(** * Theory of Sets EII-3 Correspondences Copyright INRIA (2009-2013) Apics; Marelle Team (Jose Grimm). *) (* $Id: sset2.v,v 1.76 2016/05/18 14:54:53 grimm Exp $ *) Require Import ssreflect ssrfun ssrbool eqtype ssrnat. Require Export sset1. Set Implicit Arguments. Unset Strict Implicit. Unset Printing Implicit Defensive. (** ** EII-3-1 Graphs et correspondences *) Module Correspondence. (** ** Additional lemmas *) (** Proposition 1: existence and uniqueness of range and domain *) Theorem range_domain_exists r: sgraph r -> ((exists! a, forall x, inc x a <-> (exists y, inc (J x y) r)) /\ (exists! b, forall y, inc y b <-> (exists x, inc (J x y) r))). Proof. move=> gr; split; apply /unique_existence; split. - exists (domain r) => t; apply/(domainP gr). - by move=> x y Hx Hy; set_extens t; rewrite Hx Hy. - by exists (range r) => t; apply/(rangeP gr). - by move=> x y Hx Hy; set_extens t; rewrite Hx Hy. Qed. (** A product is a special graph *) Lemma sub_graph_setX r: sgraph r -> sub r ((domain r) \times (range r)). Proof. move=> gr t tr; apply/setX_P; split; fprops. Qed. Lemma setX_graph x y: sgraph (x \times y). Proof. by move=> t /setX_P []. Qed. Lemma sub_setX_graph u x y: sub u (x \times y) -> sgraph u. Proof. move=> su t tu; exact: (setX_graph (su _ tu)). Qed. Hint Resolve setX_graph: fprops. Lemma setX_relP x y a b: related (x \times y) a b <-> (inc a x /\ inc b y). Proof. by split;[ move/setX_P => [_ ]; aw | move => [ax biy]; apply: setXp_i ]. Qed. Lemma setX_domain x y: nonempty y -> domain (x \times y) = x. Proof. move=> [z zy]; set_extens t. by case/funI_P => u /setX_P [_ xx _] ->. move=> tx; apply/funI_P;exists (J t z); aw; fprops. Qed. Lemma setX_range x y: nonempty x -> range (x \times y) = y. Proof. move=> [z zy]; set_extens t. by case/(funI_P) => u /setX_P [_ _ xx] ->. move=> tx; apply/funI_P;exists (J z t); aw; fprops. Qed. Hint Rewrite setX_domain setX_range : bw. (** Diagonal of a set: this is a functional graph [x -> x] *) Definition diagonal x := Zo (coarse x)(fun y=> P y = Q y). Lemma diagonal_i_P x u: inc u (diagonal x) <-> [/\ pairp u, inc (P u) x & P u = Q u]. Proof. split; first by case/Zo_P => /setX_P [ta tb _] tc. move=> [ta tb tc]; apply: Zo_i => //;rewrite -ta; apply: setXp_i => //; ue. Qed. Lemma diagonal_pi_P x u v: inc (J u v) (diagonal x) <-> (inc u x /\ u = v). Proof. apply: (iff_trans (diagonal_i_P x (J u v))); aw. split; [by case | move => []; split; fprops ]. Qed. Lemma diagonal_is_identity x: diagonal x = identity_g x. Proof. set_extens t. move /diagonal_i_P => [pt Pt eql]; rewrite -pt -eql;apply /funI_P; ex_tac. by move /funI_P => [z zx ->]; apply/diagonal_pi_P. Qed. (** A correspondence is a triple (G,A,B), graph, source and target, such that [G] is a subset of the product [A \times B]. The domain of [G] is a subset of [A]. The range of [G] is a subset of [B]. *) Definition triplep f := pairp f /\ pairp (Q f). Definition source x := P (Q x). Definition target x := Q (Q x). Definition graph x := P x. Definition triple s t g := J g (J s t). Definition correspondence f := triplep f /\ sub (graph f) ((source f) \times (target f)). Lemma corr_propcc s t g: sub g (s \times t) <-> [/\ sgraph g, sub (domain g) s & sub (range g) t]. Proof. split => [sg | [gg sd sr] x xg ]. have gg:= (sub_setX_graph sg). by split =>// z /funI_P [y yp ->];move/setX_P: (sg _ yp) => [_]. rewrite -(gg _ xg); apply: setXp_i; [ apply: sd | apply: sr]; fprops. Qed. Lemma corr_propc f (g := graph f): correspondence f -> [/\ sgraph g, sub (domain g) (source f) & sub (range g) (target f)]. Proof. by move=> [tf sg]; apply /corr_propcc. Qed. Lemma triple_corr s t g: triplep (triple s t g). Proof. by rewrite /triple; split; [| aw]; fprops. Qed. Lemma corresp_recov f: triplep f -> triple (source f) (target f) (graph f) = f. Proof. by rewrite /triple /source /target /graph => [] [pf ->]. Qed. Lemma corresp_recov1 f: correspondence f -> triple (source f) (target f) (graph f) = f. Proof. by move => [t _]; apply: corresp_recov. Qed. Lemma corresp_s s t g: source (triple s t g) = s. Proof. rewrite /triple /source; aw. Qed. Lemma corresp_t s t g: target (triple s t g) = t. Proof. rewrite /triple /target; aw. Qed. Lemma corresp_g s t g: graph (triple s t g) = g. Proof. rewrite /triple /graph; aw. Qed. Hint Rewrite corresp_s corresp_t corresp_g : aw. Lemma corresp_create s t g: sub g (s \times t) -> correspondence (triple s t g). Proof. by move=> h; split; [apply: triple_corr | aw ]. Qed. (** Some properties of a correspondence *) Lemma corresp_is_graph g: correspondence g -> sgraph (graph g). Proof. by case/corr_propc. Qed. Lemma corresp_sub_range g: correspondence g -> sub (range (graph g)) (target g). Proof. by move /corr_propc => [_ _]. Qed. Lemma corresp_sub_domain g: correspondence g -> sub (domain (graph g)) (source g). Proof. by move /corr_propc => [_]. Qed. Hint Resolve corresp_sub_range corresp_sub_domain corresp_is_graph: fprops. (** The set of correspondences [E->F] is the product of [P] and [singleton E] and [singleton F], where [P == powerset (E \times F)] is the set of graphs of correspondences *) Definition correspondences x y := (powerset (x \times y)) \times ( (singleton x) \times (singleton y)). Lemma correspondences_P x y z: inc z (correspondences x y) <-> [/\ correspondence z, source z = x & target z = y]. Proof. rewrite /correspondence /source/target. split. by case/setX_P => [pz /setP_P spz/setX_P [p_qz /set1_P -> /set1_P ->]]. move => [ [ [tp sgp] aux] <- <-]. apply:setX_i;[ exact | by apply/ setP_P | apply:setX_i; fprops]. Qed. (** Image by the graph [r] of a set [u] *) Definition direct_image f X:= Zo (range f) (fun y=>exists2 x, inc x X & inc (J x y) f). Definition Vfs f := direct_image (graph f). Definition Imf f := Vfs f (source f). Lemma dirim_P f X y: inc y (direct_image f X) <-> exists2 x, inc x X & inc (J x y) f. Proof. split => [ /Zo_hi // | [x xu pr]]; apply/Zo_i; ex_tac. Qed. Lemma dirimE f X: fgraph f -> sub X (domain f) -> direct_image f X = fun_image X (Vg f). Proof. move => sgf sxd; set_extens t. move /dirim_P => [x xX pf]; apply /funI_P. move: (pr2_V sgf pf); aw => ->; ex_tac. move /funI_P => [z sX ->]; apply /dirim_P; ex_tac; apply: fdomain_pr1 => //. by apply: sxd. Qed. Lemma dirim_Sr f X: sub (direct_image f X) (range f). Proof. apply: Zo_S. Qed. Lemma dirim_domain f: sgraph f -> direct_image f (domain f) = range f. Proof. move=> sgf; apply: extensionality; first by apply: dirim_Sr. move => t /funI_P [y yf ->]; apply: Zo_i; first by fprops. by exists (P y); fprops;rewrite (sgf _ yf). Qed. Lemma dirim_set0 f: direct_image f emptyset = emptyset. Proof. by apply /set0_P => t /Zo_hi [x /in_set0]. Qed. Lemma dirim_setn0 f u: sgraph f -> nonempty u -> sub u (domain f) -> nonempty (direct_image f u). Proof. move=> gr [x xu] udf; move: (udf _ xu); case /(domainP gr)=> [y Jr]. exists y;apply: Zo_i; ex_tac. Qed. Theorem dirim_S f: {compat (direct_image f): u v / sub u v}. Proof. move=> u u' uu' t /dirim_P [x xu pr]; apply/dirim_P. by exists x => //;apply: uu'. Qed. (** Section of the graph [r] at [x] *) Definition im_of_singleton f x:= direct_image f (singleton x). Lemma dirim_set1_P f x y: inc y (im_of_singleton f x) <-> inc (J x y) f. Proof. apply: (iff_trans (dirim_P f _ y)). split; [ by move => [z /set1_P ->] | move => pf; ex_tac; fprops ]. Qed. Lemma dirim_set1_S f f': sgraph f -> sgraph f' -> ((forall x, sub (im_of_singleton f x) (im_of_singleton f' x)) <-> sub f f'). Proof. move=> gr gr'; split=> s x t. move: (gr _ t) => eql; rewrite - eql;apply/dirim_set1_P. by apply: s; apply/dirim_set1_P; rewrite eql. by move/dirim_set1_P => jf; apply/dirim_set1_P; apply:s. Qed. (** ** EII-3-2 Inverse of a correspondence *) (** Inverse graph of [r] *) Definition inverse_graph r := Zo ((range r) \times (domain r)) (fun y=> inc (J (Q y)(P y)) r). Lemma igraph_graph r: sgraph (inverse_graph r). Proof. move=> x /Zo_S xp; apply: (setX_pair xp). Qed. Hint Resolve igraph_graph: fprops. Lemma igraphP r y: inc y (inverse_graph r) <-> (pairp y /\ inc (J (Q y)(P y)) r). Proof. split; first by case/Zo_P => yp pr; split => //; apply: (setX_pair yp). move => [py pr]; exact:(Zo_i (setX_i py (range_i pr) (domain_i pr)) pr). Qed. Lemma igraph_pP r x y: inc (J x y) (inverse_graph r) <-> inc (J y x) r. Proof. split; [case/igraphP;aw | move=> pr; apply/igraphP; aw; fprops ]. Qed. Lemma igraph_alt r: sgraph r -> inverse_graph r = fun_image r (fun z => J (Q z) (P z)). Proof. move=> gr; set_extens t. by move /igraphP => [pt h];apply/funI_P; ex_tac; aw; rewrite pt. by move /funI_P => [c zr ->]; apply/igraph_pP; rewrite (gr _ zr). Qed. Lemma igraph_involutive : {when sgraph, involutive inverse_graph}. Proof. move=> f gr; set_extens x;first by case/igraphP => px /igraph_pP; rewrite px. move => xf; have px:= (gr _ xf). by rewrite -px;apply/igraph_pP /igraph_pP; rewrite px. Qed. Lemma igraph_range r: sgraph r -> range (inverse_graph r) = domain r. Proof. move=> gr; set_extens x; first by move/funI_P => [y /igraphP [_ h] ->]; ex_tac. move/funI_P => [y yi ->]; apply: (range_i (x:=(Q y))); apply/igraph_pP. by rewrite (gr _ yi). Qed. Lemma igraph_domain r: sgraph r -> domain (inverse_graph r) = range r. Proof. move=> gr;rewrite - {2} (igraph_involutive gr) igraph_range //. apply: igraph_graph. Qed. Lemma igraph0: inverse_graph (emptyset) = emptyset. Proof. by apply /set0_P => t /igraphP [_ /in_set0]. Qed. Hint Rewrite igraph0: bw. Lemma igraphX x y: inverse_graph (x \times y) = y \times x. Proof. set_extens t. by move /igraphP => [pt /setX_P]; aw; move => [_ pa pb];apply: setX_i. move/setX_P=> [pt pa pb]; apply /igraphP; fprops. Qed. Lemma igraph_identity_g x: inverse_graph (identity_g x) = identity_g x. Proof. rewrite/inverse_graph identity_r identity_d - diagonal_is_identity. set_extens z;move /Zo_P => [pa pb]; apply: Zo_i => //. by move/Zo_hi: pb; aw. by rewrite -pb;apply/diagonal_pi_P;split => //; move /setX_P: pa => [_]. Qed. Hint Rewrite igraph_identity_g igraphX: aw. (** Inverse correspondence *) Definition inverse_fun m := triple (target m) (source m) (inverse_graph (graph m)). Lemma icor_correspondence m: correspondence m -> correspondence (inverse_fun m). Proof. move => [_ pb]; apply: corresp_create => x/igraphP [px pg]. by move /setXp_P: (pb _ pg) => [pc pd]; apply: setX_i. Qed. Lemma icor_involutive: {when correspondence, involutive inverse_fun}. Proof. move=> m cm; rewrite /inverse_fun; aw; rewrite igraph_involutive;fprops. by apply: corresp_recov1. Qed. Lemma ifun_s f: source (inverse_fun f) = target f. Proof. rewrite/inverse_fun; aw. Qed. Lemma ifun_t f: target (inverse_fun f) = source f. Proof. rewrite/inverse_fun; aw. Qed. Lemma ifun_g f: graph (inverse_fun f) = inverse_graph (graph f). Proof. rewrite /inverse_fun;aw. Qed. Hint Rewrite ifun_s ifun_t ifun_g : aw. Hint Resolve icor_correspondence: fprops. (** Inverse image by a graph r of a set x *) Definition inverse_image r := direct_image (inverse_graph r). Definition Vfi f:= inverse_image (graph f). Definition Vfi1 f x := Vfi f (singleton x). Lemma iim_fun_pr r: Vfi r = Vfs (inverse_fun r). Proof. rewrite /Vfi /inverse_fun /Vfs; aw. Qed. Lemma iim_graph_P x r y: (inc y (inverse_image r x)) <-> (exists2 u, inc u x & inc (J y u) r). Proof. by apply: (iff_trans (dirim_P _ x y)); split; move => [u ux pr]; ex_tac; apply /igraph_pP. Qed. Lemma iim_fun_P x r y: inc y (Vfi r x) <-> (exists2 u, inc u x & inc (J y u) (graph r)). Proof. exact:iim_graph_P. Qed. (** ** EII-3-3 Composition of two correspondences *) (** Composition of two graphs *) Definition composeg r' r := Zo ((domain r) \times (range r')) (fun w => exists2 y, inc (J (P w) y) r & inc (J y (Q w)) r'). Notation "x \cg