Terminology		cmd=> /(_ x) h Introduce h specialized to x		<pre>rewrite /= -[a]/(0+a) Simplify the goal, the</pre>
$Context \begin{cases} x : T \\ S : {set T} \\ xS : x \setminus in S \end{cases}$		P : nat -> Prop x : nat	$P : nat \rightarrow Prop$ $x : nat$ $\rightarrow h : P x$	a, b : nat c := b + 3 : nat
The bar	==	(forall n, P n) -> G		true && (a == b +
Goal {forall y, y =	$= x \rightarrow y \leq S$		G	apply: H. Apply H to the curren
Assumption	ns Conclusion	Pushing to the stack		H : A -> B
Top is the first assumption, y here Stack alternative name for the list of Assumptions		Note: in the following cmd is not apply or exact. Moreover we display the goal just before cmd is run.		====== В
		cmd: (x) y		case: ab.
Popping from the stack		Push \mathbf{y} then push \mathbf{x} on the stack.	y is also cleared	Eliminate the conjunc
Note: in the following example we as focus on the effect of the intro pattern	sume cmd does nothing, exactly like move, to .	x, y : nat px : P x	$\begin{array}{ccc} x : nat \\ & px : P x \end{array}$	ab : A /\ B
<i>cmd=></i> x px	the context naming it x then non the new Ten	======= Q х у	forall x0 y, Q x0 y	G
and names it px in the context		$cmd: \{-2\}x (erefl x)$	$\{-2\}x$ (erefl x)	
	x : T	Push the type of (erefl x), then occurrence	n push \boldsymbol{x} on the stack binding all but the second	a, b : nat
forall x, P = - P = - C	\rightarrow =======		x : nat	=======
г х -> ų х -> б	Q x -> G	x : nat	→ =======	a <= b && b > a
<i>cmd</i> => [x xs] //		Рх	forall x0, x0 = x -> P x0	elim: s. Perform an induction
Run <i>cmd</i> , then reason by cases on Top. In the first breanch do nothing, in the sec- ond one pop two assumptions naming then \mathbf{x} nd \mathbf{xs} . Then get rid of trivial goals. Note that, since only the first branch is trivial, one can write => [// \mathbf{x} xs]		<pre>cmd:+1 {px} Clear px and generalize the goal with respect to the first match of the pattern+1</pre>		s : seq nat
analysis, but can still introduce difference	case and elim it does not perform any case ferent names in different branches			Ρs
v ,		px : P x	x : nat	<pre>elim/last_ind: s</pre>
=======	x : nat xs : seq nat		\rightarrow ====================================	Start an induction on
forall s : seq nat,	→ =======	x < x.+1		
0 < size s -> P s	0 < size (x :: xs) -> P (x :: xs)			s : seq nat =======
cmd=> /andP[pa pb]		Proof commands		P s
Run <i>cmd</i> , then apply the view andP to Top, then destruct the conjuction and introduce in the context the two parts naming the pa and pb		rewrite Eab (Exc b). Rewrite with Eab left to right, then with Exc by instantiating the first argument		have pa : P a. Open a new goal for 1
	pa : A	with b		it named pa
	\rightarrow pb : B	Eab : a = b	Eab : a = b	
A && B -> C -> D		Exc : forall x, x = c	$\xrightarrow{\text{Exc : forall x, x = c}}_{=======}$	a : T
<i>cmd</i> => /= {px}		P a	Рс	 G
Run cmd then simplify the goal the	en discard px from then context	rewrite -Eab {}Eac.		
x:nat x:nat		Rewrite with Eab right to left then with Eac left to right, finally clear Eac		by []. Prove the goal by triv
=======	\rightarrow ====================================	Eab : $a = b$ Eac : $a = c$	Eab : a = b	
true && Q x -> R x	ų z > n z	=======	\rightarrow =======	0 <= n
<pre>cmd=> [y -> {x}] Run cmd then destruct the existential, then introduce y, then rewrite with Top left to right and discard the equation, then clear x</pre>		P b rewrite /(_ && _).	r u	exact: H. Apply H to the curren
x : nat	y : nat	Unfold the definition of && a : bool	a : bool	Equivalent to by app: H : B
 (exists2 y, x = y & Q y)	\rightarrow =======		\rightarrow ========	======= P

a && a = a

Q y -> P y

-> P x

Cheat Sheet

if a then a else false = a

В

) -/c.

