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Interval arithmetic

Tool used to handle inaccuracies in computations.

−π ∗
√

2 ≈ −3.14 ∗ 1.41 = −4.4274

[−3.15,−3.14] ∗ [1.41, 1.42] = [−4.473,−4.4274]

If we know the bounds on the input data we can compute the
bounds on the result.
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Interval arithmetic, more formally

Definition
interval := closed, bounded, connected, nonempty subset of R

x := [x , x ] = {x̃ ∈ R | x ≤ x̃ ≤ x}, where x , x ∈ R, x ≤ x

Notation IR – set of intervals

Classification

thin interval x = x
thick interval x < x

Associated quantities

midpoint xc := x+x
2 radius ∆x := x−x

2

x = [xc −∆x , xc + ∆x ]
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Basic interval operations

x + z := �{x̃ + z̃ | x̃ ∈ x , z̃ ∈ z}

= {x̃ + z̃ | x̃ ∈ x , z̃ ∈ z} =

= [x + z, x + z]

−x := �{−x̃ | x̃ ∈ x} = {−x̃ | x̃ ∈ x} = [−x ,−x ]

xz := �{x̃ z̃ | x̃ ∈ x , z̃ ∈ z} = {x̃ z̃ | x̃ ∈ x , z̃ ∈ z} =

= [min(xz, xz, xz, xz), max(xz, xz, xz, xz)]
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Issues

Principle:
Correctness is more important than accuracy.

π − π = 0

[3.14, 3.15]− [3.14, 3.15] = [−0.01, 0.01]

Techniques to increase accuracy (avoid decorrelation)

e.g., bisection
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Rounded interval arithmetic

Usage
in theory: [x , x ] with x , x ∈ R
in practice: [x , x ] with x , x ∈ M,
where M is a machine representable subset of R

Outward rounding
♦x := [∇x ,∆x ]

x ⊆ ♦x

x +♦ z = ♦(x + z)

Example

[−3.15,−3.14] ∗ [1.41, 1.42] = [−4.473,−4.4274]

M : decimal numbers with 2 digits

[−3.15,−3.14] ∗♦ [1.41, 1.42] = [−4.48,−4.42]
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Issues with rounded arithmetic

Ideal arithmetic

x + z = {x̃ + z̃ | x̃ ∈ x , z̃ ∈ z} = [x + z, x + z]

Rounded arithmetic

x +♦ z = ♦[x + z, x + z]

{x̃ + z̃ | x̃ ∈ x , z̃ ∈ z} ⊆ x +♦ z
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Interval arithmetic in proof assistants

Nature of interval methods

interval arithmetic was born to safely deal with errors

Usage

interval arithmetic appears in critical software
certified computation

Formalizations

COQ, PVS, Isabelle
focus on computation efficiency and automation of
techniques
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Computation driven formalizations

basic operations
elementary functions
techniques to increase accuracy
rounded interval arithmetic
automated procedures to compute and prove bounds for
expressions
computations by external tools
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Formalizing more “theoretical” results

solving systems of linear equations with interval
coefficients

Exercise
Consider the following system:{

[1, 2]x1 + [2, 4]x2 = [−1, 1]

[2, 4]x1 + [1, 2]x2 = [1, 2]

Find a box that contains all pairs (x1, x2) ∈ R2 that satisfy the
equations for some choice of coefficients in their respective
intervals.

correctness of methods for solving these systems is based
on more involved theoretical results
application: robot movement
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Solving systems of linear interval equations

Two steps:

1 checking regularity of the associated interval matrix

2 computing bounds of the solution set

exact solution bounds for the solution set
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Interval matrices

Definition
A = [Aij ]m×n, Aij ∈ IR.

Characterization

A = {Ã ∈ M(R)m×n | Ãij ∈ Aij , i = 1, . . . , m, j = 1, . . . , n}.

Associated real matrices

A := [Aij ] A := [Aij ]

Ac := [(Aij)c] ∆A := [∆Aij ]
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Operations on interval matrices

Addition

A + B := �{Ã + B̃ | Ã ∈ A, B̃ ∈ B}

= {Ã + B̃ | Ã ∈ A, B̃ ∈ B}

(A + B)ij = Aij + Bij

Multiplication

AB = �{ÃB̃ | Ã ∈ A, B̃ ∈ B} 6= {ÃB̃ | Ã ∈ A, B̃ ∈ B}

(AB)ij =
∑

k

AikBkj

Special case: multiplication by a scalar vector

Ax̃ = {Ãx̃ | Ã ∈ A}
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Regularity of interval matrices

An interval matrix A is called regular iff ∀Ã ∈ A, det Ã 6= 0

and it is called singular otherwise (∃Ã, Ã ∈ A ∧ det Ã = 0).

! Notice the classical nature of the concepts we manipulate.
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Systems of linear interval equations

A system of linear interval equations with coefficient matrix
A ∈ M(IR)m×n and right-hand side b ∈ IRm is defined as the
family of linear systems of equations

Ãx̃ = b̃ with Ã ∈ A, b̃ ∈ b

The solutions set of such a system is given by:

Σ(A, b) := {x̃ ∈ Rn | ∃Ã ∈ A,∃b̃ ∈ b such that Ãx̃ = b̃}
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Proof example

Theorem
Σ(A, b) = {x̃ ∈ Rn | Ax̃ ∩ b 6= ∅}

Proof excerpt.

