
On Approximation of the Semantic Operators

Determined by Bilattice-Based Logic Programs

Ekaterina Komendantskaya1, Anthony Seda2, and Vladimir Komendantsky3

1 Department of Mathematics, University College Cork, Cork, Ireland
e.komendantskaya@mars.ucc.ie

2 Department of Mathematics, University College Cork, Cork, Ireland
a.seda@ucc.ie

3 Boole Centre for Research in Informatics, University College Cork, Cork, Ireland
v.komendantsky@bcri.ucc.ie ? ??

Abstract. We introduce the class of bilattice-based annotated logic programs (BAPs).
These programs extend the general annotated programs of Kifer and Subrahmanian to
the bilattice case. The immediate consequence operator TP is defined for BAPs and
its continuity is proven. A theorem of Seda concerning the approximation of the least
fixed point of the two-valued TP -operator is generalized to the case of BAPs. Finally,
alternative bilattice-based logic programs are compared with BAPs, and theorems on
the computation of the least fixed points of their semantic operators are established.
This gives an extension of the theorem on approximation of the least fixed point of TP

to a wide class of bilattice-based logic programs.

1 Introduction

Since their introduction by Ginsberg [8], bilattices have become a well-known al-
gebraic structure for reasoning about the sort of inconsistencies which arise when
one formalizes the process of accumulating knowledge. In particular, Fitting [4,
5, 7] introduced quite general consequence operators for logic programs whose
semantics are based on four-valued bilattices, and derived their basic properties.

Annotated languages are an alternative formal tool for handling, for example,
the semantics of logic programs over many-valued logics and probabilistic pro-
grams, see [10, 13]. Their use, however, gives rise to the obvious question of how
annotated logic programming compares with logic programming based on bilat-
tices, see [9–11]. In this paper, we contribute to this discussion by combining the
two approaches in that we make use of bilattice structures within the framework
of annotated logic programs. Specifically, we introduce bilattice-based annotated
logic programs (BAPs) and establish a fixed-point semantics for them. BAPs,
being many-valued and quantitative in nature, enable us to work with statistical
knowledge and databases which can be incomplete or inconsistent, and thereby

? The authors thank the Boole Centre for Research in Informatics (BCRI) at University College
Cork for substantial support in presenting this paper. They also thank three anonymous referees
whose valuable remarks led to very considerable improvements in the paper.

?? To appear in the Proceedings of the Seventh International Workshop on First-Order Theorem
Proving (FTP’05), Koblenz, Germany, September 14 - 17, 2005.

introduce monotonic extensions of two-valued negation. But what is particularly
important here is that they possess many of the desirable properties of classical
logic. Thus, their model-theoretic properties can be nicely described by anal-
ogy with the model-theoretic properties of classical logic and, if some additional
computational rules are introduced into the proof theory, sound and complete
proof procedures based on classical binary resolution methods can be devel-
oped, although no details of this are presented here. We also show that BAPs
are expressive enough to formalize the fixed-point theory of the annotation-free
logic programs of Fitting [4] and of implication-based quantitative annotated
programs à la Van Emden. Moreover, we prove that unlike semantic operators
defined within the frameworks of the approaches just mentioned, the properties
of the immediate consequence operator (TP) for BAPs guarantee that all the
logical consequences of a given program are computed as its least fixed point.
The operator TP as it is defined in this paper is continuous and this fact allows
us to obtain a generalization of a theorem of Seda [14] used in the context of
approximation of TP by neural networks. Thus, this paper can be seen as a step
towards defining semantic operators suitable for handling probabilistic neural
networks which work with conflicting sources of information.

The structure of the paper is as follows. In §2, we describe bilattices, following
Ginsberg [8]. In §3, we describe the syntax and semantics of bilattice-based
languages, and in particular the syntax and semantics of BAPs. In §4, we develop
fixed-point theory and relate it to declarative semantics; we also establish there
the approximation theorem mentioned in the previous paragraph. In §5, we
compare our approach with the work of others in this area including that of
Fitting, Kifer and Subrahmanian and of Van Emden. This allows us to extend
the approximation result of §4 to Fitting’s bilattice-based (k-existential) logic
programs, and to bilattice-based quantitative programs. Finally, we summarize
our conclusions in §6; §5 and §6 also contain further motivation for our work.

