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Interval

Tool used to handle inaccuracies in computations.
—rx V2 —3.14%1.41 = —4.4274

[-3.15, —3.14] * [1.41,1.42] = [~4.473, —4.4274]

If we know the bounds on the input data we can compute the
bounds on the result.
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Interval arithmetic, more formaly

Definition
interval := closed, bounded, connected, nonempty subset of R
x =[x, X]={XeR|x<Xx<X}, wherex,XxeR,x<X
Notation IR — set of intervals
Classification
@ thininterval x =X
@ thick interval x < x
Associated quantities

midpoint  xg := X% radius Ay = 5%

I><

X = [Xc — DAx, Xec + Ax]
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Basic i

Xx+z=0O{k+2z|Xxex,zcz}
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Basic i

x+z=0{x+z|xex,zez}={x+z|Xxex,zez} =

=[x+2zXx+7Z]
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 Basic interval operations

x+z=0{x+z|xex,zez}={x+z|Xxex,zez} =

=[x+2zXx+2]
—x =0{-X|Xxex}={-X|Xxex}=[-X,—X]

xz:=0{xz | Xxex,zez}={xz|Xxex,zez} =

= [min(xz, xZ, Xz, xZ), max(xz, XZ,xz, XZ)|
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Issues

Principle:
Correctness is more important than accuracy.

T—7m=0

[3.14,3.15] — [3.14,3.15] = [-0.01,0.01]

Techniques to increase accuracy (avoid decorrelation)

@ e.g., bisection
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- Rounded interval arithmetic:

Usage
@ intheory: [x,x] withx, X eR
@ inpractice: [x,Xx] with x,x € M,
where M is a machine representable subset of R

Outward rounding
Ox = [Vx, AX]
X COx

x+%z=0(x+2)
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Rounded interval arithmetic

Usage
@ intheory: [x,x] withx, X eR
@ inpractice: [x,Xx] with x,x € M,
where M is a machine representable subset of R

Outward rounding
Ox = [Vx, AX]

X COx
x+%z=0(x+2)
Example
[—3.15, —3.14] % [1.41,1.42] = [-4.473, —4.4274]
M : decimal numbers with 2 digits

[-3.15,—3.14] «° [1.41,1.42] = [-4.48, —4.42]
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Issues

Ideal arithmetic
x+z={kx+z|Xxex,zez}=[x+2X+7Z
Rounded arithmetic

x+%z2=0[x+2%x+7]

{(x+z|xexzecz}Cx+°z
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Interva
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Interval arithmetic in proof asSiSteiS

Nature of interval methods

@ interval arithmetic was born to safely deal with errors
Usage

@ interval arithmetic appears in critical software

@ certified computation
Formalizations

@ Coq, PVS, Isabelle

@ focus on computation efficiency and automation of
techniques
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Computation driven formalizations

@ basic operations

@ elementary functions

@ techniques to increase accuracy
@ rounded interval arithmetic

°

automated procedures to compute and prove bounds for
expressions

computations by external tools
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Formalizing more “theoretical” feSUltS

@ solving systems of linear equations with interval
coefficients

Exercise
Consider the following system:

[172])(1 + [2’4]X2 = [_171]
[2,4]x1 + [1,2]x2 =[1,2]

Find a box that contains all pairs (x4, X) € R? that satisfy the
equations for some choice of coefficients in their respective
intervals.

v

@ correctness of methods for solving these systems is based
on more involved theoretical results

@ application: robot movement
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Solving systems of linear interval eqUalioNS

Two steps:

@ checking regularity of the associated interval matrix

© computing bounds of the solution set

exact solution bounds for the solution set

X, 1 4
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Two steps:

@ checking regularity of the associated interval matrix

@ computing bounds of the solution set

exact solution bounds for the solution set

X, 1 4
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Interval

Definition

Characterization

A={Ac MR)mxn | Aj € Aji=1,...,mj=1,...n}

Associated real matrices
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Addition

A+B:=0{A+B|AcABcB}
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Addition

A+B:=0{A+B|AcABecB ={A+B|AcABcB}

(A+B);j:A/j+B/j
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Operations on interval matrices

Addition

A+B:=0{A+B|AcABecB ={A+B|AcABcB}

(A—i—B),’j:A,‘j—i-B,'j

Multiplication
AB=0{AB|AcABecB} #{AB|Ac ABecB}
(AB)j = AiBy
K
Special case: multiplication by a scalar vector

Ax = {Ax|Ac A}
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 Regularity of interval matrices

An interval matrix A is called regular iff VA € A, det A # 0

and it is called singular otherwise (3A, A € A detA = 0).

