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Abstract. In this paper we present a resolution method for many-valued mixed
Post logic PostL introduced in [6]. This logic is not widely known, so we give
the definition of its sequent calculus and define a 2-valued interpretation of many-
valued sequents of PostL. It is a logic based on linear inequalities, its predicates
are finitely-valued and take values from fixed partitions of rational numbers, the
set of truth values is linearly ordered. PostL naturally generalizes the class of
logics that occur in real-world applications. Compared to related approaches, our
resolution method provides a more compact representation of many-valued logic
formulas when a set of truth values is linearly ordered. We prove soundness and
completeness of resolution for PostL.

1 Introduction

In this paper we consider the many-valued mixed Post logic PostL intro-
duced in [6]. Mixed Post logic is a logic of many-sorted language, its pred-
icates are of the kind P a,b,c, where a, b, c are natural numbers. We provide
a resolution rule for this logic, it is essential for the purpose of automated
theorem proving. As far as PostL is a logic of finite-valued predicates based
on inequalities, the resolution principle for this logic can be applied to com-
putations in the systems of inequalities expressed in terms of PostL. The
logic PostL is defined in Section 2, where we present a sequent calculus for
it. The sequential definition is convenient to consider sets of formulas as fi-
nite disjunctions for the clausal resolution. We define internal and external
languages. In Section 3 we give the translation function δ that maps many-
valued formulas of PostL to their representations in 2-valued formulas of
classical first-order logic. So PostL is definable in classical first-order logic
(this result was proved in theorem 8.3.2 in [6]). In Section 3 we also give
the proof of soundness and completeness of many-valued binary resolution
on inequalities of PostL.

The calculus of PostL elegantly deals with multiple complex axiom sys-
tems. If one assume different degrees of truth to the predicates from differ-
ent sciences then it will be possible to join a number of theories (which may
contradict one another in the classical sense) inside a single axiom system.
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For example, consider arithmetics and hyperarithmetics. The statements of
arithmetics are assigned maximal positive value and the statements of hy-
perarithmetics are assigned non-negative value from the set of truth values.
So we can distinguish facts from different theories and get rid of contra-
dictions inside the whole axiom system. Here we will use rational numbers
from partitions of rationals as logical values for knowledge representation in
complex systems of theories.

There exists a relative approach to many-valued resolution that has many
features in common with the approach we present here. In [4] the notion
of signed clause was introduced. A signed clause is a disjunction of many-
valued literals labeled with non-empty sets of truth-values. It was pointed
out there that signed clauses are independent of the many-valued logic they
originated from. In fact, signed clauses do not contain any many-valued
connective and are simply generic language for denoting many-valued inter-
pretations. This approach to many-valued resolution was exploited in [1],
[5] and [7]. The approach of linear inequalities (cf. [6]) we used in this paper
is very close to the approach of signed formulas, except that the inequalities
approach is a very natural formalization of linear orderings defined on the
sets of truth-values.

2 Mixed Post logic

The logic PostL has two levels. At the first level the formulas of many-valued
logic are considered. The set of truth values and an interpretation of logical
connectives are defined in terms of internal signature. The object variables
are many-sorted. At the second level there is a predicate of comparison
with zero for internal formulas. External language doesn’t contain function
symbols. External object variables are internal object variables. So formulas
of this level are formulas of two-valued logic.

Definition 1 (Internal syntax). An internal language Li contains the set
Li = {±k/c | k ∈ [a, b), a, b, k, c ∈ Z+, a < b, c > 0} of of logical con-
stants for the non-empty set P i of predicate symbols indexed with positive
integers a, b, c, the set Oi of object variables, the set F i of function symbols,
the set of logical connectives Ci = {¬,∨,&,⊃,≡} and the set of quantifiers
Qi = {∀,∃}. An internal term t is made up of function symbols from F i

and object variables from Oi. An internal atom P a,b,c(t1, . . . , tn) contains
internal terms and predicate symbols from P i. An internal predicate for-
mula is an internal atom or it is made up of atoms with quantifiers from Qi

and logical connectives from Ci.

