Basic Cheat Sheet

Rewriting Naming and processing assumptions

move=> x /lemma px

rewrite Eab (Exc b). Name the first item x then view the top item via lemma and name the result gx. lemma has type

Rewrite with Eab left to right, then with Exc by instantiating the first argument with b forall a, P a -> Q a, orreflect P Q

Eab : a=bD» Eab : a =D ========= XX: TQ <

Exc : forall x, x = ¢ Exc : forall x, x = ¢ . forall x, — @

— _========
P a Pc
move=> /andP[/eqP-> pb]
rewrite -Eab {}Eac. Process the top item with the view andP, then destruct the resulting conjunction, use eqP on the first item

Rewrite with Eab right to left then with Eac left to right, finally clear Eac and then rewrite with it, finally name the rest pb.

Eab - B a, b nat a, b nat
__if__-i._— C — ========= (a == 7) && 10 <= b -> a + 3 <= [———
_________ P c b 7T+ 3<=D

move=> /= {pa}
rewrite l!addnA. Simplify the goal, then clear pa from the context

Rewrite with addnA, associativity of addition, as many times as possible.

a nat
a a 1= 3 a nat
———— — ————— ———— — ————— p : % ———— ——————
% —— — — — ————
10 <=
a+ (b+ (c+d) a+b+c+d (3 ==7) || (10 <= a) (a)
Back and Forward chaining
Reasoning by cases or by induction apply: H.
Apply H to the current goal

case: n => [|p]. H:A->B

Reson by cases on n, name p the predecessor =;======= —

n:nat p : nat apply/subsetP.

========= N —l;_(_)_““ ========= Apply the view subsetP to the current goal

Pn Pp.+1

A, B : {set T} A, B : {set T}
ellm: n => [lm IHm] . ========= —> =========
. . B \subset A forall x, x \in B -> x \in A
Perform an induction on n
have pa : P a.
. m : nat Open a new goal for P a. Once resolved introduce a new entry in the context for it named pa
P n P O _======== a T a T a : P
P m,+1 === — === _g? _____ i
G Pa

elim: s => // x xs IHxs. G

Get rid of trivial goals, hence no [.. o] by [I].

Prove the goal by trivial means, or fail

S : seq nat Xs : seq nat 0 <= 1 —

========= — IHxs : P xs

P S ===

