
Cheat Sheet

Terminology

Context


x : T

S : {set T}

xS : x \in S

The bar ===============

Goal

{
forall y, y == x -> y \in S︸ ︷︷ ︸ ︸ ︷︷ ︸

Assumptions Conclusion

Top is the first assumption, y here

Stack alternative name for the list of Assumptions

Popping from the stack

Note: in the following example we assume cmd does nothing, exactly like move, to
focus on the effect of the intro pattern.

cmd=> x px

Run cmd, then pop Top, put it in the context naming it x then pop the new Top
and names it px in the context

=========

forall x,

P x -> Q x -> G

→

x : T

px : P x

=========

Q x -> G

cmd=> [|x xs] //

Run cmd, then reason by cases on Top. In the first breanch do nothing, in the sec-
ond one pop two assumptions naming then x nd xs. Then get rid of trivial goals.
Note that, since only the first branch is trivial, one can write => [// | x xs]

too. caveat : Immediately after case and elim it does not perform any case
analysis, but can still introduce different names in different branches

=========

forall s : seq nat,

0 < size s -> P s

→

x : nat

xs : seq nat

=========

0 < size (x :: xs) -> P (x ::

xs)

cmd=> /andP[pa pb]

Run cmd, then apply the view andP to Top, then destruct the conjuction and
introduce in the context the two parts naming the pa and pb

=========

A && B -> C -> D
→

pa : A

pb : B

=========

C -> D

cmd=> /= {px}

Run cmd then simplify the goal then discard px from then context

x : nat

px : P x

=========

true && Q x -> R x

→
x : nat

=========

Q x -> R x

cmd=> [y -> {x}]

Run cmd then destruct the existential, then introduce y, then rewrite with Top
left to right and discard the equation, then clear x

x : nat

=========

(exists2 y, x = y & Q y)

-> P x

→
y : nat

=========

Q y -> P y

cmd=> /(_ x) h

Introduce h specialized to x

P : nat -> Prop

x : nat

======================

(forall n, P n) -> G

→

P : nat -> Prop

x : nat

h : P x

=================

G

Pushing to the stack

Note: in the following cmd is not apply or exact. Moreover we display the goal just
before cmd is run.

cmd: (x) y

Push y then push x on the stack. y is also cleared

x, y : nat

px : P x

=========

Q x y

→

x : nat

px : P x

=========

forall x0 y, Q x0 y

cmd: {-2}x (erefl x)

Push the type of (erefl x), then push x on the stack binding all but the second
occurrence

x : nat

=========

P x

→

x : nat

=========

forall x0,

x0 = x -> P x0

cmd: _.+1 {px}

Clear px and generalize the goal with respect to the first match of the pattern _.+1

x : nat

px : P x

=========

x < x.+1

→
x : nat

=========

forall x0, x < x0

Proof commands

rewrite Eab (Exc b).

Rewrite with Eab left to right, then with Exc by instantiating the first argument
with b

Eab : a = b

Exc : forall x, x = c

=========

P a

→

Eab : a = b

Exc : forall x, x = c

=========

P c

rewrite -Eab {}Eac.

Rewrite with Eab right to left then with Eac left to right, finally clear Eac

Eab : a = b

Eac : a = c

=========

P b

→
Eab : a = b

=========

P c

rewrite /(_ && _).

Unfold the definition of &&

a : bool

=========

a && a = a

→
a : bool

=========

if a then a else false = a

rewrite /= -[a]/(0+a) -/c.

Simplify the goal, then change a into 0+a, finally fold back the local definition c

a, b : nat

c := b + 3 : nat

=========

true && (a == b + 3)

→

a, b : nat

c := b + 3 : nat

=========

0 + a == c

apply: H.

Apply H to the current goal

H : A -> B

=========

B

→ =========

A

case: ab.

Eliminate the conjunction or disjunction

ab : A /\ B

=========

G

→ =========

A -> B -> G

case: (leqP a b).