y" := (composeg x y) (at level 50). Lemma compg_graph r r': sgraph (r \cg r'). Proof. by move=> t /Zo_P [/setX_pair]. Qed. Hint Resolve compg_graph: fprops. Lemma compg_P r r' x: inc x (r' \cg r) <-> (pairp x /\ (exists2 y, inc (J (P x) y) r & inc (J y (Q x)) r')). Proof. split;first by move/Zo_P => [pa pb];split => //; apply: (setX_pair pa). move => [pa pb]; apply: Zo_i => //. move: pb => [z pc pd];apply/setX_P;split => //; ex_tac. Qed. Lemma compg_pP r r' x y: inc (J x y) (r' \cg r) <-> (exists2 z, inc (J x z) r & inc (J z y) r'). Proof. apply: (iff_trans (compg_P _ _ _) ); aw. split;[ by case | move => h; fprops]. Qed. Lemma compg_domain_S r r': sub (domain (r' \cg r)) (domain r). Proof. move => t /funI_P [y /compg_P [_ [s sa _]] ->]; ex_tac. Qed. Lemma compg_rangeS r r': sub (range (r' \cg r)) (range r'). Proof. move => t /funI_P [y /compg_P [_ [s _ sa]] ->]; ex_tac. Qed. Lemma compg_composef f g: f \cfP g -> f \cf g = f \cg g. Proof. move => [fgf fgg srd]. set_extens t. move /funI_P => [z zd ->]; apply /compg_pP. exists (Vg g z); apply: fdomain_pr1 => //; apply: srd. apply /range_gP => //; ex_tac. move/compg_P => [pt [y Pt Qt]]; apply /funI_P; exists (P t); first by ex_tac. by move: (pr2_V fgg Pt)(pr2_V fgf Qt); aw => <- <-. Qed. (** Proposition 3, inverse of composition *) Theorem compg_inverse: {morph inverse_graph : a b / a \cg b >-> b \cg a}. Proof. move => r r';set_extens x. move/igraphP => [px] /compg_pP [z pa pb]. by rewrite -px; apply/compg_pP; exists z => //; apply/igraph_pP. move/compg_P => [px [y /igraph_pP pa /igraph_pP pb]]. by rewrite -px; apply/igraph_pP/compg_pP; exists y. Qed. (** Proposition 4, associativity of composition *) Theorem compgA : associative composeg. Proof. move => r r' r'';set_extens x. move /compg_P=> [px [y /compg_pP [z pa pb] pc]]. rewrite -px; apply/compg_pP; ex_tac; apply/compg_pP; ex_tac. move /compg_P=> [px [y pa /compg_pP [z pb pc]]]. rewrite -px; apply/compg_pP; ex_tac; apply/compg_pP; ex_tac. Qed. (** Proposition 5 Image of composition *) Theorem compg_image: action_prop direct_image composeg. Proof. move => gr_imegr' r x;set_extens t. move /dirim_P => [z zx /compg_pP [u pa pb]]. apply/dirim_P; ex_tac; apply/dirim_P; ex_tac. move /dirim_P => [z /dirim_P [u pa pb] pc]. apply/dirim_P; ex_tac; apply/compg_pP; ex_tac. Qed. (** More properties of composition *) Lemma compg_domain r r': sgraph r' -> domain (r' \cg r) = inverse_image r (domain r'). Proof. move=>gr; have cg:= (@compg_graph r' r); set_extens t. move/(domainP cg) => [y /compg_pP [z pa pb]]. apply/iim_graph_P; ex_tac; ex_tac. move/iim_graph_P => [x /(domainP gr) [y pa] pb]. apply/(domainP cg); exists y; apply /compg_pP; ex_tac. Qed. Lemma compg_range r r': sgraph r -> range (r' \cg r) = direct_image r' (range r). Proof. move=>gr;have cg:= (@compg_graph r' r); set_extens t. move/(rangeP cg) => [y /compg_pP [z pa pb]]; apply/dirim_P; ex_tac; ex_tac. move/dirim_P => [x /(rangeP gr) [y pa] pb]. apply/(rangeP cg); exists y; apply /compg_pP; ex_tac. Qed. Lemma inverse_direct_imageg r x: sgraph r -> sub x (domain r) -> sub x (inverse_image r (direct_image r x)). Proof. move=> gt xd t tx. move /funI_P: (xd _ tx)=> [y yr eq]. have aux:inc (J t (Q y)) r by rewrite eq (gt _ yr). apply/iim_graph_P;ex_tac;apply/dirim_P; ex_tac. Qed. Lemma compg_S r r' s s': sub r s -> sub r' s' -> sub (r' \cg r) (s' \cg s). Proof. move=> rs rs' t /compg_P [ {3} <- [ x ir ir']]. by apply/compg_pP; exists x; [apply: rs | apply: rs']. Qed. (** Composition of two correspondences *) Definition composableC r' r := [/\ correspondence r, correspondence r' & source r' = target r]. Definition compose r' r := triple (source r)(target r') ((graph r') \cg (graph r)). Notation "f1 \co f2" := (compose f1 f2) (at level 50). Lemma compf_correspondence r' r: correspondence r -> correspondence r' -> correspondence (r' \co r). Proof. rewrite/compose=> cr cr'; apply: corresp_create. move=>t /compg_P [pt [y ir ir']]; apply:setX_i => //. move /setX_P: ((proj2 cr) _ ir) => [_ pa _];move: pa; aw. move /setX_P: ((proj2 cr') _ ir');aw; move => [_ _ pb]; move: pb; aw. Qed. Lemma compf_image: action_prop Vfs compose. Proof. move => r' r x; rewrite /Vfs -compg_image /compose; aw. Qed. Lemma compf_inverse: {morph inverse_fun : a b / a \co b >-> b \co a}. Proof. by move=> a b; rewrite /inverse_fun /compose; aw; rewrite compg_inverse. Qed. (** Identity correspondence, will be shown to be a function later *) Definition identity x := triple x x (identity_g x). Lemma identity_corresp x: correspondence (identity x). Proof. by apply: corresp_create; rewrite -diagonal_is_identity; apply: Zo_S. Qed. Lemma identity_s x: source (identity x) = x. Proof. rewrite/identity; aw. Qed. Lemma identity_t x: target (identity x) = x. Proof. rewrite/identity; aw. Qed. Lemma identity_graph0 x: graph (identity x) = identity_g x. Proof. rewrite/identity; aw. Qed. Hint Rewrite identity_s identity_t: aw. Lemma compf_id_left m: correspondence m -> (identity (target m)) \co m = m. Proof. move=> cm. suff : ((identity_g (target m)) \cg (graph m) = graph m). by rewrite /compose identity_graph0; aw => ->; apply: corresp_recov1. rewrite -diagonal_is_identity. set_extens t. by move /compg_P=> [ {3} <- [y p1 /diagonal_pi_P [_ <-]]]. have gm: (sgraph (graph m)) by fprops. move => tg; apply/compg_P; split; first by apply: (gm _ tg). move /setX_P: ((proj2 cm) _ tg) => [pt _ qt]. by exists (Q t); [ rewrite pt | apply/diagonal_pi_P]. Qed. Corollary compose_identity_left E: {when (fun x => correspondence x /\ (target x) = E), left_id (identity E) compose}. Proof. move => x [cx <-]; exact:compf_id_left. Qed. Lemma compf_id_right m: correspondence m -> m \co (identity (source m)) = m. Proof. move=> cm. suff: ((graph m) \cg (identity_g (source m))= graph m). by rewrite /compose identity_graph0; aw => ->; apply: corresp_recov1. rewrite -diagonal_is_identity. set_extens t. by move /compg_P => [ {3} <- [y /diagonal_pi_P [pa ->] p1]]. have gm: (sgraph (graph m)) by fprops. move => tg; apply/compg_P; split; first by apply: (gm _ tg). move /setX_P: (proj2 cm _ tg) => [pt qt _]. by exists (P t); [ apply/diagonal_pi_P | rewrite pt ]. Qed. Lemma compf_id_id x: (identity x) \co (identity x) = (identity x). Proof. by move: (compf_id_right (@identity_corresp x)); aw. Qed. Lemma identity_self_inverse x: inverse_fun (identity x) = (identity x). Proof. rewrite /inverse_fun /identity; aw. Qed. End Correspondence. Export Correspondence. (** ** EII-3-4 Functions*) Module Bfunction. Import Correspondence. (** This is a different but equivalent definition *) Definition functional_graph r := forall x, singl_val (related r x). Lemma functionalP r: (sgraph r /\ functional_graph r) <-> (fgraph r). Proof. rewrite /functional_graph /related; split; last first. by move=> fr; split; fprops; move=> x y y'; apply: fgraph_pr. move => [gr eql]; split=>// x y xr yr eqp. move: (xr) (yr); rewrite -(gr _ xr) - (gr _ yr) -eqp => pa pb. by rewrite (eql _ _ _ pa pb). Qed. (** A function is a correspondence with a functional graph whose source is the domain of the graph *) Definition function f := [/\ correspondence f, fgraph (graph f) & source f = domain (graph f)]. Lemma function_pr s t g: fgraph g -> sub (range g) t -> s = domain g -> function (triple s t g). Proof. rewrite /function => fg sr d; aw; split => //. by apply: corresp_create; rewrite d; apply /corr_propcc; split => //;case: fg. Qed. Lemma function_fgraph f: function f -> fgraph (graph f). Proof. by move=> [_]. Qed. Lemma function_sgraph f: function f -> sgraph (graph f). Proof. by move=> [_ [h _]]. Qed. Lemma f_domain_graph f: function f -> domain (graph f) = source f. Proof. by move=> [_ ]. Qed. Lemma f_range_graph f: function f -> sub (range (graph f))(target f). Proof. by move => [cf _ _]; apply:corresp_sub_range. Qed. Hint Rewrite f_domain_graph : aw. Hint Resolve function_sgraph function_fgraph : fprops. Lemma image_by_fun_source f: function f -> Imf f = range (graph f). Proof. move=> ff; rewrite /Imf -f_domain_graph //. by apply: dirim_domain; fprops. Qed. (** The value of the function [f] at [x] is [Vf x f] *) Definition Vf f x := Vg (graph f) x. Section Vf_pr. Variable f: Set. Hypothesis ff: function f. Lemma Vf_pr3 x: inc x (source f) -> inc (J x (Vf f x)) (graph f). Proof. by move=> xf; apply: fdomain_pr1; fprops; aw. Qed. Lemma in_graph_Vf x: inc x (graph f) -> x = (J (P x) (Vf f (P x))). Proof. by move=> xf; apply: in_graph_V; fprops. Qed. Lemma Vf_pr2 x: inc x (graph f) -> Q x = Vf f (P x). Proof. by move=> xg; apply: pr2_V; fprops. Qed. Lemma Vf_pr x y: inc (J x y) (graph f) -> y = Vf f x. Proof. by move=> Jg; move: (in_graph_Vf Jg); aw; apply: pr2_def. Qed. Lemma range_fP y: inc y (range (graph f)) <-> exists2 x, inc x (source f) & y = Vf f x. Proof. move: ff => [_ fgf ->]; apply/(range_gP fgf). Qed. Lemma Vf_range_g x: inc x (source f) -> inc (Vf f x) (range (graph f)). Proof. move=> xsf; apply /range_fP;ex_tac. Qed. Lemma Vf_target x: inc x (source f) -> inc (Vf f x) (target f). Proof. move/Vf_range_g;apply: (f_range_graph ff). Qed. Lemma p1graph_source x y: inc (J x y) (graph f) -> inc x (source f). Proof. move: ff => [_ fgf ->] jg; ex_tac. Qed. Lemma p2graph_target x y : inc (J x y) (graph f) -> inc y (target f). Proof. move=> Jgf; rewrite (Vf_pr Jgf); apply: Vf_target; apply: (p1graph_source Jgf). Qed. Lemma p1graph_source1 x: inc x (graph f) -> inc (P x) (source f). Proof. move=> xgf; apply: (p1graph_source (y:= (Vf f (P x)))). by rewrite - (in_graph_Vf xgf). Qed. Lemma p2graph_target1 x: inc x (graph f) -> inc (Q x) (target f). Proof. move=> xgf; rewrite (in_graph_Vf xgf); aw. by apply: Vf_target => //; apply: p1graph_source1. Qed. Lemma Vf_image_P x: sub x (source f) -> forall y, (inc y (Vfs f x) <-> exists2 u, inc u x & y = Vf f u). Proof. rewrite /Vfs => ss;split. by move/dirim_P => [a ax Jg]; ex_tac; apply: Vf_pr. move=> [u ux ->]; apply/dirim_P; ex_tac;apply: Vf_pr3; fprops. Qed. Lemma Vf_image_P1 y: inc y (Imf f) <-> (exists2 u, inc u (source f) & y = Vf f u). Proof. exact: (Vf_image_P (@sub_refl (source f))). Qed. Lemma fun_image_Starget1 x: sub (Vfs f x) (target f). Proof. apply: sub_trans (f_range_graph ff); apply: dirim_Sr. Qed. Lemma fun_image_Starget: sub (Imf f) (target f). Proof. apply: fun_image_Starget1. Qed. End Vf_pr. Hint Resolve Vf_target : fprops. Ltac Wtac := match goal with | |- inc (J ?x (Vf ?f ?x)) (graph ?f) => apply: Vf_pr3 ; fprops | h:inc (J ?x ?y) (graph ?f) |- Vf ?f ?x = ?y => symmetry; apply: Vf_pr ; fprops | h:inc (J ?x ?y) (graph ?f) |- ?y = Vf ?f ?x => apply: Vf_pr ; fprops | |- inc (Vf ?f _) (range (graph ?f)) => apply: Vf_range_g ; fprops | h1: function ?f, h2: inc ?x (source ?f) |- inc (Vf ?f ?x) (target ?f) => apply: (Vf_target h1 h2) | h2:target ?f = ?y |- inc (Vf ?f ?x) ?y => rewrite - h2; Wtac | h2: ?y = target ?f |- inc (Vf ?f ?x) ?y => rewrite h2; Wtac | h1: inc ?x ?y, h2: ?y = source ?f |- inc (Vf ?f ?x) (target ?f) => rewrite h2 in h1; Wtac | h1: inc ?x ?y, h2: source ?f = ?y |- inc (Vf ?f ?x) (target ?f) => rewrite - h2 in h1; Wtac | |- inc (Vf ?f _) (target ?f) => apply: (Vf_target); fprops | Ha:function ?X1, Hb: inc (J _ ?X2) (graph ?X1) |- inc ?X2 (target ?X1) => apply: (p2graph_target Ha Hb) | Ha:function ?X1, Hb: inc (J ?X2 _) (graph ?X1) |- inc ?X2 (source ?X1) => apply: (p1graph_source Ha Hb) | Ha:function ?X1, Hb: inc ?X2 (graph ?X1) |- inc (P ?X2) (source ?X1) => apply: (p1graph_source1 Ha Hb) | Ha:function ?X1, Hb: inc ?X2 (graph ?X1) |- inc (Q ?X2) (target ?X1) => apply: (p2graph_target1 Ha Hb) end. Lemma function_functional f: correspondence f -> (function f <-> (forall x, inc x (source f) -> exists! y, related (graph