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Inside the robot

lots of wires
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Inside the robot

lots of wires code
e computations
e numerical methods

ooz Public Function G etChecksun{ByVal sentence As Stiingp As String

00222 Dimn Chatacter Az Char

00223 Dim Checksum As Integer

00224 For Each Character In sentence

00225 Select Case Character

00226 Casa"§'c

00227 ‘lgnore the dollar sign

00228 Case"*¢ J%
00229 ' Stop processing before the asteris)

ooz3o Exit For

00231 Casze Elss

00232 " 15 this the first value for the checksurn?
00233 ITChecksum =0 Then

00234 Yes. Set the checksum to the value
00234 Checksum= Convert.ToByte(Character)
00236 Else

Q0237 Checksum= Checksum xor Comvert ToBytedCharacter)
oozze End If

00238 End Selact

onz40 Mext

00241 Return Checksum ToString"=2")

o0n242 End Function
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Ensure correctness of the code

tests
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Ensure correctness of the code

tests proofs

e proof assistants
e formal verification
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Proof assistants

 define data
e define functions
e prove properties
e trust proofs
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define data
define functions
prove properties
trust proofs

Proof assistants

CoQ and SSREFLECT

Coglde
Fle Edit Navigation TyTactics Templates Queries Display Compile Windows Help

EREEE IR 1N
@intenval R 1 subgoal

(X \INCINE) <-> (RIe (10w CINE) X /\ Rie x [up gy 5 Cint : closedint
move=> cint x; rewrite in_intb; split =
by movelandp -1 = (11 Fi2); move/RleP: fr—— ) .
by apply/andP; split; apply/RleP; elim H. tix: Jow cint <= x <= up cint
Qed. Hy : low cint <=y <= up cint
Hxy:x <y
Lemma in_intP: forall (cint: closedint) , 3R

reflect (Rle (low cint) x /\ Rle x (up cint)) (x\incin | HZ:Z\inopen_pred xy
Proof.
move=> ci x.
apply: (iffP idP); rewrite in_intb.
by move/andP => [H1 H2]; move/RleP: H1 => H1; n
by move=> H; apply/andP; split; apply/RleP; elim H.
Qed.

z\in cint

Lemma cint_axiom:

forall (cint: closedint) a0 b0, a0 \in cint -> b0 \in ci

a0 < b0 -> {subset (open_pred a0 bo) <= cint}.

Proof.
move=> cint xy Hx Hy Hxy z

rewrite ->in_int in Hx; rewrlte >In int in Hy.
rewrite in_int.
rewrite -topredE /= /open_pred in Hz.
move/andP: Hz => [Hz1 Hz2); move/RItP: Hzl => H
elim Hx => Hx1 Hx2; elim Hy => Hyl Hy2.
by split; left; [apply Rle_It_trans with x| apply RIt_le
Qed

Lemma cint_to_int: closedint -> interval.
move=> cint; apply (Interval (@cint_axiom cint) ). C
"

(1/1)

Ready in IntervalProp, proving cint_axiom Line: 142 Char: 56 Coalde starce Jl|
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Example tasks and methods

compute a valid position for the robot by solving a system of
equations

¢ use Newton’s method and its properties
e use interval analysis based methods
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Newton’s method

Definition:
Fm) A — y=fx
® Xni1 = Xn = F(x) y = f (xa) + ' (xa)¥xexa)
Properties:
e convergence to the f (xo)
root of function f
e speed of
convergence
e local unicity of the -
root

e local stability
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Kantorovitch’s theorem in one dimension

Consider an equation f(x) = 0, where f:]a,b[— R, a, b € R,
fec(la,bl) . o

Let xo €]a, b[ such that U.(xp) = {x : |[x — xo| < e} C]a, b|.