2 Bilattices

Definition 1. A bilattice B is a sextuple (B,∧,∨,⊕,⊗,¬) such that (B,∨,∧)
and (B,⊕,⊗) are both complete lattices, and ¬ : B→ B is a mapping satisfying
the following three properties: ¬2 = IdB, ¬ is a dual lattice homomorphism from
(B,∧,∨) to (B,∨,∧), and ¬ is the identity mapping on (B,⊕,⊗).

Let L1 = (L1,≤1) and L2 = (L2,≤2) be two lattices, let x1, x2 denote
arbitrary elements of the lattice L1, and let y1, y2 denote arbitrary elements of
the lattice L2. Let ∩1,∪1 denote the join respectively meet defined in the lattice
L1, and let ∩2,∪2 denote the join respectively meet defined in the lattice L2.

Definition 2. Suppose L1 = (L1,≤1) and L2 = (L2,≤2) are complete lattices.
Form the set of points L1 × L2, and define the two orderings ≤t and ≤k on
L1 × L2 as follows.

(1) 〈x1, y1〉 ≤t 〈x2, y2〉 if and only if x1 ≤1 x2 and y2 ≤2 y1.
(2) 〈x1, y1〉 ≤k 〈x2, y2〉 if and only if x1 ≤1 x2 and y1 ≤2 y2.

We denote the structure which results by L1 � L2 = (L1 × L2,≤t,≤k) =
(B,≤t,≤k), where B denotes L1 × L2.

Having defined L1 � L2, we define bilattice operations on it as follows.

Definition 3. The four bilattice operations associated with ≤t and ≤k are:
〈x1, y1〉 ∧ 〈x2, y2〉 = 〈x1 ∩1 x2, y1 ∪2 y2〉, 〈x1, y1〉 ∨ 〈x2, y2〉 = 〈x1 ∪1 x2, y1 ∩2 y2〉,
〈x1, y1〉⊗〈x2, y2〉 = 〈x1∩1x2, y1∩2y2〉, and 〈x1, y1〉⊕〈x2, y2〉 = 〈x1∪1x2, y1∪2y2〉.

Proposition 1. [4, 8] Suppose B is a distributive bilattice. Then there are dis-
tributive lattices L1 and L2 such that B is isomorphic to L1 � L2.

Thus, every distributive bilattice can be represented as a product of two
lattices4. In the present article, we consider only logic programs over distributive
bilattices and therefore the underlying bilattice of any program we consider will
always be formed as a product of two lattices.

3 Annotated Logic Programs Based on Bilattice
Structures

Let B = L1�L2 denote a bilattice given as the product of two complete lattices
L1, L2 each of which is a sublattice of the lattice ([0, 1],≤), where [0, 1] is the
unit interval of real numbers and ≤ is the usual linear ordering on it.

3.1 First-Order Languages Based on Bilattice Structures

Let P denote a first order logic program. We proceed next to define the under-
lying annotated language L of P as follows.

Definition 4. The alphabet consists of a conventional first-order alphabet to-
gether with annotation constants (α1, β1), (α2, β2), . . . ∈ B, annotation variables
(τ1, σ1), (τ2, σ2), . . . taking values in B, and total continuous annotation func-
tions ϑ1, ϑ2, . . . of type Bi → B. Also, we allow in the language connectives
∨,∧,⊕,⊗ (corresponding to join and meet with respect to ≤t and ≤k), ¬, ∼,
and quantifiers ∀,∃, Π, Σ (corresponding to infinite meet and join with respect
to ≤t and ≤k).

Note 1. Annotation constants and variables are taken as pairs of constants re-
spectively pairs of variables reflecting the bilattice-based semantics of L; the
first and second elements of a pair accumulate belief for resp. against a fact.

4 For comparable results concerning interlaced bilattices, see [4, 5].

Note 2. Note that ∼ is an alternative to bilattice negation ¬: the former is
many-valued and is usually called “ontological” negation in comparison with
the latter, two-valued, called “epistemic” negation. For careful examination of
the properties of both negations see, for example, [9]. In our language ∼ is
defined as the restriction of ¬ to the set {〈1, 0〉, 〈0, 1〉}.

We use the word term with its conventional meaning in first-order languages.

Definition 5. An annotation term is either a member of B or is an annota-
tion variable or has the form ϑ((µ1, ν1), . . . , (µn, νn)), where ϑ is an annotation
function and (µ1, ν1), . . . , (µn, νn) are annotation terms.

Definition 6. We will call a formula of the form R(t1, . . . , tn) an atomic for-
mula or an atom if R is an n-ary predicate symbol and t1, . . . , tn are terms.

