Categorical semantics of normalization in $\lambda \mathcal{C}$-calculus

Vladimir Komendantsky*
Boole Centre for Research in Informatics
University College Cork
v.komendantsky@bcri.ucc.ie

Abstract

We investigate normalization in call-by-name formulation of $\lambda \mathcal{C}$-calculus, a constructive analogue of classical natural deduction, by inverting the evaluation functional in a general setting of \mathcal{P}-category theory. We obtain a decision procedure for $\lambda \mathcal{C}$-calculus by comparing normal forms of $\lambda \mathcal{C}$-terms in this setting.

Keywords: $\lambda \mathcal{C}$-calculus, $\lambda \mu$-calculus, normalization, \mathcal{P}-category theory

1 Introduction

$\lambda \mathcal{C}$-Calculus is often viewed as a computational version of Gentzen's classical natural deduction system $\mathrm{ND}[3,6]$, and it is also useful for studying continuations $[4,8]$ in functional programming languages. The first mentioned aspect is of our primary interest. In this paper we consider normalization in call-by-name version of $\lambda \mathcal{C}$. The categorical approach to normalization is based on inverting the evaluation functional and has been developed in relation to λ-calculus, e.g., in [1, 2]. Particularly, in [2] there was employed a special case of enriched categories called \mathcal{P}-categories, i.e. categories with partial equivalence relations on arrows. Also there, \mathcal{P}-ccc's were proved to model normalization in simplytyped λ-calculus. We extend this approach by considering a notion weaker than that of a ccc, namely a notion of a category of continuations. This allows us to model normalization in $\lambda \mathcal{C}$-calculus. Our construction is also applicable to normalization in $\lambda \mu$-calculus.

$2 \lambda \mathcal{C}$-calculus and $\lambda \mu$-calculus

The $\lambda \mathcal{C}$-calculus is the simply-typed λ-calculus with augmented variable binding: if t is a $\lambda \mathcal{C}$-term of type \perp then $\mathcal{C} x^{\urcorner A}$.t is a $\lambda \mathcal{C}$-term of type A. The operator \mathcal{C} only binds variables of negated type. The sequent $\Gamma \vdash t: A$ where Γ is a set of variable-type annotations of the kind $y: B$, means that the $\lambda \mathcal{C}$-term t is a

[^0]representation of a classical natural deduction proof of the proposition A whose undischarged hypotheses are annotated propositions taken from the set Γ.

For technical reasons, we define an algorithm that translates a sequent of $\lambda \mathcal{C}$-calculus into a sequent of $\lambda \mu$-calculus of the same type. Following Ong [6], we assume that there is a bijection between variables annotating negated hypotheses of the form $\neg A$, where $A \neq \perp$, and μ-variables, given by $\overline{(-)}$, e.g. $\overline{x^{\urcorner A}}=\alpha^{A}$ and $\overline{\overline{x^{\urcorner A}}}=x^{\urcorner A}$, with the inverse being $\underline{(-) \text {. Take a } \lambda \mathcal{C} \text {-sequent }}$ $\Gamma \vdash t: A$. Let Θ be a subset of Γ consisting only of $\overline{n e g}$ ated hypotheses. We define a $\lambda \mu$-term $\lceil t\rceil^{\Theta}$ by recursion: $\lceil x\rceil^{\Theta} \stackrel{\text { def }}{=} x$ if $x \notin \Theta$ and $\lambda y^{A} .\left[\alpha^{A}\right] y$ otherwise $;\left\lceil\lambda x^{A} . s\right\rceil^{\Theta} \stackrel{\text { def }}{=} \lambda x^{A} .\lceil s\rceil^{\Theta} ;\lceil r s\rceil^{\Theta} \stackrel{\text { def }}{=}\lceil r\rceil^{\Theta}\lceil s\rceil^{\Theta} ;\left\lceil\mathcal{C} x^{\neg A} . s\right\rceil^{\Theta} \stackrel{\text { def }}{=} \mu \alpha^{A} .\lceil s\rceil^{\Theta, x: \neg A}$. Applying this algorithm we obtain $\Gamma \backslash \Theta \vdash\lceil t\rceil^{\Theta}: A \mid \bar{\Theta}$ which is a $\lambda \mu$-sequent.

One can think of the $\lambda \mu$-calculus as a variant of ND with ability to distinguish between hypotheses which ought to be discharged by the classical absurdity rule (by annotation of μ-variables), and from those which ought to be discharged by implication introduction (by annotation of λ-variables).