f) x y)). Proof. rewrite/related=> cf; split. move=> ff x xsf;exists (Vf f x); split; first by Wtac. move => y yg; symmetry; apply: (Vf_pr ff yg). move => eu. have sd:source f = domain (graph f). apply: extensionality; last by fprops. move=> t ts; move: (eu _ ts) => [y [ja jb]]. by apply/funI_P; ex_tac; aw. split=>//;apply /functionalP; split; first by fprops. move=> x y y'; rewrite /related => h1. have isf: inc x (source f) by rewrite sd; apply/funI_P; ex_tac; aw. move: h1; move/unique_existence: (eu _ isf) => [_]; apply. Qed. (** Lemmas that say when two functions are equal *) Definition same_Vf f g:= Vf f =1 Vf g. Definition cstfp (f E: Set) := singl_val_fp (inc ^~E) (Vf f). Definition cstgp (f E: Set) := singl_val_fp (inc ^~E) (Vg f). Notation "f1 =1f f2" := (same_Vf f1 f2) (at level 70, no associativity) : fun_scope. Lemma function_exten3 f g: function f -> function g -> graph f = graph g -> target f = target g -> source f = source g -> f = g. Proof. move => [[ff _] _ _] [[fg _] _ _] e1 e2 e3. by rewrite -(corresp_recov ff) -(corresp_recov fg); congr (triple _ _ _). Qed. Lemma function_exten1 f g: function f -> function g -> graph f = graph g -> target f = target g -> f = g. Proof. move => ff fg e1 e2; apply: function_exten3=>//. by rewrite -!f_domain_graph // e1. Qed. Lemma function_exten f g: function f -> function g -> source f = source g -> target f = target g -> {inc (source f), f =1f g} -> f = g. Proof. move=> ff fg e1 r2 e2; apply: function_exten3=> //. set_extens x => xg. have Pf : (inc (P x) (source f)) by Wtac. by rewrite (in_graph_Vf ff xg) (e2 _ Pf); Wtac; rewrite -e1. have Pg : (inc (P x) (source f)) by rewrite e1; Wtac. by rewrite (in_graph_Vf fg xg) -(e2 _ Pg); Wtac. Qed. (** The image of singleton by a function is a singleton*) Lemma fun_image_set1 f x: function f -> inc x (source f) -> Vfs f (singleton x) = singleton (Vf f x). Proof. move=> ff xsf. apply: set1_pr; first by apply /dirim_set1_P; Wtac. by move => z /dirim_set1_P jg; apply:Vf_pr. Qed. Lemma fun_image_set0 f: Vfs f emptyset = emptyset. Proof. by apply /set0_P => t /Zo_hi [x /in_set0]. Qed. Lemma iim_fun_C g x: function g -> Vfi g ((target g) -s x) = (source g) -s (Vfi g x). Proof. move => fg. have gg: sgraph (graph g) by fprops. set_extens t. move/iim_graph_P => [u /setC_P [ut nux] Jug];apply/setC_P. split; first by Wtac. move/iim_graph_P => [w wx Jwg]. by case: nux; rewrite (fgraph_pr (proj32 fg) Jug Jwg). move/setC_P => [ts neu]. have Jg: (inc (J t (Vf g t))(graph g)) by Wtac. apply/iim_graph_P; ex_tac;apply/setC_P; split; fprops. dneg Wx; apply/iim_graph_P; ex_tac. Qed. Lemma iim_fun_set1_hi f x y: function f -> inc x (Vfi1 f y) -> y = Vf f x. Proof. by move => ff /iim_fun_P [u /set1_P ->]; apply: Vf_pr. Qed. Lemma iim_fun_set1_i f x y: function f -> inc x (source f) -> y = Vf f x -> inc x (Vfi1 f y). Proof. move => ff xsf ->; apply /iim_fun_P; ex_tac; Wtac. Qed. Lemma iim_fun_set1_P f y: function f -> forall x, inc x (Vfi1 f y) <-> (inc x (source f) /\ y = Vf f x). Proof. move => ff x; split. move /iim_fun_P => [u /set1_P -> pa]; split;Wtac. by move => [pa pb]; apply:iim_fun_set1_i. Qed. Lemma iim_fun_set1_E f y: function f -> (Vfi1 f y) = Zo (source f) (fun x => y = Vf f x). Proof. move => ff; set_extens t. by move /(iim_fun_set1_P _ ff) => pa; apply /Zo_P. by move => /Zo_P pa; apply /(iim_fun_set1_P _ ff). Qed. Definition function_prop f s t:= [/\ function f, source f = s & target f = t]. (** Function with empty graph *) Definition empty_function_tg (x: Set) := triple emptyset x emptyset. Definition empty_function:= empty_function_tg emptyset. Lemma empty_function_tg_function x: function_prop (empty_function_tg x) emptyset x. Proof. hnf; rewrite /empty_function_tg; aw; split => //; apply: function_pr; bw. - apply: fgraph_set0. - fprops. Qed. Lemma empty_function_function: function_prop empty_function emptyset emptyset. Proof. apply:empty_function_tg_function. Qed. Lemma empty_function_graph x: graph (empty_function_tg x) = emptyset. Proof. rewrite /empty_function_tg; aw. Qed. Lemma empty_function_p1 f: function f -> graph f = emptyset -> source f = emptyset. Proof. move => [_ _ ->] ->; bw. Qed. Lemma empty_function_p2 f: function f -> target f = emptyset -> source f = emptyset. Proof. by move => ff te; apply /set0_P => x /(Vf_target ff); rewrite te => /in_set0. Qed. Lemma empty_source_graph f: function f -> source f = emptyset -> graph f = emptyset. Proof. move => ff sfe; apply /set0_P => x xp. apply: (@in_set0 (P x)); rewrite - sfe; Wtac. Qed. Lemma empty_target_graph f: function f -> target f = emptyset -> graph f = emptyset. Proof. move => ff sfe; apply /set0_P => x xp. case: (@in_set0 (Vf f (P x))); Wtac; Wtac. Qed. Lemma empty_source_graph2 f: function f -> source f = emptyset -> f = empty_function_tg (target f). Proof. move => pa pb;have pc:= (empty_source_graph pa pb). by rewrite /empty_function_tg -{1} (corresp_recov (proj1 (proj31 pa))) pb pc. Qed. (** Properties of the identity function *) Lemma identity_prop x: function_prop (identity x) x x. Proof. rewrite /identity /function_prop; aw; split => //; apply: function_pr. - by apply: identity_fgraph. - by rewrite identity_r; fprops. - by rewrite identity_d. Qed. Lemma identity_f x: function (identity x). Proof. exact: (proj31 (identity_prop x)). Qed. Lemma identity_V x y: inc y x -> Vf (identity x) y = y. Proof. move =>yx; rewrite /Vf /identity; aw; apply:(identity_ev yx). Qed. Hint Rewrite identity_V: bw. Hint Resolve identity_f: fprops. Lemma identity_prop0 E f: function_prop f E E -> (forall x, inc x E -> (Vf f x) = x) -> f = identity E. Proof. move: (identity_prop E) => [fa sa ta] [fb sb tb] fv. apply:function_exten => //; try ue. by rewrite sb => x xE; bw; apply: fv. Qed. (** ** EII-3-5 Restrictions and extensions of functions *) (** The functions agree on [x] if they take the same value *) Definition agrees_on x f f' := [/\ sub x (source f), sub x (source f') & {inc x, f =1f f'} ]. Lemma same_graph_agrees f f': function f -> function f' -> graph f = graph f' -> agrees_on (source f) f f'. Proof. move=> ff ff' geq. have seq: (source f = source f'). by rewrite -(f_domain_graph ff) -(f_domain_graph ff') geq. rewrite /agrees_on - seq; split; fprops. move=> a /(Vf_pr3 ff); rewrite geq => aux. by rewrite -(Vf_pr ff' aux). Qed. Lemma function_exten2 f f': function f -> function f' -> (f = f' <-> [/\ source f = source f', target f = target f' & agrees_on (source f) f f']). Proof. move=> ff ff'; split. by rewrite /agrees_on; move => -> ;split => //; split. move => [seq teq [_ _ ag]]; apply: function_exten; fprops. Qed. Lemma sub_functionP f g: function f -> function g -> (sub (graph f) (graph g) <-> agrees_on (source f) f g). Proof. move=> ff fg; split => hyp. split => //. by do 2 rewrite -f_domain_graph=>//; apply: domain_S. by move=> a af /=;rewrite- (Vf_pr fg (hyp _ (Vf_pr3 ff af))). move => t tg; move: hyp => [_ sg ag]. have Ptsf: (inc (P t) (source f)) by Wtac. rewrite (in_graph_Vf ff tg) (ag _ Ptsf); Wtac. Qed. (** Restriction of the function to a part of it source *) Lemma restr_range f x: function f -> sub x (source f) -> sub (range (restr (graph f) x)) (target f). Proof. move=> ff sxdf t /funI_P [z /funI_P [s zg ->] ->]; aw;rewrite -/(Vf _ _); Wtac. Qed. Definition restriction f x := triple x (target f) (restr (graph f) x). Definition restriction1 f x := triple x (Vfs f x) (restr (graph f) x). Definition restriction2 f x y := triple x y ((graph f)\cap (x \times (target f))). Definition restriction2_axioms f x y := [/\ function f, sub x (source f), sub y (target f) & sub (Vfs f x) y]. Lemma restriction_prop f x: function f -> sub x (source f) -> function_prop (restriction f x) x (target f). Proof. rewrite /restriction /function_prop=> ff xs; aw; split => //. by apply: function_pr; bw; fprops; apply: restr_range. Qed. Lemma restriction1_prop f x: function f -> sub x (source f) -> function_prop (restriction1 f x) x (Vfs f x). Proof. rewrite /restriction1 /function_prop =>ff ssf; aw; split => //. apply: function_pr; fprops; bw. rewrite Lg_range => t /funI_P [z zx ->]; apply/dirim_P; ex_tac. rewrite -/(Vf _ _); Wtac. Qed. Lemma restriction2_props f x y: restriction2_axioms f x y -> domain ((graph f) \cap (x \times (target f))) = x. Proof. move=> ra; set i := _ \cap _. have gi: sgraph i by rewrite /i => t /setI2_P [_] /setX_P []. set_extens t. by move/funI_P => [z /setI2_P [_ /setX_P [_ h _]] ->]. move:ra => [ ff xsf ysf etc] tx. apply/(domainP gi); exists (Vf f t); apply/setI2_P; split; [Wtac| ]. apply: setXp_i => //; Wtac. Qed. Lemma restriction2_prop f x y: restriction2_axioms f x y -> function_prop (restriction2 f x y) x y. Proof. move=> ra; move:(ra) => [ff ss st etc]. rewrite /restriction2 /function_prop; aw; split => //. move:(restriction2_props ra); set g := _ \cap _ => dg. have fg: fgraph g. rewrite /g; apply: (@sub_fgraph _ (graph f)); fprops; apply: setI2_1. apply: function_pr=>// t tr; apply: etc; apply /dirim_P. move/(rangeP (proj1 fg)): tr => [z /setI2_P [jg /setXp_P [zx _]]];ex_tac. Qed. Lemma restriction_V f x: function f -> sub x (source f) -> {inc x, (restriction f x) =1f f}. Proof. rewrite /Vf/restriction => ff ss a xa; aw; bw; fprops; aw. Qed. Lemma restriction1_V f x: function f -> sub x (source f) -> {inc x, (restriction1 f x) =1f f}. Proof. rewrite /Vf/restriction1 => ff ss a xa; aw; bw; fprops; aw. Qed. Lemma restriction2_V f x y: restriction2_axioms f x y -> {inc x, (restriction2 f x y) =1f f}. Proof. move => ra a ax; move: (ra) => [ff sf tf sif]. rewrite /Vf/restriction2; aw. apply: sub_graph_ev; fprops;first by apply: setI2_1. by rewrite (restriction2_props ra). Qed. Lemma restriction1_pr f: function f -> restriction2 f (source f) (Imf f) = restriction1 f (source f). Proof. rewrite/restriction2/restriction1=> ff. have rg: (restr (graph f) (source f) = graph f). rewrite (proj33 ff); apply: restr_to_domain; fprops. by rewrite (proj1 (setI2id_Pl _ _) (proj2 (proj31 ff))) rg. Qed. (** [g] extends [f] if its restriction to the source of [f] is [f] *) Definition extends g f := [/\ function f, function g, sub (graph f) (graph g) & sub (target f)(target g) ]. Lemma extends_Ssource f g: extends g f -> sub (source f) (source g). Proof. by move=> [ff fg sg st]; do 2 rewrite -f_domain_graph=>//; apply: domain_S. Qed. Lemma extends_sV f g: extends g f -> {inc (source f), f =1f g}. Proof. move=> ext x xf; have ss:= (extends_Ssource ext). have [ff fg sg _] := ext. have pg: (inc (J x (Vf f x)) (graph g)) by apply: sg; Wtac. by rewrite (Vf_pr fg pg). Qed. Lemma function_extends_restr f x: function f -> sub x (source f) -> extends f (restriction f x). Proof. move =>ff ssf; have [pa pb pc] := (restriction_prop ff ssf). split => //; last by rewrite pc. rewrite /restriction; aw => s /funI_P [z zx ->]. by apply: Vf_pr3 => //; apply: ssf. Qed. Lemma agrees_same_restriction f g x: function f -> function g -> agrees_on x f g -> target f = target g -> restriction f x = restriction g x. Proof. move=> ff fg [sf sg vfg] t. move:(restriction_prop ff sf)(restriction_prop fg sg)=>[pa pb pc][pd pe pf]. apply: function_exten; fprops; try solve [rewrite /restriction; aw]. rewrite {1} /restriction; aw=> z zs. by do 2 rewrite restriction_V => //; apply: vfg. Qed. Lemma restriction_graph1 f x: function f -> sub x (source f) -> graph (restriction f x) = (graph f) \cap (x \times (target f)). Proof. rewrite /restriction => ff xs; aw;set_extens t; last first. move/setI2_P => [tg /setX_P [pa pb pc]]; apply /funI_P; ex_tac. by apply: in_graph_Vf. move/funI_P => [z pa ->]. apply:setI2_i; first by rewrite -/(Vf _ _); Wtac. apply/setX_P; aw;split; fprops; rewrite -/(Vf _ _); Wtac. Qed. Lemma