We show: {x̃ ∈ Rn | Ax̃ ∩ b 6= ∅} ⊆ Σ(A, b).

Consider x̃ such that Ax̃ ∩ b 6= ∅.

Then Ax̃ ∩ b contains some b̃ ∈ Rm.

Clearly b̃ ∈ b.

Also, b̃ ∈ Ax̃ and by relation (1), b̃ = Ãx̃ for some Ã ∈ A.

Therefore x̃ ∈ Σ(A, b).

Ax̃ = {Ãx̃ | Ã ∈ A} (1)
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Setting up the formalization

We need to talk about

real numbers
matrices

We use

COQ standard library Reals
SSREFLECT library matrix

Mix SSREFLECT and standard COQ !
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Mix SSREFLECT and COQ

in SSREFLECT

types with decidable equality and a choice operator

hierarchy of algebraic structures

abstract matrices, but operations when elements are from a ring

in COQ’s Reals library

axiom of trichotomy ⇒ decidable equality

Axiom t o ta l_o rde r_T : ∀ r1 r2 : R, { r1 < r2 } + { r1 = r2 } + { r1 > r2 } .

choice operator by choice and extensionality axioms (for now)

ring structure
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Yet another formalization of intervals

Definition

x := [x , x ] = {x̃ ∈ R | x ≤ x̃ ≤ x}, where x , x ∈ R, x ≤ x

Structure IR : Type := ClosedIn t
{ i n f : R ; sup : R ; leq_proo f : i n f ≤b sup } .

Intervals as sets
coerce IR to R → bool

Equality of intervals
Lemma eq_ in te rva lP :
∀ x z : IR , x = z ↔ i n f x = i n f z ∧ sup x = sup z .
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leq_proof: inf ≤b sup

Lemma Rle_dec : ∀ r1 r2 , { r1 <= r2 } + {~ r1 <= r2 } .

Def in i t ion Rleb r1 r2 :=
match ( Rle_dec r1 r2 ) with

| l e f t _ ⇒ t r ue
| r i g h t _ ⇒ f a l s e

end .

inf ≤b sup  Rleb inf sup  is_true (Rleb inf sup)  

 Rleb inf sup = true

Boolean equality is decidable and therefore proof irrelevant.
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Interval properties

{x̃ + z̃ | x̃ ∈ x , z̃ ∈ z} = [x + z, x + z]

Interval addition
associative
commutative
has [0, 0] as neutral element

⇒ intervals with addition form a monoid

good news for work with big operators!

24 / 31
24
/
31



Interval matrices

use SSREFLECT library
vectors are column matrices
redefine operations on matrices as intervals do not have a
ring structure
Def in i t ion mmul_i (A : ’M[ IR ] _ (m, n ) ) ( x : ’M[ IR ] _ ( n , 1 ) ) :=

\ c o l _ i \ b ig [ add_i / 0 ] _ j mul_i (A i j ) ( x j ) .

prove specific properties

Ax̃ = {Ãx̃ | Ã ∈ A}

associated real matrices
Def in i t ion minf (A : ’M[R] _ (m, n ) ) := \ mat r ix_ ( i , j ) i n f (A i j ) .
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Results on real matrices

norm for real matrices
properties for symmetric and positive definite matrices
eigenvalues for real matrices

Rayleigh quotients

spectral radius

Perron Frobenius theorem
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The issues

eigenvalues for real matrices:

roots of the characteristic polynomial
they can be complex

Rayleigh quotient: xT Ax
xT x , x 6= 0, A− symmetric

∀x ∈ Rn, x 6= 0, λmin(A) ≤ xT Ax
xT x

≤ λmax(A)

spectral radius: ρ(A) = max{|λ(A)|}

Theorem (Perron Frobenius)

If A ∈ Rn×n is nonnegative then the spectral radius ρ(A) is an
eigenvalue of A, and there is a real, nonnegative vector x 6= 0
with Ax = ρ(A)x .
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Formalized criteria of regularity

Criterion

A is regular if and only if ∀x̃ ∈ Rn, 0 ∈ Ax̃ ⇒ x̃ = 0.

Criterion

A is regular if and only if ∀x̃ ∈ Rn, |Ac x̃ | ≤ ∆A|x̃ | ⇒ x̃ = 0.

Criterion (using positive definiteness)

If the matrix (AT
c Ac − ‖∆T

A∆A‖I) is positive definite for some
consistent matrix norm ‖ · ‖, then A is regular.

Criterion (using the midpoint inverse)

If the following inequality holds ρ(|I − RAc |+ |R|∆A) < 1 for an
arbitrary matrix R, then A is regular.

Criterion (using eigenvalues)

If the inequality λmax(∆T
A∆A) < λmin(AT

c Ac) holds, then A is regular.
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How far from the real world

adapt results for rounded rounded arithmetic
treat methods for bounding the solution set
finish proving the admitted results
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