Definition 7. An annotated formula is defined inductively as follows:

– If R is an n-ary predicate symbol, t1, . . . , tn are terms, and (µ, ν) is an an-
notation term, then R(t1, . . . , tn) : (µ, ν) is an annotated formula (called an
annotated atom).

– If F and G are annotated formulae, then so are (F ∨G), (F ∧G), (F ⊗G),
(F ⊕G), (¬F) and (∼ F).

– If F and G are formulae and (µ, ν) is an annotation term, then (F ∨ G) :
(µ, ν), (F ∧ G) : (µ, ν), (F ⊗ G) : (µ, ν), (F ⊕ G) : (µ, ν), are annotated
formulae.

– If F is an annotated formula and x is a variable symbol, then (∀xF), (∃xF),
(ΠxF) and (ΣxF) are annotated formulae.

Definition 8. The first order annotated language L given by an alphabet con-
sists of the set of all annotated formulae constructed from the symbols of the
alphabet. We will refer to B as the underlying bilattice of the language L.

3.2 Interpretations

Let B denote the bilattice underlying an annotated language L; it will provide
the set of truth values for L.

We define the notions of “pre-interpretation J with domain D for L” and
“variable assignment V with respect to J” in the same way as one defines these
notions for conventional first-order languages, see [12] for example.

Definition 9. An interpretation I for L consists of a pre-interpretation J for
L together with the assignment of a mapping |R| = |R|I : Dn −→ B for each
n-ary predicate symbol R in L. Furthermore, given a variable assignment V , by
an abuse of notation which will not cause confusion, we denote by |t| = |t|J,V

the term assignment in D of the term t in L with respect to J and V .

One further piece of notation we need is as follows: for each element 〈α, β〉 of
B, we denote by χ〈α,β〉 : B −→ B the mapping defined by χ〈α,β〉(〈α′, β′〉) = 〈1, 0〉
if 〈α, β〉 ≤k 〈α′, β′〉 and χ〈α,β〉(〈α′, β′〉) = 〈0, 1〉 otherwise.

Definition 10. Let I be an interpretation with domain D for a first order anno-
tated language L and let V be a variable assignment. Then an annotated formula
F in L can be given a truth value |F | = |F |IV in B as follows.

– If F is an annotated atom R(t1, . . . , tn) : (µ, ν), then the value of |F |IV is
given by |F |I,V = χ〈µ,ν〉(|R|I(|t1|, . . . , |tn|)).

– |(¬F) : (µ, ν)|I,V = |F : (ν, µ)|I,V .
– | ∼ F : (µ, ν)|I,V = ¬∗(|F : (µ, ν)|I,V), where the operation ¬∗ denotes the

restriction of the bilattice operation ¬ to the set of values {〈1, 0〉, 〈0, 1〉}.
– If F has the form (F1 ⊗ F2), where F1 and F2 are annotated atoms, then
|F1 ⊗ F2|I,V = |F1|I,V ⊗ |F2|I,V .
Note that on the left side of this equation, the symbol ⊗ denotes a connective
in L, and on the right side it denotes an operation of the bilattice B.

– If an annotated formula has the form (F1 ⊗ F2) : (µ, ν), then |(F1 ⊗ F2) :
(µ, ν)|I,V = χ〈µ,ν〉(|F1| ⊗ |F2|).

– If a formula has the form ΣxR(x) : (µ, ν), then

|ΣxR(x) : (µ, ν)|I,V = χ〈µ,ν〉

(∑
d∈D

|R(d)|

)
,

where
∑

is the infinite join with respect to ≤k, |R(d)| receives interpretation
with respect to I and V (x/d), where V (x/d) is V except that x is assigned d.

We omit the definitions for the remaining connectives and quantifiers, and
the reader can easily complete Definition 10. We simply mention here that the
connectives ⊕, ⊗, ∨, ∧ and the quantifiers Σ, Π, ∃, ∀ correspond to the finite
and infinite operations defined on bilattices as in §2. Notice that if restricted to
one lattice in the obvious way, and in particular to the classical lattice {0,1},
the operations ⊗ and ∧ are the same, as are ⊕ and ∨, ¬ corresponds to classical
negation, and the quantifiers ∃ and ∀ are the usual ones in classical logic.

In general, the analogs of the classical truth values true and false in our set of
truth values are represented by 〈1, 0〉 and 〈0, 1〉 - the greatest and least elements
of the bilattice with respect to ≤t. Furthermore, the definitions of satisfiable,
unsatisfiable, valid and non-valid formulae and of models are standard if the
classical truth values true and false in these definitions are replaced by the
greatest respectively least elements of the bilattice relative to the ≤t.

