Rewriting

rewrite Eab (Exc b).

Rewrite with Eab left to right, then with Exc by instantiating the first argument with b

Eab :
$$a = b$$
Eab : $a = b$ Exc : forall x, $x = c$ Exc : forall x, $x = c$ P aP c

rewrite -Eab {}Eac.

Rewrite with Eab right to left then with Eac left to right, finally clear Eac

Eab :
$$a = b$$
Eab : $a = b$ Eac : $a = c$ \rightarrow ===== $P c$

rewrite !addnA.

Rewrite with addnA, associativity of addition, as many times as possible.

d

m

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ a + (b + (c + d)) \end{array} \end{array} \rightarrow \begin{array}{c} \begin{array}{c} \end{array} \\ a + b + c + \end{array}$$

Reasoning by cases or by induction

case: $n \Rightarrow [|p]$.

Reson by cases on n, name p the predecessor

n : nat		p : nat
========	\rightarrow D C	=========
Рп	ΡO	P p.+1

elim: $n \Rightarrow [|m IHm]$.

Perform an induction on **n**

n : nat		m : nat
II. IIat		IHm : P
	\rightarrow P O	========
Рп		P m.+1

elim: s => // x xs IHxs.

Get rid of trivial goals, hence no [...] ...]

	x : nat
s : seq nat	xs : seq nat
========	ightarrow IHxs : P xs
Рs	
	P (x :: xs)

Basic Cheat Sheet

Naming and processing assumptions

move=> x /lemma px

forall a, P a -> Q a, or reflect P Q

		x : T
forall x,	\rightarrow	qx : Q x
P x -> R x -> G		R x -> G

move=> /andP[/eqP-> pb]

Process the top item with the view andP, then destruct the resulting conjunction, use eqP on the first item and then rewrite with it, finally name the rest pb.

a, b : nat	a, b : nat
	pb : 10 <= b
$(a == 7) \&\& 10 \le b \rightarrow a + 3 \le \neg$	
b	7 + 3 <= b

move=> /= {pa}

Simplify the goal, then clear **pa** from the context

a : nat		
pa : a != 3		a : nat
pa · a · o	\rightarrow	=======
		(10 <= a)
(3 == 7) (10 <= a)		(10 0 0)

Back and Forward chaining

H : A -> B ===== B	\rightarrow A	
apply/subsetP. Apply the view s	subsetP to the current g	oal
A, B : {set T	$\begin{array}{ccc} & & & \\ & & & \\ & \rightarrow & = = = = = = = = = = = = = = = = =$	
B \subset A	,	- x, x \in B ->
have pa : P a.		
Open a new goal	l for P a. Once resolved i	introduce a new
Open a new goal a : T =======	l for P a. Once resolved i a : T \rightarrow =========	introduce a new a : T pa : F
a : T	a : T	a : T
a : T ====== G by [].	a : T \rightarrow ========	a : T pa : F ======

Name the first item x then view the top item via lemma and name the result qx. lemma has type

b

∖in A

ntry in the context for it named pa