en change **a** into **0+a**, finally fold back the local definition **c**

$$\begin{array}{rl} \text{a, b : nat} \\ \text{c := b + 3 : nat} \\ \hline \\ \text{e======} \\ 0 + a == c \end{array}$$

3)

nt goal

$$\rightarrow$$
 A

ction or disjunction

$$\rightarrow$$
 A -> B -> G

g the leqP spec lemma

on s

s using the induction principle last_ind

 ${\tt P}$ a. Once resolved introduce a new entry in the context for

$$\begin{array}{c} a:T\\ \rightarrow & ====\\ Pa \end{array} \qquad \begin{array}{c} a:T\\ pa:Pa\\ =====\\ G \end{array}$$

vial means, or fail

$$\rightarrow$$

ent goal and then assert all remaining goals, if any, are trivial. ply: H.

Reflect and views		"[\/ P1 , P2 P3]" := (or3 P1 P2 P3)	
reflect P b States that P is logica	ally equivalent to b	"[&& b1 , b2 , , bn & c]" := (b1 && (b2 && (bn && c)))	
apply: (iffP V) Proves a reflection go reflect. E.g. apply	pal, applying the view lemma : (iffP idP)	<pre>(b1 (b2 (bn c))) "# A " := (card (mem A)) "ntuple" := (tuple_of n)</pre>	
P : Prop	P : Prop	P : Prop	"'I_ n" := (ordinal n) "f1 =1 f2" := (eqfun f1 f2)
b : bool ===============	ightarrow b : bool	b : bool	"b1 (+) b2" := (addb b1 b2)
reflect P b	b -> P	P -> b	Notations for natural numbers: nat
apply/V1/V2 Prove boolean equalit term V1 (resp. V2) is E.g. apply/idP/negF	ties by considering them as lo the view lemma applied to t	ogical double implications. The the left (resp. right) hand side.	"n .+1" := (succn n) "n1" := (predn n) "m + n" := (addn m n) "m - n" := (subn m n)
b1 : bool	b1 : bool	b1 : bool	"m <= n" := (leq m n)
b2 : bool	ightarrow b2 : bool	b2 : bool	m < n'' := (m.+1 <= n) m <= n <= n'' := ((m <= n) kk (n <= n))
$h_{1} = \tilde{h}_{2}$	======== b1 -> ~ b2	======== ~ h2 −> h1	" $m * n$ " := (muln m n)
rewrite: (eqP Eab) rewrite with the book	ean equality Eab		<pre>"m ^ n" := (double n) "m ^ n" := (expn m n) "n '!" := (factorial n) "m %/ d" := (divn m d)</pre>
$Eab : a == b \qquad Eab : a == b$			"m %% d" := (modn m d)
 Ра	РЪ		<pre>"m == n %[mod d]" := (m %% d == n %% d) "m % d" := (dvdn m d) "pinat" := (pnat pi)</pre>
Idioms			Notations for lists: seq T
<pre>case: b => [h1 h2 h3 Push b, reason by ca second</pre>	3] ases, then pop h1 in the first	"x :: s" := (cons _ x s) "[::]" := nil	
have /andP[x /eqP->] Open a subgoal for P struct the conjunction then rewrite with it a	: P a && b == c a && b == c. When proved h, introduce x, apply the view and discard the equation	<pre>"[:: x1]" := (x1 :: [::]) "[:: x & s]" := (x :: s) "[:: x1 , x2 ,, xn & s]" := (x1 :: x2 :: (xn :: s)) "[:: x1 : x2 : xn]" :=</pre>	
elim: n.+1 {-2}n (ltr General induction o forall n n < 0 ->	nSn n)=> {n}// n wer n, note that the first and is thus solved by /	(x1 :: x2 :: [:: xn]) "s1 ++ s2" := (cat s1 s2)	
	··· and is thus solved by /	,	Notations for iterated operations
n : nat	n : nat 		"\big [op / idy] i F" ·=
 P n	(forall m, m < n - forall m, m < n. + forall	-> P m) -> -1 -> P m	"\big [op / idx]_ (i P) F" := "\big [op / idx]_ (i <- r P) F" :=
rewrite lem1 ?lem2 //		"\big [op / idx] (m <= i < n P) H	