Definition 11. Let I be an interpretation for L and let F be a closed annotated
formula of L. Then I is a model for F if |F |I,V = 〈1, 0〉. We say that I is a
model for a set S of annotated formulae if it is a model for each annotated
formula of S.

Definition 12. Let S be a set of closed annotated formulae and let F be a closed
annotated formula of L. We say that F is a logical consequence of S if, for every
interpretation I of L, I is a model for S implies I is a model for F .

Proposition 2. Let S and F be as in the previous definitions. Then F is a
logical consequence of S if and only if S ∪ {∼ F} is unsatisfiable.

The following propositions, whose proofs use Definition 10 and monotonicity
of the bilattice operations relative to ≤k and are omitted, play an important
role when discussing the set of all logical consequences of a set of annotated
formulae.

Proposition 3. Let F be a formula, and fix the value |F |I,V . If |F : (α, β)| =
〈1, 0〉, then |F : (α′, β′)| = 〈1, 0〉 for all 〈α′, β′〉 ≤k 〈α, β〉.

Proposition 4. |F1 : (µ1, ν1)⊗ . . .⊗Fk : (µk, νk)| = 〈1, 0〉 ⇐⇒ |F1 : (µ1, ν1)⊕
. . .⊕ Fk : (µk, νk)| = 〈1, 0〉 ⇐⇒ |F1 : (µ1, ν1) ∧ . . . ∧ Fk : (µk, νk)| = 〈1, 0〉.

Proposition 5. If |F1 : (µ1, ν1)�. . .�Fk : (µk, νk)|I,V = 〈1, 0〉, then |(F1�. . .�
Fk) : ((µ1, ν1)� . . .� (µk, νk))|I,V = 〈1, 0〉, where � is any one of the connectives
⊗,⊕,∧.

3.3 Definition of Bilattice-Based Annotated Logic Programs

Definition 13. An annotated literal is an annotated atom or its (epistemic)
negation. A positive annotated literal is an annotated atom. A negative anno-
tated literal is the (epistemic) negation of an annotated atom.

Definition 14. A bilattice-based annotated logic program (BAP) P consists of
a finite set of (annotated) program clauses of the form

A : (µ, ν)← L1 : (µ1, ν1), . . . , Ln : (µn, νn),

where A : (µ, ν) is an annotated atom called the head of the clause and L1 :
(µ1, ν1), . . . , Ln : (µn, νn) denotes L1 : (µ1, ν1)⊗. . .⊗Ln : (µn, νn) and is called the
body of the clause; each Li : (µi, νi) is an annotated literal called an annotated
body literal of the clause. Individual and annotation variables in the body are
thought of as being existentially quantified using Σ.

Each clause of the form A : (µ, ν) ← L1 : (µ1, ν1), . . . , Ln : (µn, νn) can
equivalently be seen as a Horn clause

Πµ1, ν1, . . . , Πµl, νl(Πx1, . . . , ΠxsA⊕ ∼ (Σx1, . . . , Σxs(L1 ⊗ . . .⊗ Ln))),

where A stands for A : (µ, ν), and Li stands for Li : (µi, νi).
The definitions of unit clause and of program goal are standard, see [12].

We need to mention here that any given logic program contains only a finite
set of annotation constants. This is why there are classes of programs which can
be interpreted by finite bilattices. For example, logic programs which do not con-
tain annotation variables and/or annotation functions, and logic programs con-
taining only functions which do not generate new annotation constants through
the process of computing.

Example 1. Consider the following infinitely-interpreted logic program:

R1(a1) : (1, 0.5)←
R2(f(x)) : (

µ

2
,
µ

3
)← R1(x) : (µ, ν)

R1(f(x)) : (
µ

3
,
ν

3
)← R2(x) : (µ, ν)

This program receives its interpretations from the countable bilattice whose
underlying set of elements contains 0, 1, 0.5 and all the numbers which can be
generated from 0, 1, 0.5 by the functions µ

2
, µ

3
, ν

3
.

4 Declarative Semantics for BAPs

Throughout this section, we let P denote a bilattice-based annotated logic pro-
gram with underlying bilattice B and underlying first order annotated language
L.

Definition 15. A ground term (atom) is a term (atom) containing no free
individual variables. A c-annotated atom is an annotated atom containing no
variable annotations. A strictly ground atom is an annotated atom containing
no free individual variables and no variable annotations.