Reason by cases using the leqP spec lemma

a, b : nat

=========

a <= b && b > a

→
a, b : nat

=========

true && false

a, b : nat

=========

false && true

elim: s.

Perform an induction on s

s : seq nat

=========

P s

→ =========

P [::]

=========

forall n s,

P s -> P (n :: s)

elim/last_ind: s

Start an induction on s using the induction principle last_ind

s : seq nat

=========

P s

→ =========

P [::]

=========

forall s x,

P s ->

P (rcons s x)

have pa : P a.

Open a new goal for P a. Once resolved introduce a new entry in the context for
it named pa

a : T

=========

G

→
a : T

=========

P a

a : T

pa : P a

=========

G

by [].

Prove the goal by trivial means, or fail

=========

0 <= n
→

exact: H.

Apply H to the current goal and then assert all remaining goals, if any, are trivial.
Equivalent to by apply: H.

H : B

=========

B

→



Reflect and views

reflect P b

States that P is logically equivalent to b

apply: (iffP V)

Proves a reflection goal, applying the view lemma V to the propositional part of
reflect. E.g. apply: (iffP idP)

P : Prop

b : bool

=============

reflect P b

→

P : Prop

b : bool

=========

b -> P

P : Prop

b : bool

=========

P -> b

apply/V1/V2

Prove boolean equalities by considering them as logical double implications. The
term V1 (resp. V2) is the view lemma applied to the left (resp. right) hand side.
E.g. apply/idP/negP

b1 : bool

b2 : bool

=========

b1 = ~~ b2

→

b1 : bool

b2 : bool

=========

b1 -> ~ b2

b1 : bool

b2 : bool

=========

~ b2 -> b1

rewrite: (eqP Eab)

rewrite with the boolean equality Eab

Eab : a == b

=============

P a

→
Eab : a == b

=========

P b

Idioms

case: b => [h1| h2 h3]

Push b, reason by cases, then pop h1 in the first branch and h2 and h3 in the
second

have /andP[x /eqP->] : P a && b == c

Open a subgoal for P a && b == c. When proved apply to it the andP view, de-
struct the conjunction, introduce x, apply the view eqP to turn b == c into b = c,
then rewrite with it and discard the equation

elim: n.+1 {-2}n (ltnSn n)=> {n}// n

General induction over n, note that the first goal has a false assumption
forall n, n < 0 -> ... and is thus solved by //

n : nat

=========

P n

→

n : nat

=========

(forall m, m < n -> P m) ->

forall m, m < n.+1 -> P m

rewrite lem1 ?lem2 //

Use the equation with premises lem1, then get rid of the side conditions with lem2

Searching

Search _ addn (_ * _) "C" in ssrnat

Search for all theorems with no constraints on the main conclusion (conclusion
head symbol is the wildcard _), that talk about the addn constant, matching any-
where the pattern (_ * _) and having a name containing the string "C" in the
module ssrnat

Misc notations

"f1 \o f2" := (comp f1 f2)

"x \in A" := (in_mem x (mem A))

"x \notin A" := (~~ (x \in A))

"[ /\ P1 , P2 & P3 ]" := (and3 P1 P2 P3)

"[ \/ P1 , P2 | P3 ]" := (or3 P1 P2 P3)

"[ && b1 , b2 , .. , bn & c ]" :=

(b1 && (b2 && .. (bn && c) .. ))

"[ || b1 , b2 , .. , bn | c ]" :=

(b1 || (b2 || .. (bn || c) .. ))

"#| A |" := (card (mem A))

"n .-tuple" := (tuple_of n)

"’I_ n" := (ordinal n)

"f1 =1 f2" := (eqfun f1 f2)

"b1 (+) b2" := (addb b1 b2)

Notations for natural numbers: nat

"n .+1" := (succn n)

"n .-1" := (predn n)

"m + n" := (addn m n)

"m - n" := (subn m n)

"m <= n" := (leq m n)

"m < n" := (m.+1 <= n)

"m <= n <= p" := ((m <= n) && (n <= p))

"m * n" := (muln m n)

"n .*2" := (double n)

