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Robots

• efficiency
• safety
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Inside the robot

lots of wires

code
• computations
• numerical methods

3 / 47
3
/
47



Inside the robot

lots of wires code
• computations
• numerical methods

3 / 47
3
/
47



Ensure correctness of the code

tests

proofs

• proof assistants
• formal verification
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Proof assistants

• define data
• define functions
• prove properties
• trust proofs

COQ and SSREFLECT
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Example tasks and methods

compute a valid position for the robot by solving a system of
equations
• use Newton’s method and its properties
• use interval analysis based methods
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Newton’s method

Definition:
• xn+1 = xn − f (xn)

f ′(xn)

Properties:
• convergence to the

root of function f
• speed of

convergence
• local unicity of the

root
• local stability
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Kantorovitch’s theorem in one dimension

Consider an equation f (x) = 0, where f :]a, b[→ R , a, b ∈ R,
f ∈ C(1)(]a, b[) .
Let x0 ∈]a, b[ such that Uε(x0) = {x : |x − x0| ≤ ε} ⊂]a, b[.
If:

1. f ′(x0) 6= 0 and
∣∣∣∣ 1
f ′(x0)

∣∣∣∣ ≤ A0;

2.
∣∣∣∣ f (x0)

f ′(x0)

∣∣∣∣ ≤ B0 ≤
ε

2
;

3. ∀x , y ∈]a, b[, |f ′(x)− f ′(y)| ≤ C|x − y |

4. µ0 = 2A0B0C ≤ 1.

then, the Newton process xn+1 = xn − f (xn)
f ′(xn)

, n = 0, 1, 2, . . . converges
and lim

n→∞
xn = x∗ is a solution of the initial equation, so that

|x∗ − x0| ≤ 2B0 ≤ ε.
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Idea of the proof

• for every element of the Newton’s sequence show that
hypotheses 1 - 4 are verified, with different constants;

• infer that Newton’s sequence is a Cauchy sequence and,
by the completeness of R, a convergent sequence;

• prove that the limit of the sequence is a root of the given
function.
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Working with real numbers

use the COQ standard library on real numbers
• axiomatic definition: archimedean, total order field,

satisfying the least upper bound principle
• classical real analysis
• proofs close to “pen and paper” mathematics

other approaches
• constructive definition
• intuitionistic logic
• non-standard analysis
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Formal proof in one dimension

Kantorovitch

inequalities absolute value sequences topology derivation

axiomatic reals
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Some COQ code:

Theorem kan to_ex is t :
∃ xs :R, Un_cv Xn xs ∧ c_disc X0 (2∗B0) xs ∧ f xs = 0 .
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Kantorovitch’s theorem in several dimensions
Let f (x) = 0 be a system with p equations
and p variables, with f ∈ C(2)(ω) and
Uε(x0) = {‖x − x0‖ ≤ ε} ⊂ ω.
If:

1. the Jacobian matrix W (x) = [ ∂fi
∂xj

] for
x = x0 has an inverse Γ0 = W−1 with
‖Γ0‖ ≤ A0;

2. ‖Γ0f (x0)‖ ≤ B0 ≤ ε
2 ;

3.
p∑

k=1
|∂

2fi (x)
∂xj∂xk

| ≤ C for i , j = 1, 2, ..., p and

x ∈ Uε(x0);

4. 2pA0B0C ≤ 1.

Then, Newton’s process:
xn+1 = xn −W−1(xn)f (xn) converges to
x∗ = lim

n→∞
xn.

• real vectors
• real matrices
• sequences

of vectors
• functions of

several
variables

• partial
derivatives
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Setting up the formalization

We need to talk about
• real numbers
• matrices

We use
• COQ standard library Reals
• SSREFLECT library matrix

Mix SSREFLECT and standard COQ !
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Mix SSREFLECT and COQ

in SSREFLECT

• hierarchy of algebraic structures
• abstract matrices, but operations when elements are from

a ring

in COQ’s Reals library

• real numbers defined by axioms
• ring structure
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Dealing with real matrices