restriction_recovers f x: function f -> sub x (source f) -> restriction f x = triple x (target f) ((graph f) \cap (x \times (target f))). Proof. move=> ff ss; rewrite -(restriction_graph1 ff ss) /restriction; aw. Qed. (** Restriction of a function on the source and target *) Lemma function_rest_of_prolongation f g: extends g f -> f = restriction2 g (source f) (target f). Proof. move=>[ff fg]. move /(sub_functionP ff fg)=> [_ sts sg] st. have au: (sub (Vfs g (source f)) (target f)). by move =>t /(Vf_image_P fg sts) [u us ->]; rewrite - sg=>//; fprops. have ax: (restriction2_axioms g (source f) (target f)) by []. apply: function_exten;fprops; try solve [rewrite /restriction2; aw]. apply: (proj31 (restriction2_prop ax)). by move => x sf /=; rewrite restriction2_V // sg. Qed. (** ** EII-3-6 Definition of a function by means of a term *) (** Function from [a] to [b] associated to the mapping [f] *) Definition Lf f a b := triple a b (Lg a f). Lemma lf_source f a b: source (Lf f a b) = a. Proof. rewrite /Lf/Lg; aw. Qed. Lemma lf_target f a b: target (Lf f a b) = b. Proof. rewrite /Lf/Lg; aw. Qed. Hint Rewrite lf_source lf_target : aw. Lemma lf_graph1 f a b c: inc c (graph (Lf f a b)) -> c = J (P c) (f (P c)). Proof. rewrite/Lf/Lg; aw;move/funI_P => [z _ ->]; aw. Qed. Lemma lf_graph2 f a b c: inc c a -> inc (J c (f c)) (graph (Lf f a b)). Proof. by rewrite /Lf/Lg=> ca; aw; apply/funI_P; ex_tac. Qed. Lemma lf_graph3 f a b c: inc c (graph (Lf f a b)) -> inc (P c) a. Proof. rewrite /Lf/Lg; aw; move/funI_P=> [z za ->]; aw. Qed. Lemma lf_graph4 f a b c: inc c (graph (Lf f a b)) -> f (P c) = (Q c). Proof. move=> h; rewrite {2} (lf_graph1 h); aw. Qed. (** In order for [(Lf f a b)] to be a function, the following must be satisfied *) Definition lf_axiom f a b := forall c, inc c a -> inc (f c) b. Lemma lf_function f a b: lf_axiom f a b -> function (Lf f a b). Proof. move=> ta; apply: function_pr; bw; fprops. by move=> t; rewrite Lg_range; move/funI_P=> [z zb ->]; apply: ta. Qed. Lemma lf_function_prop f a b: lf_axiom f a b -> function_prop (Lf f a b) a b. Proof. move /lf_function =>h; split =>//; aw. Qed. Lemma lf_V f a b c: lf_axiom f a b -> inc c a -> Vf (Lf f a b) c = f c. Proof. by move=> /lf_function ff ca; symmetry; apply:Vf_pr => //; apply: lf_graph2. Qed. Hint Rewrite lf_V : aw. Lemma lf_recovers f: function f -> Lf (Vf f)(source f)(target f) = f. Proof. move=> ff. have ta: (lf_axiom (Vf f) (source f) (target f)) by move=> x /=; fprops. apply: function_exten;aw; [ by apply: lf_function | move => x sx /=; aw]. Qed. Lemma identity_Lf x: identity x = Lf id x x. Proof. have aux: lf_axiom id x x by done. apply function_exten; fprops; first by apply :lf_function. move => t; rewrite lf_source => tx; aw; bw. Qed. Lemma restriction_Lf f x: function f -> sub x (source f) -> restriction f x = Lf (Vf f) x (target f). Proof. move => h1 h2; move: (restriction_prop h1 h2) => [pa pb pc]. have pd: lf_axiom (Vf f) x (target f) by move => t tw; Wtac. apply: function_exten; aw. by rewrite /restriction;aw;move => t rs /=; aw; apply:restriction_V. Qed. (** Definition of a constant function and of the constant function *) Definition constantfp f := function f /\ cstfp f (source f). Definition constantgp f := fgraph f /\ cstgp f (domain f). Lemma constant_prop1 f: constantgp f -> small_set (range f). Proof. move=> [ff eq] t1 t2 /(range_gP ff) [x xd ->] /(range_gP ff) [y yd ->]. by apply: eq. Qed. Lemma constant_prop2 f: constantfp f -> constantgp (graph f). Proof. move=> [ff eq]; split; fprops; by move:ff=> [_ _ <-]. Qed. Lemma constant_prop3 x y: constantgp (cst_graph x y). Proof. split; [ fprops | move => a b; rewrite cst_graph_d => ax bx; bw ]. Qed. Lemma constant_prop4 f: function f -> (constantfp f <-> small_set (range (graph f))). Proof. move => ff; split => h. by apply: constant_prop1; apply: constant_prop2. split=> // x x' xs x's; apply: h; Wtac. Qed. Definition constant_function A B y := Lf (fun _ : Set => y) A B. Lemma constant_s A B y: source (constant_function A B y) = A. Proof. rewrite /constant_function; aw. Qed. Lemma constant_t A B y: target (constant_function A B y) = B. Proof. rewrite /constant_function; aw. Qed. Lemma constant_g A B y: graph (constant_function A B y) = A *s1 y. Proof. by rewrite /constant_function /Lf corresp_g - cst_graph_pr. Qed. Lemma constant_f A B y: inc y B -> function (constant_function A B y). Proof. by move => yB; apply:lf_function. Qed. Lemma constant_prop A B y: inc y B -> function_prop (constant_function A B y) A B. Proof. by move => yB; apply:lf_function_prop. Qed. Lemma constant_V A B y x: inc y B -> inc x A -> Vf (constant_function A B y) x = y. Proof. by move => ha hb; rewrite /constant_function; aw. Qed. Lemma constant_constant_fun A B y: inc y B -> constantfp (constant_function A B y). Proof. split; first by apply: constant_f. rewrite constant_s => u v /= us vs; do 2 rewrite constant_V=>//. Qed. Lemma constant_prop6 f: constantfp f -> f = empty_function_tg (target f) \/ exists2 a, inc a (target f) & f = constant_function (source f) (target f) a. Proof. move => [pa pb]. case: (emptyset_dichot (source f)) => h. by left; rewrite {1} (empty_source_graph2 pa h). right; have h':=(rep_i h); have h'' := (Vf_target pa h'). ex_tac; apply: function_exten; rewrite/constant_function;aw. - by apply: constant_f. - by move => i isf /=; aw => //; apply: pb. Qed. (** Functions associated to P and Q *) Definition first_proj g := Lf P g (domain g). Definition second_proj g := Lf Q g (range g). Lemma first_proj_V g: {inc g, Vf (first_proj g) =1 P}. Proof. by rewrite /first_proj=> x xg; aw =>t; apply: domain_i1. Qed. Lemma second_proj_V g: {inc g, Vf (second_proj g) =1 Q}. Proof. by rewrite /second_proj=> x xg; aw =>t; apply: range_i2. Qed. Lemma first_proj_f g: function (first_proj g). Proof. by apply: lf_function =>t; apply: domain_i1. Qed. Lemma second_proj_f g: function (second_proj g). Proof. by apply: lf_function =>t; apply: range_i2. Qed. (** ** EII-3-7 Composition of two functions. Inverse function *) (** Condition for composition to be a function *) Definition composable g f := [/\ function g, function f & source g = target f]. Notation "f1 \coP f2" := (composable f1 f2) (at level 50). Lemma composable_pr f g: g \coP f -> (graph g) \cfP (graph f). Proof. by move=> [fg ff st]; split; fprops; aw; rewrite st; apply: f_range_graph. Qed. Lemma compf_graph: {when: composable, {morph graph: f g / f \co g >-> f \cf g}}. Proof. move => a b cfg; move:(composable_pr cfg)=> ac. by rewrite /compose compg_composef; aw. Qed. Lemma compf_domg g f: g \coP f-> domain (graph (g \co f)) = domain (graph f). Proof. move => cfg; rewrite compf_graph /composef; bw. Qed. Lemma compf_s f g: source (g \co f) = source f. Proof. rewrite /compose; aw. Qed. Lemma compf_t f g: target (g \co f) = target g. Proof. rewrite /compose; aw. Qed. Hint Rewrite compf_s compf_t : aw. (** Proposition 6: composition of functions is a function *) Theorem compf_f g f: g \coP f -> function (g \co f). Proof. move=> cgf; have cd:=(compf_domg cgf). have ac:=(composable_pr cgf). have fgcc:= (composef_fgraph (graph g) (graph f)). have cg := (compf_graph cgf); rewrite cg in cd. move: cg; rewrite /compose; aw => ->. have [fg ff etc] := cgf. apply: function_pr => //; last by rewrite cd f_domain_graph. apply: (sub_trans (composef_range ac)(f_range_graph fg)). Qed. (** Definition of injectivity, surjectivity and bijectivity *) Definition injection f:= function f /\ {inc source f &, injective (Vf f)}. Definition surjection f := function f /\ (forall y, inc y (target f) -> exists2 x, inc x (source f) & Vf f x = y). Definition bijection f := injection f /\ surjection f. (** We give here here some characterizations of injective, surjective, bijective functions *) Lemma inj_function f: injection f -> function f. Proof. by case. Qed. Lemma surj_function f: surjection f -> function f. Proof. by case. Qed. Lemma bij_function f: bijection f -> function f. Proof. by case; case. Qed. Lemma bij_inj f: bijection f -> {inc source f &, injective (Vf f)}. Proof. move => h; exact: (proj2 (proj1 h)). Qed. Lemma bij_surj f: bijection f -> (forall y, inc y (target f) -> exists2 x, inc x (source f) & Vf f x = y). Proof. move => h; exact: (proj2 (proj2 h)). Qed. Ltac fct_tac := match goal with | H:bijection ?X1 |- function ?X1 => exact (bij_function H) | H:injection ?X1 |- function ?X1 => exact (inj_function H) | H:surjection ?X1 |- function ?X1 => exact (surj_function H) | H:function ?X1 |- correspondence ?X1 => by case H | H:function ?g |- sub (range (graph ?g)) (target ?g) => apply: (f_range_graph H) | H:composable ?X1 _ |- function ?X1 => exact (proj31 H) | H:composable _ ?X1 |- function ?X1 => exact (proj32 H) | H:composable ?f ?g |- function (compose ?f ?g ) => apply: (compf_f H) | H:function ?f |- function (compose ?f ?g ) => apply: compf_f; split => // | H:function ?g |- function (compose ?f ?g ) => apply: compf_f; split => // | Ha:function ?f, Hb:function ?g |- ?f = ?g => apply: function_exten end. (** More properties of function composition *) Lemma compf_V g f x: g \coP f -> inc x (source f) -> Vf (g \co f) x = Vf g (Vf f x). Proof. rewrite /Vf => cgf xs; rewrite compf_graph=>//. apply: composef_ev; aw; fct_tac. Qed. Hint Rewrite compf_V: aw. Lemma compfA f g h: f \coP g -> g \coP h -> f \co (g \co h) = (f \co g) \co h. Proof. move=> cfg chg. have [gg fh sgth]: g \coP h by []. have ffg: (function (f \co g)) by fct_tac. have fgh: (function (g \co h)) by fct_tac. have cfgh: (f \co g) \coP h by hnf; aw. have cfgh': (f \coP (g \co h)) by move: cfg=> [ff _ etc];hnf; aw. apply: function_exten; try fct_tac; aw. by move=> x xh /=; aw; rewrite sgth; fprops. Qed. Lemma compf_id_l m: function m -> (identity (target m)) \co m = m. Proof. move=>fm; apply: compf_id_left; fct_tac. Qed. Lemma compf_id_r m: function m -> m \co (identity (source m)) = m. Proof. move=> fm; apply: compf_id_right; fct_tac. Qed. Corollary fcomp_identity_left E: {when (fun x => function x /\ (target x) = E), left_id (identity E) compose}. Proof. move => x [cx <-]; exact:compf_id_l. Qed. Lemma injective_pr f y: injection f -> singl_val (fun x => related (graph f) x y). Proof. rewrite /related;move=> [ff injf] x x' r1 r2; apply: injf. - by Wtac. - by Wtac. - by rewrite - (Vf_pr ff r1) (Vf_pr ff r2). Qed. Lemma injective_pr3 f y: injection f -> singl_val (fun x => inc (J x y) (graph f)). Proof. apply: injective_pr. Qed. Lemma injective_pr_bis f: function f -> (forall y, singl_val (fun x => related (graph f) x y)) -> injection f. Proof. move=> ff prop;split => // x y xs ys Weq; apply: (prop (Vf f x) x y). by apply: (Vf_pr3 ff xs). by rewrite Weq; apply: (Vf_pr3 ff ys). Qed. Lemma surjective_pr0 f: surjection f -> Imf f = target f. Proof. move=> [ff sj]; apply: extensionality; first by apply:(fun_image_Starget ff). move => t tf; move: (sj _ tf) => [x xsf <-]. apply/dirim_P; ex_tac; Wtac. Qed. Lemma surjective_pr1 f: function f -> Imf f = target f -> surjection f. Proof. move=> ff ift; split => // y; rewrite -ift. move/dirim_P=> [x pa pb];ex_tac; Wtac. Qed. Lemma surjective_pr f y: surjection f -> inc y (target f) -> exists2 x, inc x (source f) & related (graph f) x y . Proof. move => [ff h] ytf; move: (h _ ytf) => [x xsf <-]; ex_tac. rewrite /related; Wtac. Qed. Lemma surjective_pr3 f: surjection f -> range (graph f) = target f. Proof. move => sf; rewrite -(surjective_pr0 sf) image_by_fun_source //; fct_tac. Qed. Lemma surjective_pr4 f: function f -> range (graph f) = target f -> surjection f. Proof. move=> ff rg; apply surjective_pr1 => //;rewrite image_by_fun_source //. Qed. Lemma surjective_pr5 f: function f -> (forall