Basic Cheat Sheet

Rewriting

rewrite Eab (Exc b).
Rewrite with Eab left to right, then with Exc by instantiating the first argument with b

$$
\begin{array}{cc}
\text { Eab : } \mathrm{a}=\mathrm{b} \\
\text { Exc : forall } \mathrm{x}, \mathrm{x}=\mathrm{c} \\
========= \\
\mathrm{P} \text { a } & \rightarrow \begin{array}{l}
\text { Eab : } \mathrm{a}=\mathrm{b} \\
\text { Exc : forall } \mathrm{x}, \mathrm{x}=\mathrm{c} \\
=========
\end{array} \\
\mathrm{P} \text { c }
\end{array}
$$

P c
rewrite -Eab \{\}Eac.
Rewrite with Eab right to left then with Eac left to right, finally clear Eac
Eab : a = b
Eac : $a=c$

$$
\begin{aligned}
& \text { Eab : a }=\mathrm{b} \\
& \rightarrow \quad========= \\
& \mathrm{P} \mathrm{C}
\end{aligned}
$$

Pb
rewrite !addnA.
Rewrite with addnA, associativity of addition, as many times as possible.
$a+(b+(c+d))$
$\rightarrow \begin{aligned} & ========= \\ & \mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}\end{aligned}$

Reasoning by cases or by induction

case: $\mathrm{n}=>$ [|p]
Reson by cases on n, name p the predecessor
n : nat
$\rightarrow \begin{gathered}========= \\ \text { P } 0\end{gathered}$

$$
\begin{gathered}
\text { P : nat } \\
======== \\
\text { P p. }+1
\end{gathered}
$$

Pn
[Hm].
im: $\mathrm{n}=>$ [|m IHm].
Perform an induction on n
n : nat Pn
$\rightarrow \begin{gathered}======== \\ \\ \text { P }\end{gathered}$
m : nat P
IHm : P m

$$
\text { P m. }+1
$$

Naming and processing assumptions

move=> x /lemma px
Name the first item x then view the top item via lemma and name the result qx. lemma has type forall a, P a -> Q a, or reflect P Q
========

$$
\text { P x } \rightarrow R \text { x } \rightarrow
$$

$$
\begin{array}{r}
\mathrm{x}: \mathrm{T} \\
\rightarrow \quad \mathrm{qx}: \mathrm{Q} \mathrm{x} \\
========= \\
\mathrm{R} \times \mathrm{x}->\mathrm{G}
\end{array}
$$

move=> /andP [/eqP-> pb]
Process the top item with the view andP, then destruct the resulting conjunction, use eqP on the first item and then rewrite with it, finally name the rest pb .
a, b : nat
a, b : nat
$(\mathrm{a}==7)$ \&\& $10<=\mathrm{b}->\mathrm{a}+3<=\rightarrow \begin{aligned} & \mathrm{pb}: 10<=\mathrm{b} \\ & ========\end{aligned}$
b
$7+3<=\mathrm{b}$
move=> /= \{pa\}
Simplify the goal, then clear pa from the context
a : nat
pa : a != 3
=========

$$
\begin{aligned}
& \mathrm{a}: \text { nat } \\
& \rightarrow \quad======== \\
&(10<=a)
\end{aligned}
$$

Back and Forward chaining

apply: H.
Apply H to the current goal
H : A -> B \rightarrow =========
B
A
apply/subsetP.
Apply the view subsetP to the current goal
A, B: \{set T\}
A, B: \{set T\}
=========
\rightarrow =========
B \subset A forall x, x in $B->x$ in A

have pa : Pa.

Open a new goal for P a. Once resolved introduce a new entry in the context for it named pa
$\mathrm{a}: \mathrm{T}$
$========$
G
$\rightarrow \begin{gathered}\mathrm{a}: \mathrm{T} \\ ======== \\ \mathrm{P}\end{gathered}$
$\mathrm{a}: \mathrm{T}$
$\mathrm{pa}: \mathrm{P}$ a
$========$
G
by []
Prove the goal by trivial means, or fail

$$
0<=\mathrm{n}
$$