I Notice the classical nature of the concepts we manipulate.

14/31



Systems of linear interval equations

A system of linear interval equations with coefficient matrix
A € M(IR)mxn and right-hand side b € TR is defined as the
family of linear systems of equations

Ak =bwithAc Abeb
The solutions set of such a system is given by:

Y (A,b) := {X € R"| 3A € A,3b € b such that Ax = b}
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Y(A b)={XeR"| AxN b # 0} I

Proof excerpt.
We show: {x e R" | Axnb # 0} C X(A,Db).

Consider X such that Ax N b # (.

Then AX N b contains some b € R™,
Clearly b € b.

Also, b € Ak and by relation (1), b = Ax for some A € A.

Therefore X € L (A, b). O

Ax = {Ax |Ac A} (1)
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Setting

We need to talk about We use
@ real numbers @ Coaq standard library Reals
@ matrices @ SSREFLECT library matrix

Mix SSREFLECT and standard CoQ !
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Mix SSREFLECT and Coa

in SSREFLECT

@ types with decidable equality and a choice operator
@ hierarchy of algebraic structures

@ abstract matrices, but operations when elements are from a ring

in CoQ’s Reals library

@ axiom of trichotomy =- decidable equality

total_order_T: V r1 r2: R, {r1 < r2} + {r1 =r2} + {r1 > r2}.

@ choice operator by choice and extensionality axioms (for now)

@ ring structure
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 Yet another formalization of iGN

Definition

x =[x, X]={XxeR|x<Xx<X}, wherex,XxeR,x <X

IR: := ClosedInt
{ inf: R ; sup: R ; leq_proof: inf <, sup }.

Intervals as sets
@ coerce IR to R — bool

Equality of intervals

eq_intervalP
Vxz:IR, x=2z« inf x=infz A sup x = sup z.
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Rle_dec: V r1 r2, {r1 <= r2} + {~ r1 <= r2}.

Rleb r1 r2 :=
(Rle_dec r1 r2)
|left _ = true
|right _ = false

inf <p sup ~~ Rleb infsup ~ is_true (Rleb inf sup) ~~
~ Rleb inf sup = true

Boolean equality is decidable and therefore proof irrelevant.
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Interval

{X+z|Xxex,zez}=[x+2,X+7Z]

Interval addition
@ associative
@ commutative
@ has [0, 0] as neutral element

= intervals with addition form a monoid

good news for work with big operators!
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Interval

@ use SSREFLECT library
@ vectors are column matrices

@ redefine operations on matrices as intervals do not have a
ring structure

mmul_i (A: 'M[IR]_(m, n)) (x: 'M[IR]_(n, 1)) :=

\col_i \big[add_i / 0 1_j mul_i (A i j) (x j).
@ prove specific properties
Ax = {AXx|Ac A}

@ associated real matrices
minf (A: 'M[R]_(m, n)) := \matrix_(i, j) inf (A i j).
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 Results on real matrices

@ norm for real matrices

@ properties for symmetric and positive definite matrices
@ eigenvalues for real matrices
o Rayleigh quotients

@ spectral radius
@ Perron Frobenius theorem
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eigenvalues for real matrices:

@ roots of the characteristic polynomial

@ they can be complex
xTAx
xTx >

@ Rayleigh quotient: x #0, A—symmetric
xT Ax

S )\max(A)

spectral radius: p(A) = max{|A(A)|}

Theorem (Perron Frobenius)

If A€ R™7" is nonnegative then the spectral radius p(A) is an
eigenvalue of A, and there is a real, nonnegative vector x # 0
with Ax = p(A)x.
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Formaliz

Ais regular if and only if Vx € R",0 € Ax = X = 0. I

Ais regular if and only if Vx € R”, |AcX| < AalX| = X = 0.

Criterion (using positive definiteness)

If the matrix (AL A; — ||AJAa|]) is positive definite for some
consistent matrix norm || - ||, then A is regular.

\

Criterion (using the midpoint inverse)

If the following inequality holds p(|/ — RA¢| + |R|A4) < 1 for an
arbitrary matrix R, then A is regular.

\

Criterion (using eigenvalues)

If the inequality Amax(AfAA) < Amin(AL Ac) holds, then A is regular.
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@ adapt results for rounded rounded arithmetic
@ treat methods for bounding the solution set
@ finish proving the admitted results
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