y, inc y (target f) -> exists2 x, inc x (source f) & related (graph f) x y) -> surjection f. Proof. move=> ff prop; split => // y yt; move: (prop _ yt) => [x xsf h]; ex_tac. by symmetry; apply: Vf_pr. Qed. Lemma lf_injective f a b: lf_axiom f a b -> (forall u v, inc u a -> inc v a -> f u = f v -> u = v) -> injection (Lf f a b). Proof. move=> ta prop; split; first by apply: lf_function. by aw; move=> x y xs ys/=; do 2 rewrite lf_V=>//; apply: prop. Qed. Lemma lf_surjective f a b: lf_axiom f a b -> (forall y, inc y b -> exists2 x, inc x a & y = f x) -> surjection (Lf f a b). Proof. move=> ta prop; split; first by apply: lf_function. by aw; move=> y yt; case: (prop _ yt)=> x xa fy; ex_tac; rewrite lf_V. Qed. Lemma lf_bijective f a b: lf_axiom f a b -> (forall u v, inc u a -> inc v a -> f u = f v -> u = v) -> (forall y, inc y b -> exists2 x, inc x a & y = f x) -> bijection (Lf f a b). Proof. by move => ta pi ps; split; [apply: lf_injective| apply: lf_surjective]. Qed. Lemma bijective_pr f y: bijection f -> inc y (target f) -> exists! x, (inc x (source f) /\ Vf f x = y). Proof. move=> [[_ inj] [_ sf]] yt; apply /unique_existence; split. by move: (sf _ yt)=> [x p1 p2]; exists x. by move=> x x' [xs Wx] [x's Wx']; rewrite -Wx' in Wx; apply: inj. Qed. Lemma function_exten4 f g: source f = source g -> surjection f -> surjection g -> {inc source f, f =1f g} -> f = g. Proof. move=> sfg sf sg Weq. have ff: function f by fct_tac. have fg: function g by fct_tac. have geq: (graph f = graph g) by apply: fgraph_exten; fprops; aw. apply: function_exten1=>//. by rewrite -(surjective_pr3 sf) -(surjective_pr3 sg) geq. Qed. (** Equipotent means there is a bijection between the sets *) Definition bijection_prop f s t := [/\ bijection f, source f = s & target f = t]. Definition surjection_prop f x y:= [/\ surjection f, source f = x & target f = y]. Definition injection_prop f x y:= [/\ injection f, source f = x & target f = y]. Lemma identity_fb x: bijection (identity x). Proof. by apply: lf_bijective => // y yx; exists y. Qed. Lemma identity_bp x: bijection_prop (identity x) x x. Proof. by split; aw;apply: identity_fb. Qed. (** Injectivity and surjectivity of identity and restriction *) Lemma restriction2_fi f x y: injection f -> restriction2_axioms f x y -> injection (restriction2 f x y). Proof. move=> [_ fi] ra. have [pa pb pc] := (restriction2_prop ra). split => //; rewrite pb => a b ax bx. by do 2 rewrite restriction2_V=>//; apply: fi; apply: (proj42 ra). Qed. Lemma restriction2_fs f x y: restriction2_axioms f x y -> source f = x -> Imf f = y -> surjection (restriction2 f x y). Proof. move=> ra sf iy. have [pa pb pc] := (restriction2_prop ra). split => // z; rewrite pb pc - {1} iy - {1} sf. move /(Vf_image_P1 (proj41 ra))=> [u usf uv]. ex_tac; rewrite restriction2_V //; ue. Qed. Lemma restriction1_fs f x: function f -> sub x (source f) -> surjection (restriction1 f x). Proof. move=> ff sxs. have [pa pb pc] := (restriction1_prop ff sxs). split => //y; rewrite pb pc; move/(Vf_image_P ff sxs) => [b bx Jg]. by ex_tac; bw; rewrite restriction1_V. Qed. Lemma restriction1_fb f x: injection f -> sub x (source f) -> bijection (restriction1 f x). Proof. move=> [ff fi] sxf; split; last by apply: restriction1_fs. have [pa pb pc] :=(restriction1_prop ff sxf). split => //; rewrite pb => a b ax bx. by do 2 rewrite restriction1_V=>//; apply: fi; apply: sxf. Qed. Definition restriction_to_image f := restriction2 f (source f) (Imf f). Lemma restriction_to_image_axioms f: function f -> restriction2_axioms f (source f) (Imf f). Proof. by move=> ff; split => //; apply :fun_image_Starget. Qed. Lemma restriction_to_imageE f: function f -> restriction_to_image f = restriction1 f (source f). Proof. by move => ff; rewrite - restriction1_pr. Qed. Lemma restriction_to_image_fs f: function f -> surjection (restriction_to_image f). Proof. by move => h; rewrite (restriction_to_imageE h);apply: restriction1_fs. Qed. Lemma restriction_to_image_fb f: injection f -> bijection (restriction_to_image f). Proof. by move => h; rewrite (restriction_to_imageE (proj1 h));apply: restriction1_fb. Qed. Lemma iim_fun_r f (h:=restriction_to_image f): function f -> forall a, Vfs f a = Vfi (inverse_fun h) a. Proof. move => ff a. have aux:=(proj1 (function_fgraph (proj1 (restriction_to_image_fs ff)))). rewrite /Vfi/Vfs /inverse_image. rewrite corresp_g (igraph_involutive aux) corresp_g. congr (direct_image _ a); symmetry;apply/setI2id_Pl. exact:(proj2 (proj31 ff)). Qed. (** Extension of a function by adding [f(x)=y] *) Definition extension f x y:= triple ((source f) +s1 x) ((target f) +s1 y) ((graph f) +s1 (J x y)). Lemma extension_injective x f g a b: domain f = domain g -> ~ (inc x (domain f)) -> (f +s1 (J x a) = g +s1 (J x b)) -> f = g. Proof. move=> seq nixsf sv. set_extens t => tf. have: inc t (g +s1 J x b) by rewrite - sv; fprops. case /setU1_P => // ta;case: nixsf; apply /funI_P; ex_tac; rewrite ta;aw. have: inc t (f +s1 J x a) by rewrite sv; fprops. case /setU1_P => // ta. case: nixsf; rewrite seq;apply /funI_P; ex_tac; rewrite ta;aw. Qed. Lemma restr_setU1 f x a: fgraph f -> ~ (inc x (domain f)) -> restr (f +s1 (J x a)) (domain f) = f. Proof. move=> fgf xdf; symmetry. have aux: fgraph (f +s1 J x a) by apply:fgraph_setU1. have sd:= (domain_S(@subsetU2l f (singleton (J x a)))). apply: fgraph_exten; [done | by apply: restr_fgraph | bw | move=> t tdf /=; bw]. by rewrite setU1_V_in. Qed. Lemma setU1_restr f x E: fgraph f -> ~ (inc x E) -> domain f = E +s1 x-> (restr f E) +s1 (J x (Vg f x)) = f. Proof. move=> fgf nxE df. have sEd: sub E (domain f) by rewrite df; fprops. have dr: (domain (restr f E)) = E by rewrite restr_d. have fgr: fgraph (restr f E) by fprops. have nxe: ~ inc x (domain (restr f E)) by ue. apply: fgraph_exten =>//. by apply: fgraph_setU1. by rewrite domain_setU1 dr df. move=> u; rewrite domain_setU1 dr; case/setU1_P => uE. have ud: inc u (domain (restr f E)) by rewrite dr. by rewrite setU1_V_in // restr_ev. by rewrite uE setU1_V_out. Qed. Section Extension. Variables (f x y: Set). Hypothesis (ff: function f) (xsf: ~ (inc x (source f))). Lemma extension_f: function (extension f x y). Proof. rewrite /extension; apply: function_pr. - apply: fgraph_setU1; fprops; aw. - rewrite range_setU1 => t /setU1_P [] tr; apply/setU1_P;[left | by right]. by apply:f_range_graph. - by rewrite domain_setU1 - (proj33 ff). Qed. Lemma extension_Vf_in: {inc (source f), (extension f x y) =1f f}. Proof. move=> u uf; symmetry; apply: Vf_pr; first by apply:extension_f. rewrite /extension; aw; apply: setU1_r;Wtac. Qed. Lemma extension_Vf_out: Vf (extension f x y) x = y. Proof. symmetry;apply: Vf_pr; first by apply:extension_f. rewrite /extension; aw; apply: setU1_1. Qed. Lemma extension_fs: surjection f -> surjection (extension f x y). Proof. move=> [_ sf]. split; first by apply:extension_f. rewrite /extension; aw => z /setU1_P; case. move=> zt; move: (sf _ zt)=> [u us wu]. by exists u; fprops; rewrite extension_Vf_in. by move =>->; exists x; fprops; rewrite extension_Vf_out. Qed. Lemma extension_restr: restriction2 (extension f x y) (source f) (target f) = f. Proof. have pa: restriction2_axioms (extension f x y) (source f) (target f). have ha: function (extension f x y) by apply: extension_f. have hb: sub (source f) (source (extension f x y)). by rewrite /extension; aw; fprops. split => //; rewrite /extension; aw; fprops. move => t /(Vf_image_P ha hb) [u usf ->]; rewrite (extension_Vf_in usf); Wtac. move: (restriction2_prop pa) => [pb pc pd]. apply: function_exten => //; rewrite pc => t tx. by rewrite (restriction2_V pa tx) (extension_Vf_in tx). Qed. End Extension. Hint Resolve extension_f: fprops. Lemma extension_f_injective x f g a b: function f -> function g -> target f = target g -> source f = source g -> ~ (inc x (source f)) -> (extension f x a = extension g x b) -> f = g. Proof. move=> ff fg teq seq nixsf sv. rewrite - (extension_restr a ff nixsf) sv seq teq extension_restr //; ue. Qed. (** Canonical injection of a set into a superset *) Definition canonical_injection a b := triple a b (identity_g a). Lemma canonical_injectionE a b: canonical_injection a b = Lf id a b. Proof. done. Qed. Lemma ci_fi a b: sub a b -> injection (canonical_injection a b). Proof. by move => h; rewrite canonical_injectionE; apply:lf_injective. Qed. Lemma ci_f a b: sub a b -> function (canonical_injection a b). Proof. move => h; exact (proj1 (ci_fi h)). Qed. Hint Resolve ci_f : fprops. Lemma ci_V a b x: sub a b -> inc x a -> Vf (canonical_injection a b) x = x. Proof. by rewrite /Vf /canonical_injection=> ab xa; aw; apply: identity_ev. Qed. Lemma ci_range a b: sub a b -> range (graph (canonical_injection a b)) = a. Proof. by rewrite /canonical_injection=> ab; aw; rewrite identity_r. Qed. (** if [h] is constant [h = g \co f], where the target of [f] is a singleton *) Lemma constant_function_pr2 x h: inc x (source h) -> constantfp h -> exists g f, [/\ g \coP f, h = g \co f, surjection f & singletonp (target f)]. Proof. move=> xs [fh p]; set (y := Vf h x). have ssyth: sub (singleton y) (target h) by apply:set1_sub; rewrite /y; fprops. have ysy: inc y (singleton y) by fprops. set (g:= canonical_injection (singleton y) (target h)); exists g. set (f:= constant_function (source h) (singleton y) y); exists f. have ff: function f by apply: constant_f. have tf: target f = (singleton y) by rewrite constant_t. have sf: source f = source h by rewrite constant_s. have tg: target g = target h by rewrite /g /canonical_injection; aw. have sg: source g = singleton y by rewrite /g /canonical_injection; aw. have cop: g \coP f by rewrite /g;split; fprops; rewrite tf. split => //. - apply: function_exten;aw; fprops; try fct_tac. by move=> z zh /=;aw;last (by ue);rewrite (p _ _ zh xs) /f constant_V // ci_V. - split=>//; rewrite sf tf; move =>z /set1_P ->. by exists x; rewrite ?sf ?constant_V. - by rewrite tf; exists y. Qed. (** Diagonal application, maps [x] to [J x x] *) Definition diagonal_application a := Lf (fun x=> J x x) a (coarse a). Lemma diag_app_V a x: inc x a -> Vf (diagonal_application a) x = J x x. Proof. by rewrite /diagonal_application /coarse=> xa;aw; move=> y/=; fprops. Qed. Lemma diag_app_fi a: injection (diagonal_application a). Proof. rewrite /diagonal_application/coarse; apply: lf_injective. by move=> y /=; fprops. by move => u v _ _; apply: pr1_def. Qed. Lemma diag_app_f a: function (diagonal_application a). Proof. by case: (diag_app_fi a). Qed. Lemma diag_app_range a: range (graph (diagonal_application a)) = diagonal a. Proof. rewrite /diagonal_application. set_extens t;rewrite /Lf corresp_g; aw. by move/Lg_range_P => [b ba ->]; apply/diagonal_pi_P. move/diagonal_i_P => [pt ta pq]; apply/Lg_range_P; ex_tac. by rewrite {2} pq pt. Qed. (** Injectivity and surjectivity of P and Q *) Lemma second_proj_fs g: surjection (second_proj g). Proof. split; first by apply: second_proj_f. rewrite /second_proj /range/Lf /Vf; aw. move => y /funI_P [z zg ->]; ex_tac; bw. Qed. Lemma first_proj_fs g: surjection (first_proj g). Proof. split; first by apply: first_proj_f. rewrite /first_proj /domain/Lf/Vf; aw. move => y /funI_P [z zg ->]; ex_tac; bw. Qed. Lemma first_proj_fi g: sgraph g -> (injection (first_proj g) <-> functional_graph g). Proof. move=> gg. have fpf: (function (first_proj g)) by apply: first_proj_f. have Ht: source (first_proj g) = g by rewrite/first_proj; aw. rewrite /injection Ht. split. move=> [_ hyp] a b b'; rewrite /related => i1 i2. suff: (J a b = J a b') by apply: pr2_def. by apply: hyp=>//; do 2 rewrite first_proj_V=>//; aw. move => H;split=>//; move=>x y xg yg/=; do 2 rewrite first_proj_V=>//. by move/functionalP : (conj gg H) => [_]; apply. Qed. (** The function that maps [J x y] to [J y x] *) Lemma inv_graph_canon_fb g: sgraph g -> bijection ( Lf (fun x=> J (Q x) (P x)) g (inverse_graph g)). Proof. move => gg; apply: lf_bijective. + by move=> c cg /=; apply/igraph_pP; rewrite /related (gg _ cg). + move=> u v ug vg peq; apply: pair_exten; try apply: gg=>//. by apply: (pr2_def peq). by apply: (pr1_def peq). + by move=> y /igraphP [py pg]; ex_tac;aw; rewrite py. Qed. (** Proposition 7 summarizes next two theorems. Let f be a function; then f is a bijection if and only if its inverse is a function *) Theorem bijective_inv_f f: bijection f -> function (inverse_fun f). Proof. rewrite /inverse_fun; move => [fi fs]. have gf: (sgraph (graph f)) by move: fi=> [ff _]; fprops. have fgf: fgraph (inverse_graph (graph f)). split; fprops; move=> x y/igraphP [px pf]/igraphP [qx qf] peq. apply: pair_exten =>//. by rewrite -peq in qf; apply: (injective_pr3 fi pf qf). apply: function_pr=>//. by rewrite igraph_range=>//; aw; fprops; fct_tac. by symmetry; rewrite igraph_domain =>//; apply: surjective_pr3. Qed. Theorem inv_function_fb f: function f -> function (inverse_fun f) -> bijection f. Proof. move=> ff fif. split. apply: injective_pr_bis=> // x x' y. move/igraph_pP;rewrite -ifun_g => r1 ;move/igraph_pP; rewrite -ifun_g=> r2. by apply: (fgraph_pr (proj32 fif) r1 r2). apply: surjective_pr4=> //; rewrite - igraph_domain; fprops. by rewrite -ifun_g /inverse_fun; aw. Qed. (** Properties of the inverse of a bijection *) Lemma ifun_involutive: {when function, involutive inverse_fun}. Proof. move=> f ff;apply:icor_involutive; fct_tac. Qed. Lemma inverse_bij_fb f: bijection f -> bijection (inverse_fun f). Proof. move=> bf;move: (bijective_inv_f bf)=> bif. have ff:function f by fct_tac. apply: inv_function_fb => //; rewrite ifun_involutive //. Qed. Lemma inverse_V f x: bijection f -> inc x (target f) -> Vf f (Vf (inverse_fun f) x) = x. Proof. move=> bf xt; move:(bij_surj bf xt) => [y ys xv]; rewrite -{2} xv. move:(bijective_inv_f bf)=> bif. congr Vf; symmetry; apply:(Vf_pr bif). rewrite ifun_g -xv; apply/igraph_pP; Wtac; fct_tac. Qed. Lemma inverse_V2 f y: bijection f -> inc y (source f) -> Vf (inverse_fun f) (Vf f y) = y. Proof. move=> bf ys. have yt: inc y (target (inverse_fun f)) by aw. move: (inverse_V (inverse_bij_fb bf) yt). by rewrite (ifun_involutive (proj1 (proj1 bf))). Qed. Lemma inverse_Vis f x: bijection f -> inc x (target f) -> inc (Vf (inverse_fun f) x) (source f). Proof. move=> bf xt. have -> : source f= (target (inverse_fun f)) by aw. apply: Vf_target; aw; apply: (proj1(proj1(inverse_bij_fb bf))). Qed. Lemma composable_f_inv f: bijection f -> f \coP (inverse_fun f). Proof. move=> bf; have fif:=(bijective_inv_f bf). split;[fct_tac | done | aw]. Qed. Lemma composable_inv_f f: bijection f -> (inverse_fun f) \coP f. Proof. move=> bf; have fif:=(bijective_inv_f bf). split; [ done | fct_tac | aw]. Qed. Lemma bij_right_inverse f: bijection f -> f \co (inverse_fun f) = identity (target f). Proof. move=> bf. have ff: function f by fct_tac. move:(bijective_inv_f bf)(composable_f_inv bf) => iff cop. apply: function_exten; fprops; aw; first by fct_tac; aw. by move => a atf /=; aw; bw; apply:inverse_V. Qed. Lemma bij_left_inverse f: bijection f -> (inverse_fun f) \co f = identity (source f). Proof. move=> bf. have ff: function f by fct_tac. move:(bijective_inv_f bf)(composable_inv_f bf) => iff cop. apply: function_exten; fprops; aw; first by fct_tac; aw. by move => a atf /=; aw; bw; apply:inverse_V2. Qed. Lemma compf_lK f g : bijection g -> g \coP f -> (inverse_fun g) \co (g \co f) = f. Proof. move => bg cop. have co1 := (composable_inv_f bg). rewrite (compfA co1 cop) (bij_left_inverse bg). by move: cop => [s1 s2 ->]; rewrite (compf_id_l s2). Qed. Lemma compf_rK f g : bijection g -> f \coP g -> (f \co g) \co (inverse_fun g) = f. Proof. move => bg cop. move: (composable_f_inv bg) => co1. rewrite -(compfA cop co1) (bij_right_inverse bg). by move: cop => [s1 s2 s3]; rewrite - s3 (compf_id_r s1). Qed. Lemma compf_regl f f' g : bijection g -> f \coP g -> f' \coP g -> f \co g = f' \co g -> f = f'. Proof. move => bg pa pb pc. by rewrite - (compf_rK bg pa) - (compf_rK bg pb) pc. Qed. Lemma compf_regr f f' g : bijection g -> g \coP f -> g \coP f' -> g \co f = g \co f' -> f = f'. Proof. move => bg pa pb pc. by rewrite - (compf_lK bg pa) - (compf_lK bg pb) pc. Qed. Lemma bijection_inverse_aux g h: bijection g -> composable g h -> g \co h = identity (source h) -> inverse_fun g = h. Proof. move => ha hb. move: (hb) => [fg fh sgth] w. have hd:= (composable_inv_f ha). have ra:=(proj31(bijective_inv_f ha)). move /(f_equal target): (w); aw; move => tgsh. have sh: (source h) = source (inverse_fun g) by aw. move/(f_equal (compose (inverse_fun g))): w. rewrite sh (compf_id_right ra) (compfA hd hb) (bij_left_inverse ha). by rewrite sgth (compf_id_left (proj31 fh)). Qed. (** Properties of direct and inverse images *) Lemma sub_inv_im_source f y: function f -> sub y (target f) -> sub (Vfi f y) (source f). Proof. by move=> ff yt t /iim_graph_P [u uy Jg]; Wtac. Qed. Lemma direct_inv_im f y: function f -> sub y (target f) -> sub (Vfs f (Vfs (inverse_fun f) y)) y. Proof. move=> ff yt x. have aux: sub (Vfs (inverse_fun f) y) (source f). by rewrite /inverse_fun/Vfs; aw; apply: sub_inv_im_source. move/(Vf_image_P ff aux) =>[u /dirim_P [z zy /igraph_pP]]. by rewrite - ifun_g (ifun_involutive ff) => xx ->; rewrite -(Vf_pr ff xx). Qed. Lemma nonempty_image f x: function f -> nonempty x -> sub x (source f) -> nonempty (Vfs f x). Proof. move=> ff [z zx] xf; exists (Vf f z); apply/dirim_P; ex_tac; Wtac. Qed. Lemma direct_inv_im_surjective f y: surjection f -> sub y (target f) -> Vfs f (Vfs (inverse_fun f) y) = y. Proof. move=> [ff sf] yt. apply: extensionality; first by apply: direct_inv_im. move=> x xs; rewrite -iim_fun_pr. apply/Vf_image_P =>//; first by apply: sub_inv_im_source. have [u us Jg] := (sf _ (yt _ xs)). exists u=>//;apply/iim_fun_P; ex_tac;rewrite - Jg; Wtac. Qed. Lemma inverse_direct_image f x: function f -> sub x (source f) -> sub x (Vfs (inverse_fun f) (Vfs f x)). Proof. move=> ff sxf t tx. apply/dirim_P; exists (Vf f t). by apply/Vf_image_P => //; ex_tac. rewrite ifun_g; apply/igraph_pP; Wtac. Qed. Lemma inverse_direct_image_inj f x: injection f -> sub x (source f) -> Vfs (inverse_fun f) (Vfs f x) = x. Proof. move=> [ff fi] xsf. apply: extensionality; last by apply: inverse_direct_image. rewrite -iim_fun_pr => y /iim_graph_P [u ui Jg]. move /(Vf_image_P ff xsf): ui => [v vx]; rewrite (Vf_pr ff Jg) => Vv. by rewrite - (fi _ _ (xsf _ vx) (p1graph_source ff Jg) (sym_eq Vv)). Qed. (** ** EII-3-8 Retractions and sections *) (** Definition of left and right inverse *) Definition is_left_inverse f r:= r \coP f /\ r \co f = identity (source f). Definition is_right_inverse f s:= f \coP s /\ f \co s = identity (target f). Lemma left_i_target f r: is_left_inverse f r -> target r = source f. Proof. by move=> [_ /(congr1 target)]; aw. Qed. Lemma left_i_source f r: is_left_inverse f r -> source r = target f. Proof. by move=> [[_ [_ c] _]]. Qed. Lemma right_i_source f s: is_right_inverse f s -> source s = target f. Proof. by move=> [_ /(congr1 source)]; aw. Qed. Lemma right_i_target f s: is_right_inverse f s -> target s = source f. Proof. by move=> [[_ [_ c] _]]. Qed. Lemma right_i_V f s x: is_right_inverse f s -> inc x (target f) -> Vf f (Vf s x) = x. Proof. move=> rsf xtf; move: (xtf);rewrite - (right_i_source rsf). move: rsf=> [csf c] xs;rewrite - compf_V // c; bw. Qed. Lemma left_i_V f r x: is_left_inverse f r -> inc x (source f) -> Vf r (Vf f x) = x. Proof. move=> [ltf c] xsf; rewrite- compf_V // c; bw. Qed. (** Proposition 8 concerns the next 4 theorems; it is the link between injectivity, surjectivity and existence of left and right inverse *) Theorem inj_if_exists_left_inv f: (exists r, is_left_inverse f r) -> injection f. Proof. move=> [r lrf]; split; first by move: lrf => [ cp _ ]; fct_tac. move=> x y xs ys sv. by rewrite - (left_i_V lrf xs) - (left_i_V lrf ys) sv. Qed. Theorem surj_if_exists_right_inv f: (exists s, is_right_inverse f s) -> surjection f. Proof. move=> [s rsf]; move: (rsf) => [cp _]; move: (cp) =>[ff fs ss]. split => // y yt; exists (Vf s y). rewrite -(right_i_source rsf) in yt; rewrite ss; fprops. by rewrite (right_i_V rsf yt). Qed. (** Existence of left and right inverse for Bourbaki functions *) Theorem exists_left_inv_from_inj f: injection f -> nonempty (source f) -> exists r, is_left_inverse f r. Proof. move=> fi [a asf]; move: (inj_function fi) => ff. pose p x y := x = Vf f y. pose gx x := (select (p x) (source f)). have hc x: inc x (Imf f) -> p x (gx x) /\ inc (gx x) (source f). move => xI; apply: select_pr; first by move/(Vf_image_P1 ff): xI. rewrite /p; move => i j /= isf e1 jsf e2;apply: (proj2 fi i j isf jsf). by rewrite - e1 e2. pose g x := Yo (inc x (Imf f)) (gx x) a. have ax: lf_axiom g (target f) (source f). rewrite /g => t tt; Ytac h => //; exact:(proj2 (hc _ h)). have ha: Lf g (target f) (source f) \coP f. by split; aw; apply:lf_function. exists (Lf g (target f) (source f)). split => //; apply: function_exten; aw; fprops; first by fct_tac. move => y ys /=. have yi:inc (Vf f y) (Imf f) by apply/(Vf_image_P1 ff); ex_tac. have ft: inc (Vf f y) (target f) by Wtac. move: (hc _ yi) => [hu hv]; move:(proj2 fi _ _ ys hv hu) => yv. by aw; bw; rewrite /g; Ytac0. Qed. Theorem exists_right_inv_from_surj f: surjection f -> exists s, is_right_inverse f s. Proof. move=> [ff sf]. pose p y x := inc x (source f) /\ Vf f x = y. have ha y: inc y (target f) -> p y (choose (p y)). by move => /sf [x xa xb]; apply: choose_pr; exists x. have ax: lf_axiom (fun y => choose (p y)) (target f) (source f). by move => y /ha; case. have hb: f \coP Lf (fun y : Set => choose (p y)) (target f) (source f). by split; aw; apply: lf_function. exists (Lf (fun y => choose (p y)) (target f) (source f)). split => //;apply:function_exten; aw; fprops; first by fct_tac. move => y yt /=; aw; bw. exact:proj2 (ha _ yt). Qed. (** If compositions in both order are the identity, then the functions are bijections *) Lemma bijective_from_compose g f: g \coP f -> f \coP g -> g \co f = identity (source f) -> f \co g = identity (source g) -> [/\ bijection f, bijection g & g = inverse_fun f]. Proof. move=> cgf cfg cgfi cfgi. move: (cfg) (cgf)=> [ff fg seq] [_ _ teq]. have injf: injection f by apply: inj_if_exists_left_inv; exists g. have injg: injection g by apply: inj_if_exists_left_inv; exists f. have bf: (bijection f). by split =>//; apply: surj_if_exists_right_inv; exists g; hnf; rewrite -teq. split=>//. by split=>//; apply: surj_if_exists_right_inv; exists f; hnf; rewrite - seq. have fif:= (bijective_inv_f bf). apply: function_exten=>//; aw; first by ue. move=> x xs. have {2} -> : (x = Vf f (Vf g x)). by rewrite - compf_V=>//;rewrite cfgi identity_V =>//. rewrite (inverse_V2 bf) // seq; Wtac. Qed. (** More links between left inverse and right inverse *) Lemma right_inverse_from_left f r: is_left_inverse f r -> is_right_inverse r f. Proof. by move=> [c e];hnf; rewrite (left_i_target (conj c e)). Qed. Lemma left_inverse_from_right f s: is_right_inverse f s -> is_left_inverse s f. Proof. by move=> [c e]; hnf; rewrite (right_i_source (conj c e)). Qed. Lemma left_inverse_fs f r: is_left_inverse f r -> surjection r. Proof. move=> lrf; apply: surj_if_exists_right_inv. by exists f; apply: right_inverse_from_left. Qed. Lemma right_inverse_fi f s: is_right_inverse f s -> injection s. Proof. move=> lrf; apply: inj_if_exists_left_inv. by exists f; apply: left_inverse_from_right. Qed. Lemma section_unique