.. coq:: From mathcomp Require Import all_ssreflect. From mathcomp Require Import all_algebra. .. coq:: no-in Notation "'\ccneq{' p '}{' q } " := (p != q). Notation "'\cceq{' p '}{' q } " := (p == q). Notation "'\ccprimegtz{' p }" := (prime_gt0 p). Notation "'\ccpolyX'" := 'X%R. Notation "'\ccpolyXn{' n }" := ('X^n)%R. Notation "'\ccelem{' l } { n }" := (nth (GRing.zero _) l n). Notation "'\ccord{' n }" := (ordinal n). Notation "'\ccordz{}'" := ord0. Notation "'\ccNat{}'" := nat. Notation "'\ccSucc{' n '}'" := (S n). Notation "'\ccSucct{' n '}'" := (S (S n)). Notation "'\ccpred{' n '}'" := (predn n). Infix "\leq" := leq (at level 40). Notation "'\ccltn{' n '}{' m }" := (n < m) (at level 40). Infix "\times" := muln (at level 40). Infix "\rtimes" := GRing.mul (at level 40). Notation "\ccbin{ x } { y }" := (binomial x y). Notation "\ccPow{ x } { y }" := (expn x y). Notation "\ccPowr{ x } { y }" := (GRing.exp x y) (at level 29, x at level 29). Infix "\times" := muln (at level 40). Notation "'\ccNsumo{' i '}{' f '}'" := (\sum_i f) (format "'\ccNsumo{' i '}{' f '}'", at level 41, f at level 41, i at level 50). Notation "'\ccRsumo{' i '}{' f '}'" := (\sum_i f)%R (format "'\ccRsumo{' i '}{' f '}'", at level 41, f at level 41, i at level 50). Notation "'\ccRsumod{' i '}{' j '}{' k '}{' f '}'" := (\sum_(i | j != k) f)%R (format "'\ccRsumod{' i '}{' j '}{' k '}{' f '}'", at level 41, f at level 41, i at level 50). Notation "'\ccNsum{' i '}{' r '}{' f '}'" := (\sum_(i < r) f) (format "'\ccNsum{' i '}{' r '}{' f '}'", at level 41, f at level 41, i, r at level 50). Notation "'\ccRsum{' i '}{' r '}{' f '}'" := (\sum_(i < r) f)%R (format "'\ccRsum{' i '}{' r '}{' f '}'", at level 41, f at level 41, i, r at level 50). Notation "'\ccNsumd{' i '}{' r '}{' s '}{' f '}'" := (\sum_(r <= i < s) f) (format "'\ccNsumd{' i '}{' r '}{' s '}{' f '}'", at level 41, f at level 41, i, r at level 50). Notation "'\ccRsumd{' i '}{' r '}{' s '}{' f '}'" := (\sum_(r <= i < s) f)%R (format "'\ccRsumd{' i '}{' r '}{' s '}{' f '}'", at level 41, f at level 41, i, r at level 50). Notation "'\ccNprod{' i '}{' r '}{' f '}'" := (\prod_(i < r) f) (format "'\ccNprod{' i '}{' r '}{' f '}'", at level 41, f at level 41, i, r at level 50). Notation "'\ccRprod{' i '}{' r '}{' f '}'" := (\prod_(i < r) f)%R (format "'\ccRprod{' i '}{' r '}{' f '}'", at level 41, f at level 41, i, r at level 50). Notation "\ccNot{ x }" := (not x) (at level 100). Infix "\ccandb" := andb (at level 190, right associativity). Infix "\wedge" := and (at level 190, right associativity). Notation "A \Rightarrow{} B" := (forall (_ : A), B) (at level 200, right associativity). Notation "'\ccForall{' x .. y '}{' P '}'" := (forall x, .. (forall y, P) ..) (at level 200, x binder, y binder, right associativity, format "'\ccForall{' x .. y '}{' P '}'"). Notation "'\ccExists{' x .. y '}{' P '}'" := (exists x, .. (exists y, P) ..) (at level 200, x binder, y binder, right associativity, format "'\ccExists{' x .. y '}{' P '}'"). Notation "'\ccbExists{' x .. y '}{' P '}'" := ([exists x, .. ([exists y, P]) ..]) (at level 200, x binder, y binder, right associativity, format "'\ccbExists{' x .. y '}{' P '}'"). Notation " \ccmodn{ a } { b } " := (modn a b) (at level 40, a at level 41, b at level 41, left associativity). Notation " \ccmodneq{ a } { b } { q }" := (a = b %[mod q]). Notation "'\ccdvdn{' a } { b } " := (dvdn a b). Notation "'\ccdivn{' a } { b } " := (divn a b). Notation "'\ccpoly{' T }" := (poly_of (Phant T)). Notation "'\ccprime{' p }" := (prime p). Notation "'\ccbump{' p } { q }" := (bump p q). Notation "'\cclift{' p } { q }" := (lift p q). Notation "'\ccfp{' p }" := ('Z_(pdiv p)). Notation "'\ccordinal{' p }" := (Ordinal p). Notation "'\ccapp{' f } { p }" := (f p). Notation "'\ccffun{' fT }" := (finfun_of (Phant fT)). Notation "'\ccdffun{' x } { aT } { E }" := (finfun (fun x : aT => E)). Notation "'\ccnatmul{' x } { n }" := (GRing.natmul x n). Notation "'\ccnatmulr{' n }" := (n%:R)%R. Notation "'\cczptrunk{' x }" := (Zp_trunc x). .. raw:: html