If:

1. f'(x0) #0 and < Ao;

1
f(x0)

g
< By < =:
— 0 — 2 3

f(xo)
f'(xo)

3. Vx,y €la, b, [f'(x) = f'(y)] < Clx —y|

4, Mo = 2/40£30(: f; 1.
then, the Newton process X, = X — %, n=0,1,2,...converges
and lim x, = x* is a solution of the initial equation, so that

n—oo

|X* —Xo| <2Bp <e.
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Idea of the proof

« for every element of the Newton’s sequence show that
hypotheses 1 - 4 are verified, with different constants;

e infer that Newton’s sequence is a Cauchy sequence and,
by the completeness of R, a convergent sequence;

¢ prove that the limit of the sequence is a root of the given
function.
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Working with real numbers

use the Coaq standard library on real numbers

o axiomatic definition: archimedean, total order field,
satisfying the least upper bound principle

¢ classical real analysis
e proofs close to “pen and paper” mathematics

other approaches
e constructive definition
e intuitionistic logic
e non-standard analysis
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Formal proof in one dimension

axiomatic reals

_ N

mequalltles

absolute value

sequences

topology ‘

derivation

Kantorovitch
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Some CoQ code:

kanto_exist:
3 xs:R, Un_cv Xn xs A c_disc X0 (2«B0) xs A f xs = 0.
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Kantorovitch’s theorem in several dimensions

Let f(x) = 0 be a system with p equations
and p variables, with f € C®(w) and

U:(x0) = {llx — Xo| <€} Cw.
If:

1. the Jacobian matrix W(x) = g—)’;] for

X = Xp has an inverse o = W~ with
IFoll < Ao;

2. [[Fof(xo)l| < Bo < 55

p 2
3. k;|ngﬁg;2| < Cfori,j=1,2,..,pand

x € U:(x0);

Then, Newton’s process:
Xni1 = Xn — W=1(xp)f(x,) converges to
x* = lim x,.

n—oo
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Kantorovitch’s theorem in several dimensions

Let f(x) = 0 be a system with p equations
and p variables, with f € C®(w) and
U:(%0) = {llx = xo| < &} Cw.
If:

1. the Jacobian matrix W(x) = [0’ ] for

X = xo has aninverse g = W~ 1 with
[Foll < Ao;

2. [[Fof(xo)ll < Bo < 5;

3. g \ngfg;kn < Cfori,j=1,2,..,pand

x € U:(x0);

Then, Newton’s process:
Xni1 = Xn — W=1(xp)f(x,) converges to
x* = lim x,.

n—oo
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Setting up the formalization

We need to talk about We use
e real numbers e CoaQ standard library Reals
e matrices e SSREFLECT library matrix

Mix SSREFLECT and standard CoQ !
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Mix SSREFLECT and CoQ

in SSREFLECT

e hierarchy of algebraic structures

e abstract matrices, but operations when elements are from
aring

in CoQ’s Reals library

e real numbers defined by axioms
e ring structure
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Dealing with real matrices

use existing results for SSREFLECT library

define new concepts: e.g. the norm of a real matrix, matrix
sequences and series

prove properties

Al <1 =138> A"=

n=1

|All <1 =det(l, —A)#0

instantiate to a given norm: e.g. the maximum norm

norm_m (A: 'M_(m, n)): R :=
\big [Rmax/R0] _i \sum_j (Rabs (A i j)).
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Formal proof in several dimensions

axiomatic reals ‘

finite types, indexed operations

vectors: operations, norm‘

— v

seqguences

functions

matrix

matrix norm

derivation

Taylor’s formula ‘

Kantorovitch
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Some CoQ code:

kantoroRp_exist: 3 xs: vec R p,
conv Xn xs A norm (dif_v xs X0) < 2xb0 A f xs = vectO.
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What about computations?
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What about computations?

e in COoQ axiomatic real numbers are appropriate for proofs,
but not for computations

e use libraries for exact real arithmetic
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Exact real arithmetic with co-inductive streams

Representation

e compute a real number in [—1, 1] with arbitrary precision

e real numbers represented as streams of signed digits in base 3
e.g. §=0333...=[3::8::3.. Jio=[4:: —7::4:: = 7. ]y

[[Sﬂgz[[d1::d2::d3::...Hﬁzz%; —B<d<p
i=1

* notice [d; : : 5] = 4+
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Exact real arithmetic with co-inductive streams

Representation

e compute a real number in [—1, 1] with arbitrary precision
e real numbers represented as streams of signed digits in base 3
e.g. § =0333...=[3::3::3. ﬂ10 =[4::=7::4:: 7. ]

[slg = [di::0a:: Z— —B<d<B

e notice [d;: :8]; = d1+[[sﬂ@

e redundant representatlon — useful for designing algorithms
eg.[0::3::..]10+[0::6::..]10=
[0::3::3::...J10+[0::6::5::.. J1o=1::—1::..]10
[0::3::3::...J10+[0::6::7::..J1o0=[1::0::..]10
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Exact real arithmetic with co-inductive streams

Implementation

[slg=1[0d1::0o::03::...]g=[dy::8]p —f<d<p
e in CoQ: co-inductive definitions and co-recursive functions

Stream (A: ): =
| Cons: A — Stream A — Stream A.
"x :: 8" := Cons x s.