Definition 16. The Herbrand Universe UL for L (or for P) is the set of all
ground terms which can be formed out of the constants and function symbols
appearing in L. (In the case that L has no constants, we add some constant, a
say, to form ground terms.)

Definition 17. The annotation Herbrand base BL (or BP) for L (or for P)
is the set of all strictly ground atoms formed from predicate symbols of L with
ground terms from the Herbrand universe as arguments and constants from B as
c-annotations. (In case L has no annotation constants, we add some annotation
constant, (1, 1) say, to form strictly ground atoms.) Finally, we let ground(P)
denote the set of all strictly ground instances of clauses of P .

The Herbrand pre-interpretation HJ is the same as in [12].

Definition 18. A Herbrand interpretation HI for L consists of the Herbrand
pre-interpretation HJ with domain UL of L together with the following: for each
n-ary predicate symbol in L, the assignment of a mapping from Un

L into B as
given in Definition 10.

41 (Note) In common with conventional logic programming, each Herbrand
interpretation HI for P can be identified with the subset {R(t1, . . . , tk) : (α, β) ∈
BP |R(t1, . . . , tk) : (α, β) receives the value 〈1, 0〉 with respect to HI} of BP it
determines, where R(t1, . . . , tk) : (α, β) denotes a typical element of BP . In
future, this identification will be made without further mention. We let HIP,B =
2BP denote the set of all Herbrand interpretations for P , and we order HIP,B =
2BP by subset inclusion.

Proposition 6. Let S be a set of annotated clauses and suppose S has a model.
Then S has an annotation Herbrand model.

Proof. The proof is straightforward consequence of the Note 41.

Proposition 7. Let S be a set of annotated clauses. Then S is unsatisfiable if
and only if S has no annotation Herbrand models.

Proof. If S is satisfiable, then, according to Proposition 6, it has an annotation
Herbrand model.

We call the intersection of all Herbrand models for P the least annotation
Herbrand model and denote it by MP .

The following theorem is generalization of the well-known theorem of van
Emden and Kowalski [16]:

Theorem 1. Let P be a BAP. Then MP = {A : (µ, ν) | A : (µ, ν) is a logical
consequence of P}.

Proof. The following proof is essentially the same as that given in [16].
We have that A : (µ, ν) is a logical consequence of P ⇐⇒ P ∪ {∼ A : (µ, ν)}
is unsatisfiable (by Proposition 2) ⇐⇒ P ∪ {∼ A : (µ, ν)} has no annotation
Herbrand models (by Proposition 7) ⇐⇒ ∼ A : (µ, ν) receives a value 〈0, 1〉
with respect to all annotation Herbrand models of P ⇐⇒ A : (µ, ν) receives
a value 〈1, 0〉 with respect to all annotation Herbrand models of P ⇐⇒ A :
(µ, ν) ∈MP .

We define here two consequence operators, T̂P and TP , and both compute
the logical consequences of logic programs. The operator T̂P does not compute
all the logical consequences of P in the general case, and therefore we call it
the restricted semantic operator; we will use its properties when discussing the
relationship of BAPs to annotation-free and implication-based bilattice logic
programs. The semantic operator TP is an extended version of T̂P . It reflects
properties established in Propositions 3, 4, 5 and it follows that TP computes all
the logical consequences of a given program.

Definition 19. We define the mapping T̂P : HIP,B → HIP,B by T̂P (HI) = {A :
(µ, ν) ∈ BP |A : (µ, ν) ← L1 : (µ1, ν1), . . . , Ln : (µn, νn) is a strictly ground
instance of a clause in P , and {L1 : (µ1, ν1), . . . , Ln : (µn, νn)} ⊆ HI}.

Definition 20. We define the mapping TP : HIP,B → HIP,B as follows: TP (HI)
is the set of all A : (µ, ν) ∈ BP such that

1. either A : (µ, ν)← L1 : (µ1, ν1), . . . , Ln : (µn, νn) is a strictly ground instance
of a clause in P and {L1 : (µ′

1, ν
′
1), . . . , Ln : (µ′

n, ν
′
n)} ⊆ HI, and for each

(µ′
i, ν

′
i) one of the following holds:

(a) (µ′
i, ν

′
i) ≥k (µi, νi),

(b) (µ′
i, ν

′
i) ≥k (µj, νj)⊗ . . .⊗ (µl, νl), i, j, l ∈ {1, . . . , n}, whenever Lj = Ll;

2. or there are annotated strictly ground atoms A : (µ∗
1, ν

∗
1), . . . , A : (µ∗

k, ν
∗
k) ⊆

HI such that 〈µ, ν〉 ≤k 〈µ∗
1, ν

∗
1〉 ⊕ . . .⊕ 〈µ∗

k, ν
∗
k〉.