• use existing results for SSREFLECT library
• define new concepts: e.g. the norm of a real matrix, matrix

sequences and series
• prove properties

‖A‖ < 1 ⇒ ∃S,

∞∑
n=1

An = S

‖A‖ < 1 ⇒ det(Ip − A) 6= 0

• instantiate to a given norm: e.g. the maximum norm

Def in i t ion norm_m (A: ’M_(m, n ) ) : R :=
\ b ig [Rmax/R0 ] _ i \ sum_j ( Rabs (A i j ) ) .
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Formal proof in several dimensions

Kantorovitch

axiomatic reals finite types, indexed operations

vectors: operations, norm

matrix

sequences functions

matrix norm

derivation

Taylor’s formula
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Some COQ code:

Theorem kantoroRp_exis t : ∃ xs : vec R p ,
conv Xn xs ∧ norm ( d i f _ v xs X0) ≤ 2∗b0 ∧ f xs = vect0 .
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What about computations?

• in COQ axiomatic real numbers are appropriate for proofs,
but not for computations

• use libraries for exact real arithmetic
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Exact real arithmetic with co-inductive streams
Representation

• compute a real number in [−1, 1] with arbitrary precision

• real numbers represented as streams of signed digits in base β

e.g. 1
3 = 0.333 . . . = J3::3::3 . . .K10 = J4::− 7::4::− 7 . . .K10

JsKβ = Jd1::d2::d3:: . . .Kβ =
∞∑
i=1

di

β i ; −β < di < β

• notice Jd1::sKβ =
d1+JsKβ

β

• redundant representation → useful for designing algorithms
e.g. J0::3:: . . .K10 + J0::6:: . . .K10 =?

J0::3::3:: . . .K10 + J0::6::5:: . . .K10 = J1::− 1:: . . .K10

J0::3::3:: . . .K10 + J0::6::7:: . . .K10 = J1::0:: . . .K10
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Exact real arithmetic with co-inductive streams
Implementation

JsKβ = Jd1::d2::d3:: . . .Kβ = Jd1::sKβ; −β < di < β

• in COQ: co-inductive definitions and co-recursive functions

CoInductive Stream (A: Type ) : Type :=
| Cons : A → Stream A → Stream A.

Notation " x : : s " := Cons x s .

CoFixpoint Sopp ( s : Stream d i g i t ) : Stream d i g i t :=
match s with | d1 : : s ⇒ (−d1 ) : : Sopp s end .
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Exact real arithmetic with co-inductive streams
Certification

Jd1::sKβ =
d1 + JsKβ

β

• link the exact reals with axiomatic reals
Variable β : N .
CoInductive represents : Stream d i g i t → R → Prop :=

| rep : ∀ s r k , −β < k < β → −1 ≤ r ≤ 1 →
represents s r → represents (k :: s) k+r

β
.

Notation " s ' r " := represents s r .

• certify implementations via this relation
Theorem Sopp_correct : ∀ s r , s ' r → ( Sopp s ) ' (− r ) .
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Implementation of Newton’s method
xn+1 = xn − f (xn)

f ′(xn)

Newton on streams
Sx0 := s0
Sxn+1 := Sxn 	 g(Sxn)

Newton on axiomatic reals
Rx0 := r0
Rxn+1 := Rxn − f (Rxn)

f ′(Rxn)

Theorem Snewt_correct : (∗ . . . ∗ ) s0 ' r 0 → g ( x ) ' f (x)/f ′(x) →
( Sxn g s0 n ) ' ( Rxn f f ’ r 0 n ) .

• we can express properties on elements of Newton’s
sequence

• but, we cannot reason about the root of the function
• we want to compute the root in arbitrary precision

31 / 47
31
/
47



Implementation of Newton’s method
xn+1 = xn − f (xn)

f ′(xn)

Newton on streams
Sx0 := s0
Sxn+1 := Sxn 	 g(Sxn)

Newton on axiomatic reals
Rx0 := r0
Rxn+1 := Rxn − f (Rxn)

f ′(Rxn)

Theorem Snewt_correct : (∗ . . . ∗ ) s0 ' r 0 → g ( x ) ' f (x)/f ′(x) →
( Sxn g s0 n ) ' ( Rxn f f ’ r 0 n ) .