Sopp (s: Stream digit): Stream digit:=
S | di :: §=(—dy) :: Sopp s
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Exact real arithmetic with co-inductive streams

Certification

_ di+ s
[di::8]g = %+ [8ls
B
¢ link the exact reals with axiomatic reals

B :N.
represents: Stream digit — R —
| rep: Vs rk, B<k<p —- —-1<r<1 —
represents s r — represents (k: ) %.
"'s~r " := represents s r.

o certify implementations via this relation

Sopp_correct: Vs r, s >~ r — (Sopp s)
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Implementation of Newton’s method

fl
Xnt1 = Xn — (o)

'(xn)
Newton on streams Newton on axiomatic reals
SXO =80 RXO =To
R . R f(RXn)
SXpi1 := Sxn © g(Sxn) Xn+1 1= AXn — 7R,y
Snewt_correct: (% ... *) so~ rop — g(x) ~ f(x)/f'(x) —

(Sxn g sp n) ~ (Rxn f f’ rg n).

e we can express properties on elements of Newton’s
sequence
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Implementation of Newton’s method

X’H’1 = Xn — ff’((X:n))
Newton on streams Newton on axiomatic reals
Sxp 1= Sp Rxo :==nro R
SXni1 = Sxn © g(Sxn) Rxni1 := RXn — 7y
Snewt_correct: (% ... *) so~ rop — g(x) ~ f(x)/f'(x) —

(Sxn g sp n) ~ (Rxn f f’ rg n).

e we can express properties on elements of Newton’s
sequence

¢ but, we cannot reason about the root of the function
e we want to compute the root in arbitrary precision
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Newton for streams

Goal define a co-recursive algorithm to compute the root x* of the
function f

e produce the first digit

e use a guarded co-recursive call
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Newton for streams

Goal define a co-recursive algorithm to compute the root x* of the
function f

e produce the first digit
e use a guarded co-recursive call
Idea

e start with f and xg

di+x*

e speed of convergence = ns.t. x, = % = X" = 9t
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Newton for streams

Goal define a co-recursive algorithm to compute the root x* of the
function f

e produce the first digit
e use a guarded co-recursive call
Idea

e start with f and xg

speed of convergence = ns.t. x, = % = Xx* = %

o f(x*)=0= f(4H) =0

define fi(x) := f(43*) = f(x*) = 0

e repeat process to get the first digit of x*; start with f; and x,
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Newton for streams

Goal define a co-recursive algorithm to compute the root x* of the
function f

e produce the first digit
e use a guarded co-recursive call
Idea

e start with f and xg

speed of convergence = ns.t. x, = % = Xx* = %

o f(x*)=0= f(4H) =0

define fi(x) := f(43*) = f(x*) = 0

e repeat process to get the first digit of x*; start with f; and x,

g=7%=0(x) =55 =
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Newton for streams

Idea

e to produce a first digit of x* determine x, = % st x* = 0’1%7*

e do a co-recursive call with function g;(x) = 8 x g(%) and x,

Algorithm

exact_newton g sg n:=
(make_digit (Sxn g sp n))
|dy::8; = dy::exact_newton (funs= (B®g(d;::8))) S» n
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Newton for streams

Idea

« to produce a first digit of x* determine x, = % stox* = d‘%"j

e do a co-recursive call with function g;(x) = 8 x g(%) and x,

Algorithm

exact_newton g sg n:=
(make_digit (Sxn g sp n))
|dy::8; = dy::exact_newton (funs= (B®g(d;::8))) S» n

exact_newton_correct: (x ... x)
(exact_newton g sg n) ~ x*.