Note 3. It follows from Proposition 3 that whenever F : (µ, ν) ∈ HI and
(µ′, ν ′) ≤k (µ, ν), then F : (µ′, ν ′) ∈ HI. Note that this holds in particular

for T̂P (HI) and for TP (HI).

Note also that the item 1a in Definition 20 is the same as given in Definition
19, and reflects the property stated in Proposition 3; items 1b and 2 extend the
Definition of T̂P in order to reflect the results established in Propositions 4 and
5.

The operator TP is monotone. This fact follows from the monotonicity of
annotation functions and the monotonicity of the connectives with respect to
the ordering ≤k. Thus, we define a transfinite sequence as follows.

Definition 21. We set TP ↑ 0 = ∅, TP ↑ α = TP (TP ↑ (α − 1)), if α is a
successor ordinal, and TP ↑ α =

∑
{TP ↑ β : β < α}, if α is a limit ordinal.

The next example displays the difference between T̂P and TP .

Example 2. Consider the logic program P based on the bilattice B = L1 � L2,
where L1 = L2 = ({0, 1

3
, 2

3
, 1},≤), with 0 ≤ 1

3
≤ 2

3
≤ 1.

R1(a) : (0,
2

3
)←

R1(a) : (
1

3
,
1

3
)←

R3(a) : (0, 0)←
R2(x1) : (τ, σ)← R1(a) : (τ, σ)

R4(x2) : (1, 1)← R3(x2) : (0,
1

3
), R3(x2) : (

1

3
, 0)

Now consider the computation of the least fixed points of T̂P and of TP .
T̂P ↑ 0 = ∅.
T̂P ↑ 1 = {R1(a) : (0, 2

3
), R1(a) : (1

3
, 1

3
), R3(a) : (0, 0)}.

T̂P ↑ 2 = {R1(a) : (0, 2
3
), R1(a) : (1

3
, 1

3
), R3(a) : (0, 0), R2(a) : (0, 2

3
), R2(a) :

(1
3
, 1

3
)}, and this is the least fixed point of T̂P .

Compare it with the computation of the least fixed point of TP . After each
formula we put in square brackets the number of a rule from the definition of
TP which enables us to compute that formula.
TP ↑ 0 = ∅.
TP ↑ 1 = {R1(a) : (0, 2

3
)[1a], R1(a) : (1

3
, 1

3
)[1a], R3(a) : (0, 0)[1a]}.

TP ↑ 2 = {R1(a) : (0, 2
3
)[1a], R1(a) : (1

3
, 1

3
)[1a], R3(a) : (0, 0)[1a], R1(a) : (1

3
, 2

3
)[2], R2(a) :

(0, 2
3
)[1a], R2(a) : (1

3
, 1

3
)[1a], R4(a) : (1, 1)[1b]}.

TP ↑ 3 = {R1(a) : (0, 2
3
)[1a], R1(a) : (1

3
, 1

3
)[1a], R3(a) : (0, 0)[1a], R1(a) : (1

3
, 2

3
)[2], R2(a) :

(0, 2
3
)[1a], R2(a) : (1

3
, 1

3
)[1a], R4(a) : (1, 1)[1b], R2(a) : (1

3
, 2

3
)[2]}.

Note that all the formulae marked by 1b and 2 are not contained in the least
fixed point of T̂P , but if we take into consideration Propositions 3, 4 and 5, we
see that these formulae are logical consequences of P .

Example 3. Consider the logic program from Example 1. The least fixed point
of this program (for T̂P and for TP) is
{R1(a1) : (1, 0.5), R2(f(a1)) : (ϑ1(1), ϑ2(0.5)),
R1(f(f(a1))) : (ϑ3(ϑ1(1)), ϑ4(ϑ2(0.5))), . . .,
R1(f

n−1(a1)) : (ϑn
3 (ϑn−1

1 . . . (. . . ((1)) . . .)), ϑn
4 (ϑn−1

2 . . . (. . . ((0.5)) . . .))),
R2(f

n(a1)) : (µ′, ν ′), . . .}, where n ∈ ω, µ′ = ϑn
1 (ϑn−1

3 (ϑn−2
1 . . . (. . . ((1)) . . .))),

ν ′ = ϑn
2 (ϑn−1

4 (ϑn−2
2 . . . (. . . ((0.5)) . . .))), and ϑ1, ϑ2, ϑ3, ϑ4 stand for the functions

µ
2
, ν

3
, µ

3
, ν

3
respectively.