• we can express properties on elements of Newton’s
sequence

• but, we cannot reason about the root of the function
• we want to compute the root in arbitrary precision

31 / 47
31
/
47



Newton for streams
Goal define a co-recursive algorithm to compute the root x∗ of the
function f

• produce the first digit

• use a guarded co-recursive call

Idea

• start with f and x0

• speed of convergence ⇒ n s.t. xn = d1+xn
β ⇒ x∗ = d1+x∗

β

• f (x∗) = 0 ⇒ f ( d1+x∗
β ) = 0

• define f1(x) := f ( d1+x
β ) ⇒ f1(x∗) = 0

• repeat process to get the first digit of x∗; start with f1 and xn

• g = f
f ′ ⇒ g1(x) := f1(x)

f ′1 (x) =
f ( d1+x

β )

1
β f ′( d1+x

β )
= β × g( d1+x

β )

32 / 47
32
/
47



Newton for streams
Goal define a co-recursive algorithm to compute the root x∗ of the
function f

• produce the first digit

• use a guarded co-recursive call

Idea

• start with f and x0

• speed of convergence ⇒ n s.t. xn = d1+xn
β ⇒ x∗ = d1+x∗

β

• f (x∗) = 0 ⇒ f ( d1+x∗
β ) = 0

• define f1(x) := f ( d1+x
β ) ⇒ f1(x∗) = 0

• repeat process to get the first digit of x∗; start with f1 and xn

• g = f
f ′ ⇒ g1(x) := f1(x)

f ′1 (x) =
f ( d1+x

β )

1
β f ′( d1+x

β )
= β × g( d1+x

β )

32 / 47
32
/
47



Newton for streams
Goal define a co-recursive algorithm to compute the root x∗ of the
function f

• produce the first digit

• use a guarded co-recursive call

Idea

• start with f and x0

• speed of convergence ⇒ n s.t. xn = d1+xn
β ⇒ x∗ = d1+x∗

β

• f (x∗) = 0 ⇒ f ( d1+x∗
β ) = 0

• define f1(x) := f ( d1+x
β ) ⇒ f1(x∗) = 0

• repeat process to get the first digit of x∗; start with f1 and xn

• g = f
f ′ ⇒ g1(x) := f1(x)

f ′1 (x) =
f ( d1+x

β )

1
β f ′( d1+x

β )
= β × g( d1+x

β )

32 / 47
32
/
47



Newton for streams
Goal define a co-recursive algorithm to compute the root x∗ of the
function f

• produce the first digit

• use a guarded co-recursive call

Idea

• start with f and x0

• speed of convergence ⇒ n s.t. xn = d1+xn
β ⇒ x∗ = d1+x∗

β

• f (x∗) = 0 ⇒ f ( d1+x∗
β ) = 0

• define f1(x) := f ( d1+x
β ) ⇒ f1(x∗) = 0

• repeat process to get the first digit of x∗; start with f1 and xn

• g = f
f ′ ⇒ g1(x) := f1(x)

f ′1 (x) =
f ( d1+x

β )

1
β f ′( d1+x

β )
= β × g( d1+x

β )

32 / 47
32
/
47



Newton for streams

Idea

• to produce a first digit of x∗ determine xn = d1+xn
β s.t. x∗ = d1+x∗

β

• do a co-recursive call with function g1(x) = β × g( d1+x
β ) and xn

Algorithm

CoFixpoint exact_newton g s0 n :=
match ( make_dig i t ( Sxn g s0 n ) ) with

| d1 : : sn ⇒ d1 : : exact_newton (fun s ⇒ (β � g(d1 :: s))) sn n
end .

Theorem exact_newton_correct : (∗ . . . ∗ )
( exact_newton g s0 n ) ' x∗ .