The inverse translation is defined as follows. Take a $\lambda \mu$-sequent $\Gamma \vdash t: A \mid$ Δ. We define a $\lambda \mathcal{C}$-term $\lfloor t\rfloor$ by recursion: $\left\lfloor x^{A}\right\rfloor \stackrel{\text { def }}{=} x^{A} ;\left\lfloor\lambda x^{A} . s\right\rfloor \stackrel{\text { def }}{=} \lambda x^{A} .\lfloor s\rfloor$; $\lfloor r s\rfloor \stackrel{\text { def }}{=}\lfloor r\rfloor\lfloor s\rfloor ;\left\lfloor\left[\alpha^{A}\right] s\right\rfloor \stackrel{\text { def }}{=} x^{\neg A}\lfloor s\rfloor ;\left\lfloor\mu \alpha^{A} . s\right\rfloor \stackrel{\text { def }}{=} \mathcal{C} x^{\neg A} .\lfloor s\rfloor$. Thus we obtained a $\lambda \mathcal{C}$-sequent $\Gamma, \underline{\Delta} \vdash\lfloor t\rfloor: A$. The translation $\lfloor-\rfloor$ forgets the difference between the two types of hypotheses, and so it can be argued that the resulting $\lambda \mathcal{C}$-terms reflect properties of ND-proofs better than the $\lambda \mu$-terms do.

Now, combining argumentation of Ong [6] and of de Groote [3] about the two translation algorithms we can prove the following theorem.

Theorem 1. (i) For any $\lambda \mathcal{C}$-derivable sequent $\Gamma \vdash t: A$ and for any subset Θ of Γ consisting of negated hypotheses, the sequent $\Gamma \backslash \Theta \vdash\lceil t\rceil^{\Theta}: A \mid \bar{\Theta}$ is $\lambda \mu$-derivable. (ii) For any $\lambda \mu$-derivable sequent $\Gamma \vdash t: A \mid \Delta$, the sequent $\Gamma, \underline{\Delta} \vdash\lfloor t\rfloor: A$ is $\lambda \mathcal{C}$-derivable.

In fact, $\lambda \mathcal{C}$-calculus and $\lambda \mu$-calculus are isomorphic, as it was first noted by de Groote [3]. Formally:
Theorem 2. (i) $\Gamma \vdash\lceil\lfloor t\rfloor\rceil \triangleq=t: A \mid \Delta \quad$ and (ii) $\Gamma, \Theta \vdash\left\lfloor\lceil t\rceil^{\Theta}\right\rfloor=t: A$.
Assume a signature $(\mathcal{B}, \mathcal{K})$ consisting of base types (excluding \perp) and constants respectively. We define simply-typed call-by-name $\lambda \mathcal{C}$-calculus.
Axioms and rules

$$
\begin{array}{llll}
\text { (Axiom) } & \Gamma \vdash x: A \text { if } x: A \in \Gamma \quad(\text { Const }) & \Gamma \vdash c: A \quad \text { if } c: A \in \mathcal{K} \\
(\Rightarrow \text {-intro) } & \frac{\Gamma, x: A \vdash t: B}{\Gamma \vdash \lambda x^{A} \cdot t: A \Rightarrow B} \quad(\Rightarrow \text {-elim }) \quad \frac{\Gamma \vdash t: A \Rightarrow B \quad \Gamma \vdash s: A}{\Gamma \vdash t s: B} \\
(\neg \neg \text {-elim) } & \frac{\Gamma \vdash \lambda x^{\neg A} \cdot t: \neg \neg A}{\Gamma \vdash \mathcal{C} x^{\neg A} \cdot t: A} \quad \text { if } A \neq \perp \text { and } x: \neg A \notin \Gamma
\end{array}
$$