4.1 Approximation of TP

The following theorem is important and plays a fundamental role when dis-
cussing computation of the least fixed points of TP .

Theorem 2. The mapping TP is continuous.

Proof. Let X be a directed subset of 2BP . In order to show that TP is continuous,
we have to show that TP (

⋃
X) =

⋃
TP (X). By directedness, it follows that

{L1 : (α1, β1), . . . , Ln : (αn, βn)} ⊆
⋃

X if and only if {L1 : (α1, β1), . . . , Ln :
(αn, βn)} ⊆ HI, for some HI ∈ X.
Then A : (α, β) ∈ TP (

⋃
X)

⇐⇒ A : (α, β)← L1 : (α1, β1), . . . , Ln : (αn, βn) is a strictly ground instance of
a clause in P and {L1 : (α1, β1), . . . , Ln : (αn, βn)} ⊆

⋃
X

⇐⇒ A : (α, β)← L1 : (α1, β1), . . . , Ln : (αn, βn) is a strictly ground instance of
a clause in P and {L1 : (α1, β1), . . . , Ln : (βn, αn)} ⊆ HI for some HI ∈ X
⇐⇒ A : (α, β) ∈ TP (HI), for some HI ∈ X
⇐⇒ A : (α, β) ∈

⋃
TP (X).

Proposition 8. Let HI be an annotation Herbrand interpretation for P . Then
HI is a model for P if and only if TP (HI) ⊆ HI.

Proof. HI is a model for P if and only if for each strictly ground instance A :
(µ, ν) ← A1 : (µ1, ν1), . . . , Ak : (µk, νk) of each clause in P we have {A1 :
(µ1, ν1), . . . , Ak : (µk, νk)} ⊆ HI implies A : (µ, ν) ∈ HI and Aj : (µ1, ν1)◦. . .◦Aj :
(µn, νn) ∈ HI implies Aj : ((µ1, ν1) ◦ . . . ◦ (µn, νn)) ∈ HI, where ◦ is either of ⊕
or ⊗. But this holds if and only if TP (HI) ⊆ HI.

Now, using Kleene’s theorem and Theorem 2, we may assert that lfp(TP) =
TP ↑ ω. Indeed, we have the following generalization of a well-known theorem
due to van Emden and Kowalski [16].

Theorem 3. MP = lfp(TP) = TP ↑ ω.

Proof. MP = glb{HI | HI is a Herbrand model for P} = glb{HI | TP (HI) ⊆ HI}
(by Proposition 8)= lfp(TP) (by definition of the least fixed point) = TP ↑ ω (by
Theorem 2 and Kleene’s theorem).

Definition 22. Let P be a BAP and let G be a goal ← A1 : (µ1, ν1), . . . Ak :
(µk, νk). An answer for P∪{G} is a substitution θλ for individual and annotation
variables of G. We say that θλ is a correct answer for P ∪ {G} if Π((A1 :
(µ1, ν1), . . . Ak : (µk, νk))θλ) is a logical consequence of P .

Definition 23. Let l : BP → IN be a level mapping with the property that, for
each n ∈ IN, we can effectively find the set of all A ∈ BP satisfying l(A) = n.

Definition 24. [6] Let HIP,B be the set of all interpretations for P . We define
the ultrametric d : HIP,B × HIP,B → IR as follows: if HI1 = HI2, we set
d(HI1, HI2) = 0, and if HI1 6= HI2, we set d(HI1, HI2) = 2−N , where N is
such that HI1 and HI2 differ on some ground atom of level N and agree on all
atoms of level less then N .

The following theorem on approximation of least fixed points is a general-
ization of the theorem of Seda ([14]) to the case of BAPs.

Theorem 4. Let P be an arbitrary BAP, let HI denote the least fixed point
of TP and suppose that we are given ε > 0. Then there exists a finite program
P = P (ε) (a finite subset of ground(P)) such that d(HI, HI) < ε, where HI
denotes the least fixed point of TP .