Use the equation with premises lem1, then get rid of the side conditions with lem2

Searching

Search _ addn (_ * _) "C" in ssrnat

Search for all theorems with no constraints on the main conclusion (conclusion head symbol is the wildcard _), that talk about the addn constant, matching anywhere the pattern $(_ * _)$ and having a name containing the string "C" in the module ssrnat

Misc notations

"f1 \o f2" := (comp f1 f2) "x $\ A$ " := (in_mem x (mem A)) "x \notin A" := (~~ (x \in A)) "[/\ P1 , P2 & P3]" := (and3 P1 P2 P3)

(m %% d == n %% d) seq T z) [::]) s) & s]" := :: s) ..)]" := [m] ..) s2) ed operations

| P) F" := <-r | P) F" := <= i < n | P) F" := \big L op / idx]_ (i < n | P) F" :=</pre> "\big [op / idx]_ (i \in A | P) F" := "\sum_ i F" := "\prod_ i F" := "\max_ i F" := "\bigcap_ i F" := "\bigcup_ i F" :=

caveat : in the general form, the iterated operation op is displayed in prefix form (not in infix form) caveat : the string "big" occurs in every lemma concerning iterated operations

Rewrite patterns

rewrite [pat]lem [in pat2]lem2 [X in pat3]lem3

Rewrite the subterms selected by the pattern pat with lem. Then in the subterms selected by the pattern pat2 match the pattern inferred from the left hand side of lem2 and rewrite the terms selected by it. Last, in the sub terms selected by pat3 rewrite with lem3 the sub terms identified by X exactly

rewrite {3}[in X in pat1]lem1 Like in rewrite [X in pat1]lem1 but use the pattern inferred from lem1 to identify the sub terms of X to be rewritten. Of these terms, rewrite only the third one. Example: rewrite {3}[in X in f _ X]E.

E : a = c_____

E : a = c_____

rewrite [e in X in pat1]lem1 Like before, but override the pattern inferred from lem1 with e rewrite [e as X in pat1]lem1 Like rewrite [X in pat1]lem1 but match pat1[X := e] insted of just pat1 rewrite /def1 -[pat]/term /= Unfold all occurrences of def1. Then match the goal against pat and change all its occurrences into term (pure computation). Last simplify the goal

rewrite 3?lem2 // {hyp} => x px Rewrite from 0 to 3 times with lem2, then try to solve with by [] all the goals. Finally clear hyp and introduce x and px

Pattern matching detailed rules

pattern a term, possibly containing _

key The head symbol of a pattern

The sub terms selected by a pattern:

- the key

- the pattern
- the pattern
- the arguments pairwise

set n := {2 4}(_ + b)

Put in the context a local definition named n for the second and fourth occurrences of the sub terms selected by the pattern (- + b)

```
_____
a + c + (a + b) + (a + b) =
```

```
n := a + b
_____
a + c + (a + b) + n =
```

a + (a + b) + n + c

a + f a (a + a) = f a (a + a) + a

a + f a (a + a) = f a (c + a) + a

1. the goal is traversed outside in, left to right, looking for verbatim occurrences of

 \rightarrow

2. the sub terms whose key matches verbatim are higher order matched (i.e. up to definition unfolding and recursive function computation) against the pattern

3. if the matching fails, the next sub term whose key matches is tried

4. if the matching succeeds, the sub term is considered to be the (only) instance of

5. the sub terms selected by the pattern are then all the copies of the instance of

6. these copies are searched looking again at the key, and higher order comparing

Note: occurrence numbers can be combined with patterns. They refer to the list of of sub terms selected by the (last) pattern (i.e. they are processed at the very end).

 \rightarrow a + (a + b) + (0 + a + b) + c