"m ^ n" := (expn m n)

"n ‘!" := (factorial n)

"m %/ d" := (divn m d)

"m %% d" := (modn m d)

"m == n %[mod d ]" := (m %% d == n %% d)

"m %| d" := (dvdn m d)

"pi .-nat" := (pnat pi)

Notations for lists: seq T

"x :: s" := (cons _ x s)

"[ :: ]" := nil

"[ :: x1 ]" := (x1 :: [::])

"[ :: x & s ]" := (x :: s)

"[ :: x1 , x2 , .. , xn & s ]" :=

(x1 :: x2 :: .. (xn :: s) ..)

"[ :: x1 ; x2 ; .. ; xn ]" :=

(x1 :: x2 :: .. [:: xn] ..)

"s1 ++ s2" := (cat s1 s2)

Notations for iterated operations

"\big [ op / idx ]_ i F" :=

"\big [ op / idx ]_ ( i | P ) F" :=

"\big [ op / idx ]_ ( i <- r | P ) F" :=

"\big [ op / idx ]_ ( m <= i < n | P ) F" :=

"\big [ op / idx ]_ ( i < n | P ) F" :=

"\big [ op / idx ]_ ( i \in A | P ) F" :=

"\sum_ i F" :=

"\prod_ i F" :=

"\max_ i F" :=

"\bigcap_ i F" :=

"\bigcup_ i F" :=

caveat : in the general form, the iterated operation op is displayed in prefix form (not

in infix form) caveat : the string "big" occurs in every lemma concerning iterated
operations

Rewrite patterns

rewrite [pat]lem [in pat2]lem2 [X in pat3]lem3

Rewrite the subterms selected by the pattern pat with lem. Then in the subterms
selected by the pattern pat2 match the pattern inferred from the left hand side of
lem2 and rewrite the terms selected by it. Last, in the sub terms selected by pat3

rewrite with lem3 the sub terms identified by X exactly

rewrite {3}[in X in pat1]lem1

Like in rewrite [X in pat1]lem1 but use the pattern inferred from lem1 to iden-
tify the sub terms of X to be rewritten. Of these terms, rewrite only the third one.
Example: rewrite {3}[in X in f _ X]E.

E : a = c

=========

a + f a (a + a) = f a (a + a) + a

→

E : a = c

=========

a + f a (a + a) = f a (c + a) + a

rewrite [e in X in pat1]lem1

Like before, but override the pattern inferred from lem1 with e

rewrite [e as X in pat1]lem1

Like rewrite [X in pat1]lem1 but match pat1[X := e] insted of just pat1

rewrite /def1 -[pat]/term /=

Unfold all occurrences of def1. Then match the goal against pat and change all
its occurrences into term (pure computation). Last simplify the goal

rewrite 3?lem2 // {hyp} => x px

Rewrite from 0 to 3 times with lem2, then try to solve with by [] all the goals.
Finally clear hyp and introduce x and px

Pattern matching detailed rules

pattern a term, possibly containing _

key The head symbol of a pattern

The sub terms selected by a pattern:

1. the goal is traversed outside in, left to right, looking for verbatim occurrences of
the key

2. the sub terms whose key matches verbatim are higher order matched (i.e. up to
definition unfolding and recursive function computation) against the pattern

3. if the matching fails, the next sub term whose key matches is tried

4. if the matching succeeds, the sub term is considered to be the (only) instance of
the pattern

5. the sub terms selected by the pattern are then all the copies of the instance of
the pattern

6. these copies are searched looking again at the key, and higher order comparing
the arguments pairwise

Note: occurrence numbers can be combined with patterns. They refer to the list of of
sub terms selected by the (last) pattern (i.e. they are processed at the very end).
set n := {2 4}(_ + b)

Put in the context a local definition named n for the second and fourth occurrences
of the sub terms selected by the pattern (_ + b)

=========

a + c + (a + b) + (a + b) =

a + (a + b) + (0 + a + b) + c

→

n := a + b

=========

a + c + (a + b) + n =

a + (a + b) + n + c