f: {when (is_right_inverse f) &, injective (fun s => range (graph s)) }. Proof. move=> s s' rsf rs'f rg. move: (proj32_1 rsf)(proj32_1 rs'f) => fs fs'. move: (right_i_source rsf) (right_i_source rs'f) => ss ss'. apply: function_exten =>//. by rewrite (right_i_source rsf). by rewrite (right_i_target rsf) (right_i_target rs'f). move=> x xs. have: (inc (Vf s x) (range (graph s))) by apply /range_fP=>//; exists x. move: xs;rewrite rg ss => xs /(range_fP fs') [y]; rewrite ss' => ys ww. move: (f_equal (fun z => Vf f z) ww). by rewrite(right_i_V rs'f ys) (right_i_V rsf xs) ww => ->. Qed. (** Theorem one is next 14 lemmas. It studies left and right invertibility of one of f g and the composition of f and g, given properties of the other objects. *) Theorem compose_fi f f': injection f -> injection f' -> f' \coP f -> injection (f' \co f). Proof. move=> [_ fi] [_ fi'] c; split; first by fct_tac. aw => x y xs ys; aw=>p; apply: (fi _ _ xs ys). move:c => [_ ff c]; apply: fi' => //; rewrite c; fprops. Qed. Lemma inj_compose1 f f': injection f -> injection f' -> source f' = target f -> injection (f' \co f). Proof. move=> injf injf' sff';apply: compose_fi=> //;split => //; fct_tac. Qed. Theorem compose_fs f f': surjection f -> surjection f' -> f' \coP f -> surjection (f' \co f). Proof. move=> [_ sf] [_ sf'] c; split; [fct_tac | aw => y yt]. move: (sf' _ yt) => [x xs <-]. have xt: inc x (target f) by rewrite - (proj33 c). move: (sf _ xt) => [z zs <-]; ex_tac;aw. Qed. Lemma compose_fb f f': bijection f -> bijection f' -> f' \coP f -> bijection (f' \co f). Proof. by move=> [inf sf] [inf' sf']; split ; [apply: compose_fi | apply: compose_fs]. Qed. Lemma right_compose_fb f f': f' \coP f -> bijection (f' \co f) -> bijection f' -> bijection f. Proof. move=> c bc bf; move: (inverse_bij_fb bf) => bf'. rewrite - (compf_lK bf c); apply: compose_fb => //; split; aw; fct_tac. Qed. Lemma left_compose_fb f f': f' \coP f -> bijection (f' \co f) -> bijection f -> bijection f'. Proof. move=> cff bc bf; move: (inverse_bij_fb bf) => bf'. rewrite - (compf_rK bf cff); apply: compose_fb => //; split; aw; fct_tac. Qed. Lemma left_inverse_composable f f' r r': f' \coP f -> is_left_inverse f' r' -> is_left_inverse f r -> r \coP r'. Proof. move=> [_ _ c] li1 [[fr _ r1] _]. move: (left_i_target li1)=> r2. move: li1=> [[fr' _] _ _]. by split => //; rewrite r1 - c r2. Qed. Lemma right_inverse_composable f f' s s': f' \coP f -> is_right_inverse f' s' -> is_right_inverse f s -> s \coP s'. Proof. move=> [_ _ c] [[_ fs r1] _] ri1. move: (ri1)=> [[_ fs' _] _]. by split => //; rewrite (right_i_source ri1) -c. Qed. Theorem left_inverse_compose f f' r r': f' \coP f -> is_left_inverse f' r' -> is_left_inverse f r -> is_left_inverse (f' \co f) (r \co r') . Proof. move=> c1 li1 li2. have cc:= left_inverse_composable c1 li1 li2. have tr'sr':= left_i_target li1. have sf'sr: (source f' = source r) by rewrite (proj33 cc). have sr'tf':= left_i_source li1. have [crf' crfi'] := li1. have [crf crfi] := li2. split. by split; [ fct_tac | fct_tac | aw;rewrite sr'tf']. have crrf: (r \co r') \coP f' by split; [ fct_tac | fct_tac| aw ]. rewrite compfA //- (@compfA r r' f') //. rewrite crfi' sf'sr compf_id_r ?crfi; aw; fct_tac. Qed. Theorem right_inverse_compose f f' s s': f' \coP f -> is_right_inverse f' s' -> is_right_inverse f s -> is_right_inverse (f' \co f) (s \co s'). Proof. move=> cf'f ri1 ri2. have css':= (right_inverse_composable cf'f ri1 ri2). have sstf:= (right_i_source ri2). have tssf:=(right_i_target ri2). have sf'sr: (target f = target s') by rewrite - (proj33 css'). have [cfs' cfsi'] := ri1. have [cfs cfsi] := ri2. split. by split; [ fct_tac | fct_tac | aw;rewrite -tssf]. have crrf: f \coP (s \co s') by split; [ fct_tac | fct_tac| aw ]. rewrite - compfA=>//; rewrite (@compfA f s s')=>//. by aw; rewrite cfsi sf'sr compf_id_l=>//; fct_tac. Qed. Theorem right_compose_fi f f': f' \coP f -> injection (f' \co f) -> injection f. Proof. move=> cff [fc ic]; split; first by fct_tac. by move: ic; aw; move=> ic x y xs ys eql; apply: ic=>//; aw; rewrite eql. Qed. Theorem left_compose_fs f f': f' \coP f -> surjection (f' \co f) -> surjection f'. Proof. move=> cff sc; split; first by fct_tac. have: (target f' = target (f' \co f)) by aw. move=> -> y yt; move: ((proj2 sc) _ yt)=> [x xs <-]. rewrite compf_s in xs; exists (Vf f x); aw. move:cff=> [_ ff ->]; fprops. Qed. Theorem left_compose_fs2 f f': f' \coP f-> surjection (f' \co f) -> injection f' -> surjection f. Proof. move=> cff sc [_ fi]. have [ff ff' eq] := cff. split; first by fct_tac. rewrite - eq=>y ytf. have ytc: (inc (Vf f' y) (target (f' \co f))) by aw; fprops. move: ((proj2 sc) _ ytc)=> [x]; rewrite compf_s => xs; aw => wxt. by exists x => //; apply: fi=>//; rewrite eq; fprops. Qed. Theorem left_compose_fi2 f f': f' \coP f -> injection (f' \co f) -> surjection f -> injection f'. Proof. move=> cff [_ ic] sf. split; first by fct_tac. rewrite (proj33 cff) => x y xs ys. have [x' x's e1] := ((proj2 sf) _ xs). have [y' y's e2] :=((proj2 sf) _ ys). rewrite compf_s in ic; move: (ic _ _ x's y's); aw; rewrite -e1 -e2. by move=> e3 e4; rewrite (e3 e4). Qed. Theorem left_inv_compose_rf f f' r'': f' \coP f -> is_left_inverse (f' \co f) r'' -> is_left_inverse f (r'' \co f'). Proof. move=> cff [[ aa bb]]; aw; move => crffi cc. have [ff' ff seq]: f' \coP f by []. have crf: r'' \coP f' by hnf. split; [split; aw; fct_tac | by rewrite - compfA ]. Qed. Theorem right_inv_compose_rf f f' s'': f' \coP f -> is_right_inverse (f' \co f) s'' -> is_right_inverse f' (f \co s''). Proof. move=> cff [[ fc fs]]; aw => cffsi cc. have [ff' ff seq]: (f' \coP f) by []. have cfs: f \coP s'' by hnf. by split; [split; aw; fct_tac | rewrite compfA ]. Qed. Theorem left_inv_compose_rf2 f f' r'': f' \coP f -> is_left_inverse (f' \co f) r'' -> surjection f -> is_left_inverse f' (f \co r''). Proof. move=> cff lic sf. have bf: (bijection f). split=>//. have: (injection (f' \co f)) by apply: inj_if_exists_left_inv; exists r''. by apply: (right_compose_fi cff). move: (left_i_target lic); aw=> trsf; move:lic=> [crrf]; aw=> crrfi. have cfr: f \coP r'' by hnf;split; try fct_tac; symmetry. have fcfr:(function (f \co r'')) by fct_tac. split; first by hnf; split; try fct_tac; move: crrf=> [_ _]; aw. set (invf:= inverse_fun f). have sfti: (source f = target invf) by rewrite /invf; aw. have fi:(function invf) by apply: bijective_inv_f. have cffi: (f' \co f) \coP invf by hnf; aw; split; try fct_tac. have co3: r'' \coP ((f' \co f) \co inverse_fun f). hnf; split;try fct_tac;move: crrf=> [_ _]; aw. have co4: r'' \coP f' by hnf; split; try fct_tac;move: crrf=> [_ _]; aw. rewrite - (compfA cfr co4) -{1} (compf_rK bf cff) (compfA crrf cffi). by rewrite crrfi sfti compf_id_l // /invf (proj33 cff) bij_right_inverse. Qed. Theorem right_inv_compose_rf2 f f' s'': f' \coP f -> is_right_inverse (f' \co f) s'' -> injection f' -> is_right_inverse f (s'' \co f'). Proof. move=> cff risc fi. have sc: (surjection (f' \co f)) by apply:surj_if_exists_right_inv; exists s''. have bf': (bijection f') by split=>//; apply: (left_compose_fs cff sc). move: (right_i_source risc); aw=> sstf. move: risc=> []; aw => cffs cffsi. have csf: (s'' \coP f') by hnf; split; try fct_tac. have fcsf: function (s'' \co f') by fct_tac. have cfc: f \coP (s'' \co f') by hnf; split; try fct_tac; move:cffs=> [_ _]; aw. have bif:= (bijective_inv_f bf'). have sf'tf: source f' = target f by move: cff=> [_ _]. set (invf:= inverse_fun f'). have cic: composable invf (f' \co f) by split; try fct_tac; rewrite/invf; aw. have cffsf: (f' \co f) \coP (s'' \co f'). hnf; split;[ fct_tac | done | by move:cfc=> [_ _]; aw ]. have ff: function f' by fct_tac. split=>//. rewrite - {1} (compf_lK bf' cff) - compfA // (compfA cffs csf). by rewrite cffsi compf_id_l // (bij_left_inverse bf') sf'tf. Qed. (** Proposition 9 is the next 6 lemmas (each in 2 variants). Given f and g, when does there exists h such that the composition with f (in any order) is g *) Theorem exists_left_composable f g: function f -> surjection g -> source f = source g -> ((exists h, h \coP g /\ h \co g = f) <-> (forall x y, inc x (source g) -> inc y (source g) -> Vf g x = Vf g y -> Vf f x = Vf f y)). Proof. move=> ff sg sfsg; split. by move=> [h [chg]] <- x y xs ys; aw => ->. move:(exists_right_inv_from_surj sg) => [h [ha hb]] hc. move: ha => [fg fh sgth]. have ra: f \coP h by split => //; rewrite sfsg. have rb: function (f \co h) by apply:compf_f. have rc: source h = target g by move: (f_equal source hb); aw. have rd: (f \co h) \coP g by split; aw. have re: g \coP h by split. exists (f \co h); split => //. symmetry; apply: function_exten; aw; first by apply:compf_f. move => x xsf /=. have xsg: inc x (source g) by ue. have gxsh: inc (Vf g x) (source h) by rewrite rc; Wtac. have hgxsg: inc (Vf h (Vf g x)) (source g) by rewrite sgth; Wtac. aw;apply: (hc _ _ xsg hgxsg). move: (f_equal (Vf ^~ (Vf g x)) hb); bw; aw => //; Wtac. Qed. Theorem exists_left_composable_aux f g s h: function f -> source f = source g -> is_right_inverse g s -> h \coP g -> h \co g = f -> h = f \co s. Proof. move=> gg sfsg [csg cshi] chg <-. have shtg:(source h= target g) by move: chg=> [_ _]. by rewrite - compfA // cshi - shtg compf_id_r //; fct_tac. Qed. Theorem exists_unique_left_composable f g h h': function f -> surjection g -> source f = source g -> h \coP g -> h' \coP g -> h \co g = f -> h' \co g = f -> h = h'. Proof. move=> ff sg sfsg chg chg' chgf chgf'. move:(exists_right_inv_from_surj sg)=> [j jp]. rewrite (exists_left_composable_aux ff sfsg jp chg chgf). by rewrite (exists_left_composable_aux ff sfsg jp chg' chgf'). Qed. Theorem left_composable_value f g s h: function f -> surjection g -> source f = source g -> (forall x y, inc x (source g) -> inc y (source g) -> Vf g x = Vf g y -> Vf f x = Vf f y) -> is_right_inverse g s -> h = f \co s -> h \co g = f. Proof. move=> ff sg sfsg hyp rish ->. have sstg:= (right_i_source rish). have [cgs cgsi] := rish. have cfs: f \coP s by hnf; split; [done |fct_tac | move:cgs => [_ _] <-]. have cfsg: (f \co s) \coP g by hnf; split;aw;fct_tac. apply: function_exten; aw;[ fct_tac | by symmetry |]. move=> x xg. have Ws: (inc (Vf g x) (source s)) by rewrite sstg;Wtac;fct_tac. have WWs: inc (Vf s (Vf g x)) (source g). move:cgs => [_ _ ->]; Wtac; fct_tac. by aw; apply: hyp =>//; rewrite -compf_V // cgsi; bw; rewrite - sstg. Qed. Theorem exists_right_composable_aux f g h r: function f -> target f = target g -> is_left_inverse g r -> g \coP h -> g \co h = f -> h = r \co f. Proof. move=> ff tftg [crg crgi] chg <-; rewrite compfA // crgi. by move:chg=> [_ fh ->];rewrite compf_id_l. Qed. Theorem exists_right_composable_unique f g h h': function f -> injection g -> target f = target g -> g \coP h -> g \coP h' -> g \co h = f -> g \co h' = f -> h = h'. Proof. move=> ff [_ ig] tftg cgh cgh' cghf cghf'. move: (cgh)(cgh') => [p1 p2 p3] [_ p5 p6]. rewrite -cghf' in cghf. have shh': source h = source h' by rewrite -(compf_s h g) -(compf_s h' g) cghf. apply: function_exten => //; [ ue | move=> x xsh;apply: ig ]. + by rewrite p3; Wtac. + rewrite p6; Wtac; ue. + move: (f_equal (Vf ^~ x) cghf); aw; ue. Qed. Theorem exists_right_composable f g: function f -> injection g -> target f = target g -> ((exists h, g \coP h /\ g \co h = f) <-> (sub (range (graph f)) (range (graph g)))). Proof. move=> ff ig tftg. have fg: function g by fct_tac. split. move => [h [chg cghf]] x /(range_fP ff) [u usf ->]; apply/(range_fP fg). have [_ fh th] := chg. move: usf; rewrite - cghf compf_s => usg; aw. exists (Vf h u) => //;rewrite th; Wtac. case: (emptyset_dichot (source g)). case: (emptyset_dichot (source f)). move=> ssfe