Equations in context

$$
\begin{aligned}
& \Gamma \vdash t=t: A \quad \frac{\Gamma \vdash s=t: A}{\Gamma \vdash t=s: A} \quad \frac{\Gamma \vdash s=t: A \quad \Gamma \vdash t=r: A}{\Gamma \vdash s=r: A} \\
& \frac{\Gamma \vdash s_{1}=t_{1}: A \Rightarrow B \quad \Gamma \vdash s_{2}=t_{2}: A}{\Gamma \vdash s_{1} s_{2}=t_{1} t_{2}: B} \quad \frac{\Gamma, x: A \vdash s=t: B}{\Gamma \vdash \lambda x^{A} \cdot s=\lambda x^{A} \cdot t: A \Rightarrow B} \\
& \frac{\Gamma \vdash \lambda x^{\urcorner A} s=\lambda x^{\urcorner A} \cdot t: \neg \neg A}{\square}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\beta_{\Rightarrow}\right) \quad \Gamma \vdash\left(\lambda x^{A} . t\right) s=t(s / x): B \\
& \left(\beta_{\perp}\right) \quad \Gamma \vdash x^{\prime} \mathcal{C} x^{\neg A} . t=t\left[x / x^{\prime}\right]: \perp \\
& \left(\eta_{\Rightarrow}\right) \quad \Gamma \vdash t=\lambda x^{A} . t x: A \Rightarrow B, \quad \text { if } x: A \notin \Gamma \\
& \left(\eta_{\perp}\right) \quad \Gamma \vdash \mathcal{C} x^{\neg A} \cdot x t=t: A, \quad \text { if } x \notin \mathrm{FV}(t) \\
& (\zeta \Rightarrow) \quad \Gamma \vdash\left(\mathcal{C} x^{\neg(A \Rightarrow B)} . t\right) s=\mathcal{C} y^{\neg^{B}} . t[y((-) s) / x(-)]: B, \quad \text { if } y \notin \mathrm{FV}(t s) \\
& \left(\zeta^{\perp}\right) \quad \Gamma \vdash\left(\mathcal{C} x^{\neg \neg A} . t\right) s=t[(-) s / x(-)]: \perp \\
& \left(\zeta_{\perp}\right) \quad \Gamma \vdash x t=t\{x\}: \perp \quad \text { if } x: \neg A \in \Gamma \text { and } t\{x\} \text { is defined }
\end{aligned}
$$

The renaming function $(-)\{-\}$ is defined in the following cases:
(i) $\left.(\mathcal{C}\urcorner^{\neg B} . t\right)\{y\} \stackrel{\text { def }}{=} t[y / x]$ and (ii) $\left(\lambda x^{B} . t\right)\{y\} \stackrel{\text { def }}{=} t\left\{y^{\prime}\right\}\left[y\left(\lambda x^{B} . s\right) / y^{\prime} s\right]$ for some fresh variable y if x occurs in $t\left\{y^{\prime}\right\}$ only within the scope of $y^{\prime} s$, otherwise $(-)\{-\}$ is undefined.

Pym and Ritter [7] gave a confluent (i.e. any two reducts of a term have a common reduct) and strongly normalizing (i.e. all reduction sequences of any given term are terminating) call-by-name rewriting semantics for the $\lambda \mu$-calculus based on the translations of the above axioms. Therefore, due to Theorems 1 and 2 , we can state the properties of confluence and strong normalization for the $\lambda \mathcal{C}$-calculus which are crucial for our discussion of the normalization algorithm.

3 The idea of a normal form algorithm

The decision problem for $\lambda \mathcal{C}$-calculus can be formulated as follows: For any possibly open $\lambda \mathcal{C}$-terms t and s of type A, decide whether $\Gamma \vdash t=s: A$. With each $\lambda \mathcal{C}$-term t we associate its abstract normal form $\operatorname{nf}(t)$ such that the following properties hold:

$$
(\mathrm{NF} 1) \Gamma \vdash \mathrm{nf}^{-1}(\mathrm{nf}(t))=t: A, \quad(\mathrm{NF} 2) \Gamma \vdash t=s: A \text { implies } \mathrm{nf}(t)=\mathrm{nf}(s)
$$

Since the conditions (NF1) and (NF2) imply $\Gamma \vdash t=s: A$ iff $n f(t)=n f(s)$, comparing abstract normal forms can yield a decision procedure for $\lambda \mathcal{C}$-calculus.

A categorical model of $\lambda \mathcal{C}$-calculus is a category of continuations. According to [1], such a category \mathbf{C} has a distinguished class \mathcal{T} of objects of \mathbf{C} called type objects and a distinguished type object R of responses, provided that \mathcal{T} contains an interpretation of the base types \mathcal{B}. Additionally, there is a chosen cartesian product $\Gamma \cdot A$ for every object Γ and a type object A, and chosen terminal objects [] and 1 in \mathcal{T}. Also for each type object A there is a chosen exponential $R^{A} \in \mathcal{T}$, and for any two type objects A and B a chosen cartesian product $R^{A} \times B \in \mathcal{T}$. A $\lambda \mathcal{C}$-sequent $\Gamma, \Theta \vdash t: A$ is interpreted in \mathbf{C} as a map $R^{\llbracket \Gamma \rrbracket} \cdot \llbracket \Theta \rrbracket \rightarrow R^{\llbracket A \rrbracket}$. An objects of \mathbf{C} is an interpretation of a continuation context Θ; a morphism from Θ to A is a $\lambda \mathcal{C}$-term t such that $\Theta \vdash t: \neg A$.

