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Proof Assistants

Proof assistant

o proof checker + proof-development system

e but, not a theorem prover

Motivation:
e increase reliability of mathematical proofs
Based on:
¢ a logic (classical/intuitionistic; first order/higher order ...) and
e set theory or
e type theory
Example:
e based on set theory (Tarski - Grothendieck): Mizar

e based on type theory: HOL, Isabelle, Coq, ACL2, PVS, Agda,
Lego, Nurpl, Minlog etc.
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Proof Assistants

Why type theory?

a powerful formal system that captures

e computation (via the inclusion of functional programs written
in typed A-calculus),

e proof (via the “formulas as types embedding”, where types are
viewed as propositions and terms as proofs)

Decidability of type checking = core of the type-theoretic theorem
proving

In situation I we have A.
Proof. p.

N=r p: A Typer(P) =A
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Proof Assistants

Applications

in mathematics
e complicated or complex problems:

e four color theorem (G. Gonthier)
o Kepler conjecture and T. Hales proof (Flyspeck project)

in computer science

e software and hardware verification
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Coq

Coq

e Calculus of Inductive Constructions

e dependent types
e inductive types

e Intuitionistic, Higher-order Logic

o Presence of Proof Objects: the script generates and stores a
term that is isomorphic to a proof that can be checked on
independent/simple proof checker. = high reliability.

e Poincaré Principle There is a distinction between computations
and proofs; computations do not require a proof.
(E.g. 140 = 1 does not require a proof.)

e structurally well-founded recursion = termination
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Coq

Limits of Coq?

Marelle Team, INRIA, April 2008:

e = limitis of pure functional programming: no computational
effects (side effects, interactive input/output, exceptions,..);

e proof checker and not prover (2 researchers);

e syntactic restrictions: difficult to have different
views/representations of one object;

e constructive logic ;

e structural recursion, guardedeness...;
e higher-order unification;

e deciding guardedness;

e need for a better organised documentation.
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Coq

What is the one best thing about Coq?

Marelle Team, INRIA, April 2008:

e mathematics and programming together; compute and prove
simultaneiously; = Research in Coq (3 researchers);

o dependent types;

e type theory = formal rigour;

e implicit arguments, type inference;
e extraction;

e replication of proofs;

e simple, uniform notation.
p
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Successfull applications of Coq (http://coq.inria.fr/)

Coq

Mathematics

Geometry,

Set Theory,
Algebra,

Number theory,
Category Theory,
Domain theory,

Real analysis and
Topology,

Probabilities.
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Coq

Successfull applications of Coq (http://coq.inria.fr/)
Computer Science

. e Infinite Structures,
Mathematics
e Pr. Lang.: Data Types

¢ Geometry, and Data Structures;

e Set Theory, e Pr. Lang.: Semantics

o Algebra, and Compilation;

e Number theory, e Formal Languages

o Category Theory, Theory and Automata;
o Domain theory, ¢ Decision Procedures and

« Real analysis and Certified Algorithms;

Topology,
o Probabilities.

e Concurrent Systems and
Protocols;

e Operating Systems;
 Biology and Bio-CS.
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Coq

Example -> demo

give the definitions of the objects one wants to model

nat : H
| O : nat
| S nat — nat.
plus (n m:nat) { n} : nat :=
n
| O=m

| Sp=S (p + m

where "n + m" := (plus n m) : nat_scope.

prove properties of these objects

plus_n_Sm : V n m:nat, S (n + m) = n + S m.
n m.
nj;
[ i |
; IHn; 1.
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Coq

Context

e using proof assistants to verify numerical algorithms

e formalization of mathematics in Coq (multivariate analysis)

loana Pasca Formal proofs in Coq 12 / 26



Coq

Newton's method

e find the root of a function f

e definition: xp11 = xp — %

o Kantorovitch's theorem gives sufficient conditions for the
convergence of Newton's method to the root of the function f

e it holds in the general case of a system of p equations with p

variables

A — y=fx

———— y=f{(xa) + f' (xa)*(X-Xn)

f (xo)

X2 X1 Xo
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Verifying numerical algorithms

Kantorovitch's theorem in the real case

Given the equation f(x) =0, with f :]a,b| = R, a, be R
f(x) € CM(]a, b[) and

x(©) €la, b[ so that U-(x(V) = {|x — x| < £} C]a, b].

