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Interval arithmetic

Tool used to handle inaccuracies in computations.
—rx V2 —3.14%1.41 = —4.4274

[-3.15, —3.14] * [1.41,1.42] = [~4.473, —4.4274]

If we know the bounds on the input data we can compute the
bounds on the result.
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Interval arithmetic, more formally

Definition

interval := closed, bounded, connected, nonempty subset of R
x=XX]={XxeR|x<Xx<X}, wherex,XxcR,x <X

Notation IR — set of intervals

Classification

@ thininterval x =X
@ thick interval x < x
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Interval arithmetic, more formally

Definition
interval := closed, bounded, connected, nonempty subset of R
x =[x, X]={XeR|x<Xx<X}, wherex,XxeR,x<X
Notation IR — set of intervals

Classification
@ thininterval x =X
@ thick interval x < x

Associated real quantities
@ midpoint  Xc: X
@ radius Ay := 5=



Basic interval operations

Xx+z=O{kx+2z|Xxex,zez}

4/29



Basic interval operations

Xx+z={(x+z|Xxex,zez}={x+2z|Xex,zcz}=

=[x+2zx+7Z
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Basic interval operations

Xx+z={(x+z|Xxex,zez}={x+2z|Xex,zcz}=

=[x+2zx+7]

do the same for opposite and multiplication
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Rounded interval arithmetic

Usage
@ intheory: [x,x] withx,x R
@ in practice: [x,x] with x,x € M,
where M is a machine representable subset of R

Outward rounding
Ox = [VX, AX]
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Rounded interval arithmetic

Usage
@ intheory: [x,Xx] withx,x € R
@ in practice: [x,x] with x,x € M,
where M is a machine representable subset of R

Outward rounding
Ox = [Vx, AX]

Example
[-3.15,—-3.14] % [1.41,1.42] = [-4.473, —4.4274]
M : decimal numbers with 2 digits

[-3.15,-3.14] x0 [1.41,1.42] = [-4.48, —4.42)]
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Issues with rounded arithmetic

Rounded arithmetic

x4+9z=0[x+2zXx+7]

{(x+2|Xexz2ez} Cx+°z

Ideal arithmetic

{x+2z|Xex,zecz}=x+z
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Interval arithmetic in proof assistants

Nature of interval methods

@ interval arithmetic was born to safely deal with errors
Usage

@ interval arithmetic appears in critical software

@ certified computation
Formalizations

@ Coq, PVS, Isabelle

@ focus on computation efficiency and automation of
techniques
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Computation driven formalizations

@ basic operations

@ elementary functions

@ techniques to increase accuracy
@ rounded interval arithmetic

°

automated procedures to compute and prove bounds for
expressions

computations by external tools
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Formalizing more “theoretical” results
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Formalizing more “theoretical” results

@ solving systems of linear equations with interval
coefficients

Exercise
Consider the following system:

[172])(1 + [2’4])(2 = [_171]
[2,4]x1 + [1,2]x2 =[1,2]

Find a box that contains all pairs (x4, X) € R? that satisfy the
equations for some choice of coefficients in their respective
intervals.

4

@ correctness of methods for solving these systems is based
on more involved theoretical results

@ application: robot movement



Solving systems of linear interval equations

Two steps:

@ checking regularity of the associated interval matrix

© computing bounds of the solution set

exact solution bounds for the solution set

4
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Solving systems of linear interval equations

Two steps:

@ checking regularity of the associated interval matrix

@ computing bounds of the solution set

exact solution bounds for the solution set

4
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Interval matrices

Definition Example
—IA. ) _( [1.2] [2,4]
A = [Ajlmxn, Aj € IR A= ( 2.4] [1.2]
Characterization
- - 1 3
A={Ac MR)mxn | Aj € Aj} (2 2>€A

Associated real matrices

A := [(Aj)e] Ae = ( s 15 )
Ap = [Ap] An= ( 0i5 01.5 )
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Operations on interval matrices

Addition

A+B.=0{A+B|AcABecB}
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Operations on interval matrices

Addition

A+B.=0{A+B|AcABcB}={A+B|AcABecB}

(A—i—B)ij:A,‘j—i-B,'j
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Regularity of interval matrices

An interval matrix A is called regular iff VA € A,detA £ 0

and it is called singular otherwise (3A, A € A det A = 0).
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Systems of linear interval equations

A system of linear interval equations with coefficient matrix
A € M(IR)mxn and right-hand side b € TR is defined as the
family of linear systems of equations

Ak =bwithAc Abeb
The solutions set of such a system is given by:

Y (A,b) := {X € R"| 3A € A,3b € b such that Ax = b}
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Proof example

Y(A b)={XeR"| AxN b # 0} I

Proof excerpt.
We show: {x e R" | Axnb # 0} C X(A,Db).