We will say that formula A is of the sort a, b, c if its valuation is in this
sort. Formula A is build upon the set of sorts S if sorts of all variables in A
are all in S.
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Definition 2 (External syntax). An external language Le contains Ce =
{¬,∨,&,⊃,≡, ? :}, where ? : is a ternary conditional connective “if-then-
else”, Qe = {∀,∃} and single predicate symbol of comparison with zero.
An inequality of PostL is an expression of the kind (0 ≤ A), where A is
an internal predicate formula, or an expression A1 + A2, where A1 and A2

are internal predicate formulas. External predicate formulas of PostL are
formulas made up from inequalities of PostL with connectives from Ce and
quantifiers from Qe.

For the formulas of the kind ¬(0 ≤ A) will be used compressed notation
(0 < ¬A). So it will be possible to notate formulas as (0 ≺ A), where
≺∈ {≤, <}.

Definition 3 (Sequent). A sequent of PostL is an expression of the kind→
∆, where ∆ is a finite set of external predicate formulas. An interpretation of
a sequent→ ∆ is a disjunction of predicate formulas in ∆. An interpretation
of the sequent with empty ∆ is not valid. Instead of speaking that an
interpretation of a sequent is valid we will say that a sequent is valid itself.
More precisely, a sequent is valid if its interpretation is valid under every
propositional and object variable assignment.

Definition 4. Axiom schemata of sequent calculus of two-valued logic are
(→ ∆ A ¬A), (→ ∆ >) and (→ ∆ ¬⊥), where > means truth and ⊥ means
false.

External inference rules are following:

→ ∆1 A B ∆2

→ ∆1 B A ∆2
(Split)

→ ∆ A

→ ∆ ¬¬A
(¬¬)

→ ∆ A → ∆ B

→ ∆ A&B
(&)

→ ∆ ¬A ¬B
→ ∆ ¬(A&B)

(¬&)

→ ∆ A B

→ ∆ A ∨B
(∨)

→ ∆ ¬A → ∆ ¬B
→ ∆ ¬(A ∨B)

(¬∨)

→ ∆ ¬A,B → ∆ ¬B,A
→ ∆ A ≡ B

(≡)
→ ∆ A B → ∆ ¬B ¬A

→ ∆ ¬(A ≡ B)
(¬ ≡)

→ ∆ A(y \ x)
→ ∆ ∀xA

(∀) → ∆ ¬A(t \ x) ¬∀xA
→ ∆ ¬∀xA

(¬∀)

→ ∆ A(t \ x) ∃xA
→ ∆ ∃xA

(∃) → ∆ ¬A(y \ x)
→ ∆ ¬∃xA

(¬∃)

where A(t\x) means that term t is substituted in atoms A instead of variable
x; object variable y and term t are free for substitution in A in place of x,
variable x has not free occurrences in the conclusion of the rules (∃) and
(¬∀). Implication A ⊃ B is an abbreviation for ¬A ∨B.
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Interior rules are following, expressions in square brackets may be absent
simultaneously:

→ ∆(0 ≤ A+B)
→ ∆(0 ≤ B +A)

(≤ Split)

→ ∆(0 ≤ A[+B])
→ ∆(0 ≤ ¬¬A[+B])

(≤ ¬¬)

→ ∆(0 ≤ A[+C]) → ∆(0 ≤ B[+C])
→ ∆(0 ≤ (A&B)[+C])

(≤ &)

→ ∆(0 ≤ ¬A[+C])(0 ≤ ¬B[+C])
→ ∆(0 ≤ ¬(A&B)[+C])

(≤ ¬&)

→ ∆(0 ≤ A[+C])(0 ≤ B[+C])
→ ∆(0 ≤ (A ∨B)[+C])

(≤ ∨)

→ ∆(0 ≤ ¬A[+C]) → ∆(0 ≤ ¬B[+C])
→ ∆(0 ≤ ¬(A ∨B)[+C])

(≤ ¬∨)

→ ∆(0 ≤ A(y \ x)[+B])
→ ∆(0 ≤ ∀xA[+B])