Let us denote a free \mathcal{P}-category of continuations on the signature $\Sigma=(\mathcal{B}, \mathcal{K})$ as \mathbf{F}_{Σ}. The universal property of a free \mathcal{P}-category of continuations \mathbf{F}_{Σ} is as follows: for any \mathcal{P}-category of continuations \mathbf{C}, and any interpretation of the signature Σ in \mathbf{C}, there is a unique up to isomorphism structure preserving \mathcal{P}-functor $\llbracket-\rrbracket: \mathbf{F}_{\Sigma} \rightarrow \mathbf{C}$ freely extending this interpretation. There are two straightforward \mathcal{P}-functors preserving the structure of \mathcal{P}-categories of continuations: \mathcal{P}-categorical Yoneda embedding $Y: \mathbf{F}_{\Sigma} \rightarrow \mathcal{P} \mathbf{S e t}^{\mathbf{F}_{\Sigma}{ }^{\text {op }}}$ and the free extension to the \mathcal{P}-functor $\llbracket-\rrbracket: \mathbf{F}_{\Sigma} \rightarrow \mathcal{P} \mathbf{S e t}^{\mathbf{F}_{\Sigma}{ }^{{ }^{\mathcal{P}}}}$. By the universal property,
there is a \mathcal{P}-natural isomorphism $q: \llbracket-\rrbracket \rightarrow Y$. To obtain a function nf we invert the \mathcal{P}-natural Yoneda isomorphism q. Given a sequent $\Gamma \vdash t: A$ we define (leaving out the square brackets in subscripts to improve readability)

$$
\operatorname{nf}(t)=q_{A, \Gamma}\left(\llbracket t \rrbracket_{\Gamma}\left(q_{\Gamma, \Gamma}^{-1}\left(\operatorname{id}_{\Gamma}\right)\right)\right) .
$$

Since $\llbracket-\rrbracket$ is an interpretation, we have (NF2), that is $\Gamma \vdash t=s$ implies $\llbracket t \rrbracket=\llbracket s \rrbracket$, and (NF1) is proved by a straightforward induction on t. Therefore $\llbracket-\rrbracket$ is a sound and complete interpretation. Hence we have the following theorem.

Theorem 3. (i) For each $\Gamma \vdash t: A, \operatorname{nf}(t)$ is an element of $\operatorname{NF}(\Gamma, A)$. (ii) Every element of $\operatorname{NF}(\Gamma, A)$ is $\operatorname{nf}(t)$ for some t.

Among the possible future directions we would wish to address elsewhere we emphasise the following: 1) an application of the \mathcal{P}-categorical approach to normalization to $\lambda \mu$-categories [6] or control categories [8]; 2) a study of normalization in call-by-value formulation of $\lambda \mathcal{C}$, e.g., in the setting of precartesian-closed abstract Kleisli categories of Führmann and Thielecke [4]; 3) an analysis of \mathcal{P} categorical models of $\lambda \mathcal{C}$-calculus in a higher category theory setting (this may be analogous to a bicategorical analysis of E-categories given by Kinoshita [5]).

References

[1] T. Altenkirch, M. Hofmann, and T. Streicher. Categorical reconstruction of a reduction-free normalization proof. In Proc. CTCS '95, volume 953 of LNCS, pages 182-199. Springer, 1995.
[2] D. Čubrić, P. Dybjer, and P. Scott. Normalization and the Yoneda embedding. Mathematical Structures in Computer Science, 8(2):153-192, 1998.
[3] P. de Groote. On the relation between the $\lambda \mu$-calculus and the syntactic theory of sequential control. In F. Pfenning, editor, Proc. 5th Intl. Conf. Logic Programming and Automated Reasoning (LPAR'94), volume 822 of LNCS, pages 31-43, 1994.
[4] C. Führmann and H. Thielecke. On the call-by-value CPS transform and its semantics. Information and Computation, 188(2):241-283, 2004.
[5] Y. Kinoshita. A bicategorical analysis of E-categories. Mathematica Japon$i c a, 47(1): 157-169,1998$.
[6] C.-H. L. Ong. A semantic view of classical proofs: Type-theoretic, categorical, and denotational characterizations. In Proc. 11th Annual IEEE Symp. on Logic in Computer Science, pages 230-241, 1996.
[7] D. Pym and E. Ritter. On the semantics of classical disjunction. J. Pure and Applied Algebra, 159:315-338, 2001.
[8] P. Selinger. Control categories and duality: on the categorical semantics of the lambda-mu calculus. Math. Struct. Comp. Science, 11:207-260, 2001.

[^0]: *Research funded by a BCRI postdoctoral grant.