If:

1. f/(X(O)) ?é O and |ﬁ(0))| S AO
2, “Xm)\ < By <
3. Vx,y € [a, ], |f'( )— f'(y)l < Clx —y|

4. 2A0ByC < 1.
Then, Newton's method: x("t1) = x(n) — (( n)))) converges and
x* = lim x(" is the unique solution of the initial equation in the
n—oo

domain {|x* — x(9)] < 2By}.
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Verifying numerical algorithms

The problem with real numbers

e the real numbers are not representable on a computer

o infinite set — finite set
o several models: float, double, arbitrary precision, apriximations
using interval arithmetic etc.

e the floating point numbers are not suitable for proofs

e they do not respect classic properties : associativity of the
addition etc.
o presence of concepts like underflow, overflow etc.
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Verifying numerical algorithms

Possible solution

e do proofs on “classic” reals
e implement the algorithms on “machine” reals

e link the 2 representations in order to verify the algorithms
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Verifying numerical algorithms

The proofs

e in Coq, the standard library Reals

e axiomatic definition, i.e. impose the expected mathematical
proprieties: (x +y) +z = x+ (y + z) etc.

a b A0 BO C X0: R.
f: R — R.
Hder_f: V x, a < x < b — derivable_pt f x.

(xcode the hypotheses of the theoremsx)

Xn (f: R —- R) (f’: R — R) (X0: R) (n: nat) :R:=
n
|0 = X0
| S n=Xnn - £(Xn n) / £’ (Xn n)

Kanto_exist:
d xs: R, conv Xn xs A f xs = 0.
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Verifying numerical algorithms

The algorithms

use a model for “machine” reals

e e.g. reals with arbitrary precision can be modeled with infinite

streams of digits
0,d1dbds ...

e encode Newton's method on this type of reals

mXn (g: mR — mR) (g’ :mR — mR) (mXO0:
n
|0 = mX0
[S n=mXn n - g(mXn n) / g’ (mXn n)
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Verifying numerical algorithms

The link

e say that a “machine” real x represents a certain “classical” real
.

represents x r

o do reasoning steps like

represents x1 r1 A represents xp ry — represents (x1®x2) (ri+nr)
e ... in order to prove: Vf: R — R, g : mR — mR

represents x0 rOA(Vx r, represents x r — represents g(x) f(r))

= Vn, represents (mXn g g’ x0 n) (Xn f ' rQ n)

o and the root of g represents the root of f
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Formalizing mathematics
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Formalizing mathematics

Kantorovitch's theorem

Let f(x) = 0 be a system with p equatlons and p variables, with
f(x) e CO(w) and U-(x®) = {|Ix — x| < ¢} C w.
If:

o the Jacobian matrix W(x) = (©) has an inverse
Fo = Wt with |[To]| < Ao;

. ||rof(x(°))|| < By <3

¢ Z |0x0><k| < Cfori,j=1,2,..,pand x € U-(x(V);

L4 2pAoB()C < 1.
Then, Newton's process: x("*1) = x(") — W=1(x(mM)f(x(n)
converges and x* = lim x(") is the unique solution of the initial

n—oo

system in the domain ||x — x(©)|| < 2B,.
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Proof Assistants

Organization of the multidimensional proof

Coq Verifying numerical algorithms

axiomatic reals

Formalizing mathematics

finite types, indexed operations

vectors: operations, norm

v

sequences

functions
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derivation

v

Taylor’s formula

Kantorovitch
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Formalizing mathematics

Interesting references

for an introduction to proof assistants

® H. Barendregt and H. Geuvers, Proof Assistants using Dependent Type Systems
at http://www.cs.ru.nl/ herman/PUBS/HBKassistants.ps.gz

for details on the Coq proof system

® http://coq.inria.fr/

® Y. Bertot, P. Casteran, Coq’Art: the Calculus of Inductive Constructions
for details on formalization of numerical analysis in Coq

® M. Mayero, Using Theorem Proving for Numerical Analysis, at
ftp://ftp.inria.fr/INRIA/LogiCal/Micaela.Mayero/papers/odyssee.ps.gz
for a description of the exact arithmetic library based on co-inductive

streams

® N. Julien, Certified exact real arithmetic using co-induction in arbitrary integer

base at http://hal.inria.fr/inria-00202744
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