hence there is no inverse function nf~" in general.

Why this gives a semantics of normalisation

The conditions (NF1) and (NF2) imply the soundness and
completeness property:

FTEM=N:A|A iff nfra(M)=nfra(N)
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Connections to the continuation semantics

(Strachey & Wadsworth 1974)

Continuation semantics is a method to formalise the notion of a
control flow in programming languages. Any term is evaluated in a
context which represents the “rest of computation”. Such context is
called continuation.

(Lafont, Streicher & Reus 1993; Hofmann & Streicher 1998;
Selinger 1999)

By the call-by-name continuation passing style translation, a
judgement of the Au-calculus

X1:B1,....xn:Bh - M Al aqi:As,...,am:An (1)
is translated to the judgement of the A7*-calculus

X1 ZCB1, ce ,XnZCBn,a’1 IKA1 ye s ,CL’mIKAm F M : CA (2)
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Call-by-name continuation passing style translation

The taget calculus of the CPS translation has a pair of types

Ka —the type of continuations of type A
Ca — the type of computations of type A

for each type A of the Au-calculus, defined as follows:

Ky = o where o is a type constant
KBA = CA X KB

K =1

Ca = RM

The CPS translation is defined by means of inductive rules.
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Example model for the Au-calculus

Complete partial orders

A subset P of a partial order is directed if every finite subset of P
has an upper bound in P.

A complete partial order (cpo) is a partial order having least upper
bounds (lubs) of all directed subsets but not necessarily a least
element.

A function between two cpos is Scott-continuous if it preserves
lubs of directed sets.

A pointed cpo (also, domain) is a cpo that has also a least element
called the bottom element.

By B* we mean the space of Scott-continuous functions from A to
B.
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Negated domains

A negated domain is an object of the form R*, where A is a cpo
and R is some chosen domain (= pointed cpo) of “responses”.
The domain R = R’ is the meaning of the proposition L (false).
The denotation of a A-term is an object of a domain R mapping
elements of A (continuations) to elements of R
(responses/answers).

Remark

In order to guarantee for negated domains parametrised by R to
have a least-fixed-point operator, one should assume that R has a
least element.




Example model for the Au-calculus

Continuation semantics in the setting of negated domains

Due to isomorphism (RB)R* = RA**B_ the cpo of continuations for
the exponential (RB)R" is R* x B, which means that a
continuation for a function f from R” to RE is a pair (d, k), where
d € RA is an argument for f and k € B is a continuation for f(d).
Negation is defined as -R” := R* = R'. We have

—|RA ~ RRA><1 ~ RFi’A_

There is a canonical map from RRHA to R” which provides an
interpretation of the classical law -—P = P (reductio ad
absurdum). This interpretation can be assigned as meaning to the
control operator C of AC-calculus (Felleisen 1986; Griffin 1990).
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Interpretation of Au-calculus lexical constructs

@ Naming [@]|M is interpreted as application of the meaning of M
(that is an element of a domain R*) to the continuation bound
to « (that is an element of a cpo A) thus resulting in an
element of R.

@ u-abstraction ua.M is interpreted as functional abstraction
over the continuation variable « at the level of continuation
semantics.
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Semantics of normalisation

Long n-normal form

The set of A-terms in long Br-normal form is inductively defined by
(xMy...Myp) : o AxX.M
where o is a base type.

The idea of our method is to compute the long Sn-n.f. by evaluating
a Au-term in an appropriate continuation model.
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Sets equipped with partial equivalence relations

A per-set A is a pair A = (|A|,~a), where |A|is a setand ~4 is a
partial equivalence relation (per), that is a symmetric and transitive
relation, on |A|.

A per-function between per-sets A = (|A],~a) and B = (|B|, ~g) is
a function f : |A| — |B| such that a ~4 a’ implies f(a) ~g f(a’), for
all a,a’ € |A|.



Semantics of normalisation

Obtaining the semantics of normalisation

@ Consider a simple denotational semantics for Au-calculus with
a given signature (base types and constants) and a fixed
response object R.

© Annotate interpretations of contexts and terms by sequences
of object/control variables.

© Relate interpretations of Bn-convertible terms by a per.

© Construct an annotated canonical model (and hence find the
canonical interpretation of the Au-calculus in that model).

@ Consider two naturally isomorphic interpretations: the
presheaf interpretation of the canonical model by the Yoneda
embedding, and the interpretation freely extending the
interpretation of objects of the canonical model by the Yoneda
embedding.

©@ The normalisation function can then be obtained by “dipping”
the free presheaf interpretation of a Au-term into the natural
isomorphism above.
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Soundness and completeness of the normalisation
function

Theorem (Completeness, NF1)

There is a function fn from abstract normal forms to terms such
that, for a well-typed Au-judgementT + M : C | A,

M- fa(nf([F-M:C|AI°)=M:C|A

is a valid equation of the Au-calculus.

Theorem (Soundness, NF2)

For a valid equationT + M= N : C | A of the Au-calculus, it holds
that

nf ([T +M:C|AT®) =nf([F+N:C|A]°.
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CPS translation

Inductive rules for the call-by-name continuation passing
style translation

= kKA xk where x: A

X

A = akKrck

MN = akKe M(N,k) where M:B", N:A
AXAM = Ax, k)KsA Mk where M : B

[@]M = Ak Ma where M: A

pw* M = 2 M+ where M: L
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