(≤ ∀)

→ ∆(0 ≤ ¬A(t \ x)[+B])(0 ≤ ¬∀xA[+B])
→ ∆(0 ≤ ¬∀xA[+B])

(≤ ¬∀)

→ ∆(0 ≤ A(t \ x)[+B])(0 ≤ ∃xA[+B])
→ ∆(0 ≤ ∃xA[+B])

(≤ ∃)

→ ∆(0 ≤ ¬A(y \ x)[+B])
→ ∆(0 ≤ ¬∃xA[+B])

(≤ ¬∃)

all rules above are valid if ≤ is replaced with <. Quantificational rules
are restricted in the same kind as external rules, variable y has not free
occurrences in the conclusions of (≺ ∃) and (≺ ¬∀).

In addition to above rules we define rules for conditional statement:

→ ∆(0 ≤ A[+E]2)(0 ≤ [¬]1C[+D]3)| → ∆(0 < ¬(A[+¬E]2)(0 ≤ [¬]1B[+D]3)
→ ∆(0 ≤ ([¬]1A[+E]2)?B : C[+D3])

(≤? :)

→ ∆(0 ≤ A[+E]2)(0 < [¬]1C[+D]3)| → ∆(0 < ¬A[+¬E]2)(0 < [¬]1B[+D]3)
→ ∆(0 < ([¬]1A[+E]2)?B : C[+D3])

(<? :)

where expressions in square brackets with the same index can be dropped
simultaneously.

Conditional statement lets us introduce Post cyclic negation into the
language of PostL. For any internal formula A which takes n different
values from a set {a1, . . . , an}, where a1 < · · · < an, we define Post negation
¬PostA as an abbreviation for

(¬A+ a1?an : (¬A+ a2?a1 : . . . (¬A+ an−1?an−2 : an−1) . . . )).
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3 Resolution

We adopt the concepts of resolution method from [3]. For the resolution in
many-valued logic see cf. [2].

Now the translation function δ will be defined. The translation δ maps
sequents and external predicate formulas of PostL to sequents and formulas
of two-valued logic respectively, i.e. δ assigns interpretations to sequents of
PostL. Correctness of 2-valued interpretation δ introduced in [6] on page
165 is based on the theorem 7.4.1 and lemma 8.3.2 from [6].

δ(A&B) ⇀↽ δ(A)&δ(B),
δ(A ∨B) ⇀↽ δ(A) ∨ δ(B),
δ(¬A) ⇀↽ ¬δ(A),
δ(∀xA) ⇀↽ ∀xδ(A),
δ(∃xA) ⇀↽ ∃xδ(A),
δ(0 ≺ (A&B)[+C]) ⇀↽ δ(0 ≺ A[+C])&δ(0 ≺ B[+C]),
δ(0 ≺ (A ∨B)[+C]) ⇀↽ δ(0 ≺ A[+C]) ∨ δ(0 ≺ B[+C]),
δ(0 ≺ ¬(A&B)[+C]) ⇀↽ δ(0 ≺ ¬A[+C]) ∨ δ(0 ≺ ¬B[+C]),
δ(0 ≺ ¬(A ∨B)[+C]) ⇀↽ δ(0 ≺ ¬A[+C])&δ(0 ≺ ¬B[+C]),
δ(0 ≺ (A?B : C)[+D]) ⇀↽ δ(0 ≺ (¬A ∨B)[+D])&δ((A ∨ C)[+D])
δ(0 ≺ ¬(A?B : C)[+D]) ⇀↽ δ(0 ≺ (¬A ∨ ¬B)[+D])&δ((A ∨ ¬C)[+D])
δ(0 ≺ ∀xA[+C]) ⇀↽ ∀yδ(0 ≺ A(y \ x)[+C]),
δ(0 ≺ ¬∀xA[+C]) ⇀↽ ∃yδ(0 ≺ ¬A(y \ x)[+C]),
δ(0 ≺ ∃xA[+C]) ⇀↽ ∃yδ(0 ≺ A(y \ x)[+C]),
δ(0 ≺ ¬∃xA[+C]) ⇀↽ ∀yδ(0 ≺ ¬A(y \ x)[+C]),

where in the last four lines y is neither in A nor in C.