e ensure the same hypotheses for X, and g as for x, and g
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Computation with rounding

e computations on machines are inexact
o modify Newton’s method the method to include rounding

f(x
Xo Xn1 = Xn = f’((xn))
n

f(t
to = XO tn+1 = I‘ndn+1 <tn - f,((:))>
n
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Certified rounding

prove that f, — x*

use local stability: Vxy € Uy, Xa(xy) — Xx*

[ ]
2
3
5

D Xo, X1, X0, X3, ... — X*
X1, X0, X3 ... — X*

[ ]
=

X0, X3 ... — X*

)
)
): Xy, X2, X3...— X*
)
)

X0, X3 ... — X*
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Certified rounding

prove that f, — x*

use local stability: Vxy € Uy, Xa(xy) — Xx*

o Xn(Xo): Xo, X1, X2, X3, ... — X* Xg =TIy
e Xp(X1):  Xq1,Xo,X3...— X*

o Xp(X1): X1, X2, X3...— X* X1 =t
o Xn(X2): X2,X3... — X*

c () Ko Xa.. o X' 2=t
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Newton with rounding

Let f :]a, b[— R and xp satisfying the conditions in Kantorovitch’s
theorem and let rnd : N x R — R. If

1. VnVx, x €]a, b[= rnd,(x) €]a, b|
2. F<po<
3. [xo — 3By, Xo + 3Bo] Cla, b

4. ¥Ynvx,|x — mdp(X)| < 7 Ro, where Ry = 18;‘;3 By

then, for the perturbed Newton’s sequence

a. the sequence {i,},en converges and lim {, = x*where x* is the
n—oo

root of the function f given by Kantorovitch’s theorem
b. Vn,|[x* — ty| < 51+Bo
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Formalization of a numerical method

. formalize the necessary mathematical theories
. prove the theorems

. handle computations

. handle optimizations
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Another formal study

Interval arithmetic

e tool used to handle inaccuracies in computations.
—mxV2r —314%1.41 = —4.4274

[~3.15, —3.14] « [1.41,1.42] = [~4.473, —4.4274]
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Another formal study

Interval arithmetic

e tool used to handle inaccuracies in computations.
—mxV2r —314%1.41 = —4.4274

[~3.15, —3.14] « [1.41,1.42] = [~4.473, —4.4274]

¢ solve systems of linear interval equations

[1,2]x1 + [2,4]x =[-1,1]
[2,4]x1 + [1,2]x =[1,2]
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Solving systems of linear interval equations

Two steps:

1. checking regularity of the associated interval matrix
2. computing bounds of the solution set

exact solution bounds for the solution set

X
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Two steps:
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Regular interval matrices

— [2?4] [_171]
Ais regular iff VA € A, det A # 0

A_(/Z\ﬂ %12) NZ\H € [2,4], '2‘326[_171]
At Ax )7 Axre[-1,1], Axcl2,4]

detA #0
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Criteria for regularity of interval matrices

Criterion
Ais regular if and only if Vx e R",0 € Ax = X = 0.

Criterion

Ais regular if and only if Vx € R", |AcX| < AalX| = X =0.
Criterion (using positive definiteness)

If the matrix (AL Ac — ||AJA4l|!) is positive definite for some
consistent matrix norm || - ||, then A is regular.

Criterion (using the midpoint inverse)

If the following inequality holds p(|/ — RA¢| + |R|A4) < 1 for an
arbitrary matrix R, then A is regular.

Criterion (using eigenvalues)
If the inequality )\maX(AZAA) < Amin(ALAc) holds, then A is regular.
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Organization of the formal proof

axiomatic reals finite types, indexed operations

¥
matrix

real intervals

/ real matrix: norm, eigenvalues

interval matrices

AN

criteria of regularity for interval matrices
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Work for eigenvalues

spectral radius: p(A) = max{|A(A)|}

Theorem (Perron Frobenius)

If A€ R™"is nonnegative then the spectral radius p(A) is an
eigenvalue of A, and there is a real, nonnegative vector x = 0
with Ax = p(A)x.
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Conclusion

Contributions:

« formalization of mathematical concepts
e two formal studies:

e Newton’s method
e regularity of interval matrices

Perspectives:
e for interval analysis: study computation
¢ study for floating point numbers
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