sge _. move: empty_function_function => [qa qb qc]. have cge: (g \coP empty_function) by split => //; rewrite qc. exists (empty_function); split=>//; symmetry. apply: function_exten=>//; aw;try fct_tac; rewrite ssfe ?qb //. move => x /in_set0 //. have [_ fgf ->] := ff. move=> [x xsf] sge hyp. move: (hyp _ (inc_V_range fgf xsf)); move/(range_fP fg) => [u]. by rewrite sge => /in_set0. move=> nesg hyp. have [r rli]:= (exists_left_inv_from_inj ig nesg). have trsg:= (left_i_target rli). have [crg crgi] := rli. have crf: (r \coP f). by hnf; split => //; first (by fct_tac); move: crg=> [_ _ ->]; symmetry. have fcrf: (function (r \co f)) by fct_tac. have cgrf: (g \coP (r \co f)) by hnf; aw. exists (r \co f); split=>//. symmetry;apply: function_exten; try fct_tac; aw. move=> x xsf /=; aw. have aux: (sgraph (graph f)) by fprops. move: xsf; rewrite -(f_domain_graph ff). move/(domainP aux)=> [y Jg]; rewrite - (Vf_pr ff Jg). have: (inc y (range (graph g))) by apply: hyp; apply/(rangeP aux); ex_tac. move/(range_fP fg) => [z zs ->]. have: (Vf (r \co g) z = z) by rewrite crgi; bw. by aw; move => ->. Qed. Theorem right_composable_value f g r h: function f -> injection g -> target g = target f -> is_left_inverse g r -> (sub (range (graph f)) (range (graph g))) -> h = r \co f -> g \co h = f. Proof. move=> ff ig tgtf lirg hyp ->. have trsg :=(left_i_target lirg). have [crg crgi] := lirg. have srtg:=(proj33 crg). have crf: (r \coP f) by split=> //; try fct_tac; rewrite srtg. have cgrf: g \coP (r \co f) by split; try fct_tac; symmetry; aw. have cgr: (g \coP r) by split => //; fct_tac. apply: function_exten; aw; try fct_tac. move=> x xf /=; aw. have: (inc (Vf f x) (range (graph g))). by apply: hyp; apply/(range_fP ff); exists x. move/(range_fP (proj1 ig))=> [y ys ->]. by move: (f_equal (fun z=> (Vf z y)) crgi); aw; bw => ->. Qed. (** Equipotent *) Definition equipotent x y := exists z, bijection_prop z x y. Notation "x \Eq y" := (equipotent x y) (at level 50). Lemma equipotent_aux f a b: bijection (Lf f a b) -> a \Eq b. Proof. by move => h; exists (Lf f a b); rewrite /bijection_prop; aw; split. Qed. Lemma EqR: reflexive_r equipotent. Proof. move => x; exists (identity x); apply: identity_bp. Qed. Hint Resolve EqR: fprops. Lemma EqT: transitive_r equipotent. Proof. move => c b a [f [bf sf tf]] [g [bg sg tg]]; exists (g \co f). by split; aw; apply: compose_fb => //; split => //; try fct_tac; rewrite tf. Qed. Lemma EqS: symmetric_r equipotent. Proof. move => a b [f [bf sf tf]]; exists (inverse_fun f). by split; aw; apply:inverse_bij_fb. Qed. Lemma Eq_restriction1 f x: sub x (source f) -> injection f -> x \Eq (Vfs f x). Proof. move=> wsf bf; have h:=(restriction1_fb bf wsf). exists (restriction1 f x); split => //; rewrite/restriction1; aw. Qed. Lemma Eq_src_range f: injection f -> (source f) \Eq (range (graph f)). Proof. move=> injf; rewrite -image_by_fun_source; last by fct_tac. apply: Eq_restriction1; fprops. Qed. Lemma equipotent_product_sym a b: (a \times b) \Eq (b \times a). Proof. have pa: sgraph (a \times b) by fprops. move: (inv_graph_canon_fb pa); aw; apply: equipotent_aux. Qed. Lemma Eq_indexed a b: a \Eq (a *s1 b). Proof. rewrite /indexed. apply: (@equipotent_aux (fun x=> J x b)); apply: lf_bijective. - by move=> x xa /=; aw; fprops. - by move=> u v _ _; apply: pr1_def. - move=> y /setX_P [py pya /set1_P <-]; ex_tac; aw. Qed. Lemma Eq_indexed2 a b: (a *s1 b) \Eq a. Proof. apply:EqS; apply: Eq_indexed. Qed. Lemma Eq_indexed3 a b c: (a *s1 b) \Eq (a *s1 c). Proof. apply: (EqT (Eq_indexed2 a b) (Eq_indexed a c)). Qed. Lemma Eq_rindexed a b: a \Eq (indexedr b a). Proof. apply: (EqT (Eq_indexed a b)); apply: equipotent_product_sym. Qed. Lemma Eq_src_graph f: function f -> (source f) \Eq (graph f). Proof. move=> ff. apply: (@equipotent_aux (fun z => J z (Vf f z))); apply: lf_bijective. - move=> z jz /=;Wtac. - move=> u v _ _ aux; exact: (pr1_def aux). - move=> y yG; move: (p1graph_source1 ff yG) => pa; ex_tac. apply: in_graph_V => //; fprops. Qed. Lemma Eq_domain f: fgraph f -> domain f \Eq f. Proof. move => h. apply:(@equipotent_aux (fun z => J z (Vg f z))); apply: lf_bijective. + by apply: fdomain_pr1. + by move => u v _ _ /pr1_def. + by move => y yf; rewrite (in_graph_V h yf); exists (P y); fprops. Qed. (** ** EII-3-9 Functions of two arguments *) (** Given a function f with two arguments and one argument, we obtain a function of one argument*) Definition partial_fun2 f y := Lf (fun x=> Vf f (J x y)) (im_of_singleton (inverse_graph (source f)) y) (target f). Definition partial_fun1 f x := Lf(fun y=> Vf f (J x y))(im_of_singleton (source f) x) (target f). Section Funtion_two_args. Variable f:Set. Hypothesis ff: function f. Hypothesis sgf: sgraph (source f). Lemma partial_fun1_axioms x: lf_axiom (fun y=> Vf f (J x y))(im_of_singleton (source f) x) (target f). Proof. move=> t /dirim_P [u /set1_P ->]; fprops. Qed. Lemma partial_fun1_f x: function (partial_fun1 f x). Proof. by apply: lf_function; apply: partial_fun1_axioms. Qed. Lemma partial_fun1_V x y: inc (J x y) (source f) -> Vf (partial_fun1 f x) y = Vf f (J x y) . Proof. rewrite/partial_fun1=> Js; aw; first by apply: partial_fun1_axioms. apply /dirim_P; ex_tac; fprops. Qed. Lemma partial_fun2_axioms y: lf_axiom (fun x=>Vf f (J x y))(im_of_singleton (inverse_graph (source f)) y) (target f). Proof. move=> t /iim_graph_P [u /set1_P ->]; fprops. Qed. Lemma partial_fun2_f y: function (partial_fun2 f y). Proof. by apply: lf_function; apply: partial_fun2_axioms. Qed. Lemma partial_fun2_V x y: inc (J x y) (source f) -> Vf (partial_fun2 f y) x = Vf f (J x y). Proof. rewrite/partial_fun2=> Js; aw; first by apply: partial_fun2_axioms. apply /iim_graph_P; ex_tac; fprops. Qed. End Funtion_two_args. (** Product of two functions *) Definition ext_to_prod u v := Lf(fun z=> J (Vf u (P z))(Vf v (Q z))) ((source u) \times (source v)) ((target u)\times (target v)). Notation "f \ftimes g" := (ext_to_prod f g) (at level 40). Section Ext_to_prod. Variables u v: Set. Hypothesis (fu: function u) (fv: function v). Lemma ext_to_prod_f: function (u \ftimes v). Proof. apply: lf_function => t /setX_P [_ px py]; apply: setXp_i; fprops. Qed. Lemma ext_to_prod_V2 c: inc c ((source u) \times (source v)) -> Vf (u \ftimes v) c = J (Vf u (P c)) (Vf v (Q c)). Proof. rewrite /ext_to_prod=> h; aw => t /setX_P [_ px py]; apply: setXp_i; fprops. Qed. Lemma ext_to_prod_V a b: inc a (source u) -> inc b (source v)-> Vf (u \ftimes v) (J a b) = J (Vf u a) (Vf v b). Proof. by move => asu bsv; rewrite ext_to_prod_V2; aw; apply: setXp_i. Qed. Lemma ext_to_prod_s: source (u \ftimes v) = source u \times source v. Proof. rewrite/ext_to_prod; aw. Qed. Lemma ext_to_prod_r: range (graph (u \ftimes v)) = (range (graph u)) \times (range (graph v)). Proof. have fe: (function (u \ftimes v)) by apply:ext_to_prod_f. set_extens t. move/(range_fP fe) => [x ]; rewrite (ext_to_prod_s) => xs ->. rewrite (ext_to_prod_V2 xs); move/setX_P:xs => [_ px qx]. apply /setXp_i; Wtac. move/setX_P => [pt /(range_fP fu) [x xsu xp] /(range_fP fv) [y ysv yp]]. apply/(range_fP fe);rewrite ext_to_prod_s; exists (J x y);first by fprops. by rewrite (ext_to_prod_V)// - pt xp yp. Qed. End Ext_to_prod. Hint Resolve ext_to_prod_f: fprops. (** If the two functions are injective, surjective, bijective, so is the product. The inverse of the product is trivial *) Lemma ext_to_prod_fi u v: injection u -> injection v -> injection (u \ftimes v). Proof. move=> [fu iu] [fv iv]; split; fprops. rewrite /ext_to_prod; aw. move => x y xs ys /=; rewrite ext_to_prod_V2 // ext_to_prod_V2 //. move: xs ys => /setX_P [px pxs qxs] /setX_P [py pys qys] eq. apply: pair_exten =>//. by apply: iu=>//; apply: (pr1_def eq). by apply: iv=>//; apply: (pr2_def eq). Qed. Lemma ext_to_prod_fs u v: surjection u -> surjection v -> surjection (u \ftimes v). Proof. move=> [fu su] [fv sv]. split; first by fprops. move=> y; rewrite ext_to_prod_s /ext_to_prod; aw. move/setX_P=> [py ptu qtv]. move: (su _ ptu)=> [pv prv prw]. move: (sv _ qtv)=> [qv qrv qrw]. exists (J pv qv); fprops. by rewrite ext_to_prod_V // prw qrw py. Qed. Lemma ext_to_prod_fb u v: bijection u -> bijection v -> bijection (u \ftimes v). Proof. move => [p1 p2] [p3 p4]. split; [by apply: ext_to_prod_fi | by apply: ext_to_prod_fs ]. Qed. Lemma ext_to_prod_inverse u v: bijection u -> bijection v-> inverse_fun (u \ftimes v) = (inverse_fun u) \ftimes (inverse_fun v). Proof. move=> bu bv. have Ha:bijection (u \ftimes v) by apply: ext_to_prod_fb. have Hb:function (inverse_fun u) by apply: bijective_inv_f. have Hc:function (inverse_fun v) by apply: bijective_inv_f. apply: function_exten; fprops; try solve [rewrite /ext_to_prod; aw]. by apply: bijective_inv_f. move=> x. rewrite /ext_to_prod ifun_s lf_target; move/setX_P=>[xp pxu qxv]. rewrite ext_to_prod_V2 //; last apply:setX_i; aw;fprops. have p1: (inc (Vf (inverse_fun u) (P x)) (source u)). by rewrite -ifun_t; Wtac; rewrite ifun_s. have p2: (inc (Vf (inverse_fun v) (Q x)) (source v)). by rewrite -ifun_t; Wtac; rewrite ifun_s. have eq: x = Vf (ext_to_prod u v) (J (Vf (inverse_fun u) (P x)) (Vf (inverse_fun v)(Q x))). rewrite ext_to_prod_V //; try fct_tac. rewrite inverse_V // inverse_V //. by rewrite {1} eq inverse_V2 // /ext_to_prod; aw;apply: setXp_i. Qed. Lemma ext_to_prod_identity x y: (identity x) \ftimes (identity y) = identity (x \times y). Proof. move:(identity_f x) (identity_f y) => fx fy. apply: (function_exten (ext_to_prod_f fx fy) (identity_f (x\times y))). - rewrite /ext_to_prod; aw. - rewrite /ext_to_prod; aw. - rewrite {1} /ext_to_prod;aw;move => i ip /=;rewrite ext_to_prod_V2; aw. move /setX_P: (ip) => [ha hb hc]. rewrite !identity_V; aw. Qed. (** Composition of products *) Lemma ext_to_prod_coP f g f' g': g \coP f -> g' \coP f' -> (g \ftimes g') \coP (f \ftimes f'). Proof. move => [ha hb hc][ra rb rc]; split => //. - by apply:ext_to_prod_f. - by apply:ext_to_prod_f. - by rewrite /ext_to_prod; aw; rewrite hc rc. Qed. Lemma compose_ext_to_prod2 u v u' v': u' \coP u -> v' \coP v -> (u'\ftimes v') \co (u \ftimes v) = (u' \co u) \ftimes (v' \co v). Proof. move=> cuu cvv. move:(ext_to_prod_coP cuu cvv) => cee. have fcu: (function (u' \co u)) by fct_tac. have fcv: (function (v' \co v)) by fct_tac. apply: function_exten; try fct_tac; fprops; try solve [ rewrite/ext_to_prod;aw]. aw; move => x xs1; move: (xs1); rewrite ext_to_prod_s => xs. move:(xs); move/setX_P => [xp pxs qxs]. have res1: inc (Vf (ext_to_prod u v) x) (product (source u') (source v')). have aux: (product (source u') (source v')= target(ext_to_prod u v)). by move:cuu => [_ _ ->]; move: cvv => [_ _ ->]; rewrite /ext_to_prod; aw. Wtac; fct_tac. aw; rewrite ext_to_prod_V2 //; try fct_tac. rewrite ext_to_prod_V2 //; try fct_tac. rewrite ext_to_prod_V2 //; aw. Qed. (** Canonical decomposition of a function *) Lemma canonical_decomposition1 f (g:= restriction_to_image f) (i := canonical_injection (range (graph f)) (target f)): function f -> [/\ i \coP g, f = i \co g, injection i, surjection g & (injection f -> bijection g )]. Proof. move=> ff. move: (restriction_to_image_fs ff); rewrite -/g => sg. have Ha:sub (range (graph f)) (target f) by move:ff=> [? _]; fprops. have ii: injection i by apply: ci_fi. have cig: (i \coP g). by split;try fct_tac; rewrite corresp_t corresp_s image_by_fun_source. split => //. apply: function_exten=>//; aw; try fct_tac; rewrite ?corresp_s ? corresp_t //. move => x xsf. have ra:= (restriction_to_image_axioms ff). have xsg: inc x (source g) by rewrite corresp_s. aw; rewrite restriction2_V // ci_V //; Wtac. apply: restriction_to_image_fb. Qed. (** Restriction to its image *) End Bfunction. Export Bfunction.