Consider X such that Ax N b # (.

Then AX N b contains some b € R™,
Clearly b € b.

Also, b € Ak and by relation (1), b = Ax for some A € A.

Therefore X € L (A, b). O

Ax = {Ax |Ac A} (1)



Setting up the formalization

We need to talk about We use
@ real numbers @ Coaq standard library Reals
@ matrices @ SSREFLECT library matrix

Mix SSREFLECT and standard CoQ !
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Mix SSREFLECT and CoQ

in SSREFLECT

@ hierarchy of algebraic structures

@ abstract matrices, but operations when elements are from
aring

in CoQ’s Reals library

@ real numbers defined by axioms
@ ring structure
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Bricks of the formalization

@ intervals: definition, operations and properties
@ interval matrices: definition, operations and properties
@ properties of real matrices

@ criteria for regularity of interval matrices
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Yet another formalization of intervals

Definition
x=XX]={xeR|x<Xx<X}, wherex,XxeR,x <X

IR: := ClosedInt
{ inf: R; sup: R ; leq_proof: inf <, sup }.

Intervals as sets
@ coerce IR to R — bool

Equality of intervals

eq_intervalP :
Vxz:IR, x=2z« inf x=infz A sup x = sup z.
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Interval properties

X+z=[x+2Xx+Z|={X+z|Xxex,zez}
Addition is
@ associative

@ commutative = (IR, +) is a monoid
@ neutral element [0, 0]

But
—X+x #10,0], if xisthick = (IR, +) is NOT a group

= (IR, +, x) is NOT a ring
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Interval matrices

@ use SSREFLECT library

@ define specific operations on interval matrices, as intervals
do not have a ring structure

mmul_i (A: 'M[IR]_(m, n)) (x: 'cV[IR]_(n)) :=
\col_i \big[+ir / O]_j (A i j) xr (x j).
n—1

(A*X),' = ZA,/X/

J=0

@ prove specific properties

Ax = {Ax|Ac A}
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Results on real matrices

@ norm for real matrices

@ properties for symmetric and positive definite matrices
@ eigenvalues for real matrices

o Rayleigh quotients
@ Perron Frobenius theorem
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Results on real matrices

@ norm for real matrices

@ properties for symmetric and positive definite matrices
@ eigenvalues for real matrices

e Rayleigh quotients
@ Perron Frobenius theorem
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The issues

eigenvalues for real matrices:

@ roots of the characteristic polynomial

@ they can be complex
xTAx
xTx >

@ Rayleigh quotient: x #0, A—symmetric
xT Ax

S )\max(A)

spectral radius: p(A) = max{|A(A)|}

Theorem (Perron Frobenius)

If A€ R™7" is nonnegative then the spectral radius p(A) is an
eigenvalue of A, and there is a real, nonnegative vector x # 0
with Ax = p(A)x.
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Formalized criteria of regularity

Ais regular if and only if Vx € R",0 € Ax = X = 0.

Ais regular if and only if Vx € R”, |AcX| < AalX| = X = 0.

26/29



Formalized criteria of regularity

Ais regular if and only if Vx € R",0 € Ax = X = 0.

Ais regular if and only if Vx € R”, |AcX| < AalX| = X = 0.

Criterion (using positive definiteness)

If the matrix (AL A; — ||AJAa|]) is positive definite for some
consistent matrix norm || - ||, then A is regular.

Criterion (using the midpoint inverse)

If the following inequality holds p(|/ — RA¢| + |R|A4) < 1 for an
arbitrary matrix R, then A is regular.

Criterion (using eigenvalues)

If the inequality Amax(AfAA) < Amin(AL Ac) holds, then A is regular.
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How far from the real world

@ adapt results for rounded rounded arithmetic
@ treat methods for bounding the solution set
@ finish proving the admitted results
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leq_proof: inf <, sup

Rle_dec: V r1 r2, {r1 <= r2} + {~ r1 <= r2}.

Rleb r1 r2 :=
(Rle_dec r1 r2)
|left _ = true
|right _ = false

inf <p sup ~~ Rleb infsup ~ is_true (Rleb inf sup) ~~
~ Rleb inf sup = true

Boolean equality is decidable and therefore proof irrelevant.
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