δ(0 ≺ P + C) ⇀↽ δ(0 ≺ C + P ),

where P is negated or unnegated atom.
Using rules for translation δ one can for any PostL-formula build a

skolemized CNF (L1,1 ∨ · · · ∨ L1,n1)& . . .&(Lm,1 ∨ · · · ∨ Lm,nm), where each
of Li,j (1 ≤ i ≤ m, 1 ≤ j ≤ ni), is a literal of the form δ(0 ≺ A[+B]), A and
B are negated or unnegated atoms. Formula δ(0 ≺ A[+B]) is two-valued, it
is valid iff the inequality (0 ≺ A[+B]) is valid. The method of constructing
of such formulas δ(0 ≺ A[+B]) is following. Any inequality with quantifiers
eliminated to the external level containing only internal atoms is replaced by
equivalent formula with finite set of pairwise different two-valued atoms. For
any given atom of the sort a, b, c it would be enough b− a pairwise different
two-valued atoms each of which is assigned a value from {−1/c, 1/c}. Then
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rational values of two-valued formulas are summarized. To prove the next
results it is convenient to use only 2-valued atoms with values from {−1, 1}
instead of {−1/c, 1/c} (we can multiply a linear combination of atoms by
any integer). Since all sorts are finite it is possible to build a classical CNF
for any given PostL-formula. As far as classical CNF is constructed it has
to be skolemized by eliminating quantifiers from the external level.

Since for any PostL-formula there exists a skolemized classical CNF (we
will also call it a set of clauses of PostL), the resolution rule schema is
straightforward. Here we will assume that any 2-valued literal (0 ≺ A[+B]),
possibly with negation, occurring in a clause of PostL is a skolemized for-
mula resulted by finite number of applications of δ to some PostL-formula,
A and B are negated or unnegated internal atoms.

Definition 5 (Resolution). Let ∆1 and ∆2 be sets of clauses containing
skolemized literals of the form (0 ≺ A[+B]), then binary resolution is the
rule

∆1 ∩ {(0 ≺ A1 +B)} ∆2 ∩ {(0 ≺ ¬A2 + C)}
(∆1 ∩∆2 ∩ {(0 ≺ B + C)})σ

,

where the sign ≺ in the conclusion is ≤ iff ≺ is ≤ in both premises; σ is
the most common unifier of the formulas A1 and A2. B and C are atoms,
possibly empty. In the case if both of them are empty we have the disjunct
(0 ≺ ∅).

Together with binary resolution we admit to use (≺ Split) rule that al-
lows to rearrange internal formulas in premises. External formulas in clauses
can be arbitrarily rearranged since we consider only unordered resolution.
Also there is a rule of contraction:

(0 ≺ A+A)
(0 ≺ A)

.

Lemma 1 (Ground clauses). Let Φ be an arbitrary set of ground clauses
of PostL. If Φ is unsatisfiable then the empty clause (0 ≺ ∅) is derivable
from Φ by finite number of applications of binary resolution.

Proof. The case when (0 ≺ ∅) ∈ Φ is trivial. Therefore let us assume that
(0 ≺ ∅) 6∈ Φ. Since all the clauses in Φ are ground, the Herbrand basis of
Φ coincides with the set of all literals of Φ. The lemma will be proved by
induction on the difference diff(Φ) between the total number of literals in
Φ and the total number of clauses in Φ. There are two cases:

1. diff(Φ) = 0. In this case the number of literals equals to the number
of disjuncts. Since (0 ≺ ∅) /∈ Φ), Φ consists of one-element disjuncts
only. Let us construct a sequence of sets Φ0 ⊆ Φ1 ⊆ · · · ⊆ Φn such that
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Φ0 = Φ, and for each i ≥ 1 Φi is closed under the (≺ Split) and con-
traction rules; Φi contains Φi−1, and also all immediate consequences
by binary resolution from Φi−1. We will show that using the procedure
explained above, any unsatisfiable set of disjuncts can be extended to
the set which contains the empty disjunct. Any unsatisfiable set of dis-
juncts contains a subset Λ = {(0 ≺ A[+B]), (0 ≺ ¬A[+¬B])}. Let Λ is
obtained at the i-th step of extension. Then (0 ≺ ∅) can be inferred at
most at the step i+3. In fact, Λ ⊆ Φi, {(0 ≺ A+¬A), (0 ≺ B+¬B)} ⊆
Φi+1, {(0 ≺ A+A), (0 ≺ ¬A+¬A), (0 ≺ A), (0 ≺ ¬A)} ⊆ Φi+2. Thus,
{(0 ≺ ∅)} ⊆ Φi+3.

2. diff(Φ) > 0. Φ contains disjuncts having more than one element. Let
Ψ be a non-empty proper subset of Φ such that Φ − Ψ is consistent.
Suppose that there are no such disjuncts in Φ−Ψ which can be used
to infer the empty disjunct by a finite number of applications of binary
resolution, the rule (≺ Split), and the contraction rule to the set Ψ.
Then there is a Herbrand interpretation in which both Φ − Ψ and Ψ
are satisfied. We have a contradiction with the unsatisfiability of Φ.
Hence, (0 ≺ ∅) can be inferred from Φ.

For the proof of this lemma for the case of signed many-valued clauses
see cf. [7], where signed negative hyperresolution was considered.

Lemma 2 (Lifting Lemma). If ∆′1 and ∆′2 are instances of clauses ∆1

and ∆2 respectively, and if ∆′ is a resolvent of ∆′1 and ∆′2, then there is a
resolvent ∆ of ∆1 and ∆2 such that ∆′ is an instance of ∆.

Proof. The proof of this lemma is the proof of the classical lifting lemma (cf.
[3]), where the notion of many-valued resolvent is taken into account.

Theorem 1 (Completeness and soundness). The set Φ of clauses of
PostL is unsatisfiable iff the empty clause (0 ≺ ∅) is derivable from Φ by
finite number of applications of binary resolution rule.

Proof. (⇒) It follows from Lemma 1 and Lemma 2 exactly as in the case of
classical logic. Since Φ is unsatisfiable then by Herbrand theorem (cf. [3])
there is a finite unsatisfiable set Φ′ of ground clauses from Φ. By Lemma 1
there is a proof D′ of (0 ≺ ∅) from Φ′. The proof D′ can be transformed by
Lemma 2 to the proof D of (0 ≺ ∅) from Φ.

(⇐) It follows from the fact that a Herbrand interpretation that sat-
isfies a set of clauses also satisfies all their resolvents. But no Herbrand
interpretation satisfies the empty clause.

As an easy corollary of Theorem 1, Theorem 8.3.1 and Theorem 6.1.2
(which states that satisfiability problem of a system of linear inequalities
with variables defined on rational numbers is in PTIME) from [6] we get
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Theorem 2. The satisfiability problem in PostL is NP -complete.

4 Conclusion

In the present paper we considered only single logic defined in [6]. But the
resolution principle presented here can be applied with slight remarks to the
whole class of logics of finite-valued predicates based on inequalities, such as
pluralistic logic of n-dimensional sequences and mixed Lukasiewicz’s logic.

Further investigations must show how much the many-valued resolution
on inequalities differs from the signed many-valued resolution introduced in
[2], [4] and [7]. The complexity of resolution with respect to the method
of computing the clause normal form must be precisely defined. It seems
that linear ordered sets of truth values are treated very effectively with
our resolution, in addition, we get the ability of automated reasoning in
hypertheories which contain multiple various theories and protected from
contradictory propositions. One of the most important topics that also
must be studied is the representation of cyclic Post negation in PostL. In
the present text it is represented by conditional operator “if-then-else”, but
in this case we might have a sufficient time and space expenditures. The
natural formalization of Post negation with respect to many-sorted origin of
PostL is necessary.
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