• ensure the same hypotheses for xn and g1 as for x0 and g
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Computation with rounding

• computations on machines are inexact
• modify Newton’s method the method to include rounding

x0 xn+1 = xn −
f (xn)

f ′(xn)

t0 = x0 tn+1 = rndn+1

(
tn −

f (tn)
f ′(tn)

)
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Certified rounding

prove that tn → x∗

use local stability: ∀x ′0 ∈ Ux0 , xn(x ′0) → x∗

• xn(x0): x0, x1, x2, x3, . . . → x∗

x0 = t0

• xn(x1): x1, x2, x3 . . . → x∗

• xn(x̃1): x̃1, x̃2, x̃3 . . . → x∗

x̃1 = t1

• xn(x̃2): x̃2, x̃3 . . . → x∗

• xn(
˜̃x2): ˜̃x2,

˜̃x3 . . . → x∗

˜̃x2 = t2

• . . .
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Newton with rounding
Let f :]a, b[→ R and x0 satisfying the conditions in Kantorovitch’s
theorem and let rnd : N× R → R. If

1. ∀n∀x , x ∈]a, b[⇒ rndn(x) ∈]a, b[

2. 1
2 ≤ µ0 < 1

3. [x0 − 3B0, x0 + 3B0] ⊂]a, b[

4. ∀n∀x , |x − rndn(x)| ≤ 1
3n R0, where R0 =

1−µ2
0

8µ0
B0

then, for the perturbed Newton’s sequence

t0 = x0 and tn+1 = rndn+1(tn − f (tn)/f ′(tn))

a. the sequence {tn}n∈N converges and lim
n→∞

tn = x∗where x∗ is the
root of the function f given by Kantorovitch’s theorem

b. ∀n, |x∗ − tn| ≤ 1
2n−1 B0
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Formalization of a numerical method

1. formalize the necessary mathematical theories
2. prove the theorems
3. handle computations
4. handle optimizations
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Another formal study

Interval arithmetic

• tool used to handle inaccuracies in computations.

−π ∗
√

2 ≈ −3.14 ∗ 1.41 = −4.4274

[−3.15,−3.14] ∗ [1.41, 1.42] = [−4.473,−4.4274]

• solve systems of linear interval equations{
[1, 2]x1 + [2, 4]x2 = [−1, 1]

[2, 4]x1 + [1, 2]x2 = [1, 2]
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Solving systems of linear interval equations

Two steps:

1. checking regularity of the associated interval matrix

2. computing bounds of the solution set

exact solution bounds for the solution set
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Regular interval matrices

A =

(
[2, 4] [−1, 1]

[−1, 1] [2, 4]

)
A is regular iff ∀Ã ∈ A, det Ã 6= 0

Ã =

(
Ã11 Ã12

Ã21 Ã22

)
,

Ã11 ∈ [2, 4], Ã12 ∈ [−1, 1]

Ã21 ∈ [−1, 1], Ã22 ∈ [2, 4]

det Ã 6= 0
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Criteria for regularity of interval matrices

Criterion
A is regular if and only if ∀x̃ ∈ Rn, 0 ∈ Ax̃ ⇒ x̃ = 0.

Criterion
A is regular if and only if ∀x̃ ∈ Rn, |Ac x̃ | ≤ ∆A|x̃ | ⇒ x̃ = 0.

Criterion (using positive definiteness)
If the matrix (AT

c Ac − ‖∆T
A∆A‖I) is positive definite for some

consistent matrix norm ‖ · ‖, then A is regular.

Criterion (using the midpoint inverse)
If the following inequality holds ρ(|I − RAc |+ |R|∆A) < 1 for an
arbitrary matrix R, then A is regular.

Criterion (using eigenvalues)
If the inequality λmax(∆T

A∆A) < λmin(AT
c Ac) holds, then A is regular.
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Organization of the formal proof

criteria of regularity for interval matrices

axiomatic reals finite types, indexed operations

real matrix: norm, eigenvalues

matrix

real intervals

interval matrices
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Work for eigenvalues

spectral radius: ρ(A) = max{|λ(A)|}

Theorem (Perron Frobenius)
If A ∈ Rn×n is nonnegative then the spectral radius ρ(A) is an
eigenvalue of A, and there is a real, nonnegative vector x 6= 0
with Ax = ρ(A)x .
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Conclusion

Contributions:
• formalization of mathematical concepts
• two formal studies:

• Newton’s method
• regularity of interval matrices

Perspectives:
• for interval analysis: study computation
• study for floating point numbers
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