Proof. The proof is essentially the same as that given in [14], and uses Definitions
17, 18, 41, 20 and Theorem 2 instead of the corresponding definitions and results
used in the proof of [14].

5 Relation to Other Bilattice-Based Logic Programs

In this section, we consider two alternative approaches to bilattice-based logic
programming, as follows.

– Fitting’s language, see [4] for example, does not contain any annotations, but
contains all possible connectives and quantifiers from Definition 4.

– Implication-based logic programs contain annotated arrows instead of having
all the literals annotated. These programs may be seen as a generalization of
Van Emden’s approach [11, 15] to the bilattice-based case.

We consider here the relationship between TP and the semantic operators of
Fitting and Van Emden. As a result, we extend Theorem 4 on approximation
of TP to these two kinds of logic programs. The results of this section may be
seen as a revision, formalization and further development of some ideas of Kifer
and Subrahmanian [10] on the relationship between general annotated programs
(GAPs) and the logic programs of Fitting and Van Emden. For example, we
extend their results concerning translation of Fitting’s connectives into GAPs by
allowing Σ in BAPs, and this gives us a translation of the k-existential fragment
of Fitting’s logic programs into BAPs. We also show that in spite of the assertion
in [10], it is not always the case that the least fixed point of the TP -operator of
Van Emden is finite, and this is why we revise the proof of equality of the least
fixed points of TP and of T̂P .

Definition 25. We call the set of clauses of the form A← F , where all individ-
ual variables appearing in F are quantified by Σ, and F is a formula consisting
of literals connected by ∨, ∧, ⊕ and ⊗, a Fitting bilattice-based (k-existential)
logic program. Constant propositional symbols denoting elements of the bilattice
are also allowed in the language. Clauses having the form A ← are thought of
as being completed as A← (1, 1).

Definition 26. We call the set of all clauses of the form

A← Σx1, . . . , Σxk(L1 ⊗ . . .⊗ Ln),

where each Li is a literal and x1, . . . xk are all the individual variables appearing
in L1 ⊗ . . . ⊗ Ln, the Horn-clause fragment of a Fitting bilattice-based logic
program.

All Fitting formulae receive interpretation from the set of elements of the
bilattice B, see [4, 5] for further explanations and definitions. We define next the
immediate consequence operator for Fitting’s logic programs as follows.

Definition 27. [4]

ΦP (I)(A) =

{
I(B) if A← B ∈ ground(P)
A if A ∈ B

Definition 28. We say that the annotated clause A : (τ1 ⊗ . . .⊗ τn, σ1 ⊗ . . .⊗
σn) ← Σx1, . . . , Σxk(L1 : (τ1, σ1), . . . , Ln : (τn, σn)), where the (τi, σi) are vari-
able annotations, translates the Fitting Horn clause A ← Σx1, . . . , Σxk(L1 ⊗
. . .⊗ Ln).

Lemma 1. A formula A receives interpretation 〈α, β〉 in the least fixed point
of ΦP for a Fitting Horn-clause bilattice program P if and only if A : (α, β) ∈
lfp(T̂P F) for the BAP P F obtained from P by using Definition 28.

Proof. The proof follows by induction on the number of iterations of TP and
T̂P F . Note that in this proof and the next, 〈α, β〉 refers to an element of the
bilattice, and (α, β) refers to annotations.

We prove first that if a formula A receives interpretation 〈α, β〉 in the least
fixed point of ΦP for a Fitting horn-clause bilattice program P , then A : (α, β) ∈
lfp(T̂P F) for the BAP P F obtained from P using Definition 28.

Basis step. Assume lfp(ΦP) = ΦP ↑ 1 and (ΦP ↑ 1)(I)(A) = 〈α, β〉. This
means A ← (α, β) ∈ ground(P). But then there is a clause A : (α, β) ← ∈
ground(P F), and hence A : (α, β) ∈ T̂P F ↑ 1.

Inductive step. Suppose that whenever (Φ ↑ k)(I)(Bi) = 〈αi, βi〉, for i =

1, . . . , k, then all the Bi : (αi, βi) ∈ T̂P F ↑ k.
Consider Φ ↑ (k+1). Let (Φ ↑ (k+1))(I)(A) = 〈α, β〉. Then A← B1⊗. . .⊗Bk ∈
ground(P) and (Φ ↑ k)(I)(B1⊗ . . .⊗Bk) = 〈α, β〉. For each Bi, i = 1, . . . , k, let
I(Bi) = 〈αi, βi〉. Then 〈α, β〉 = (〈α1, β1〉 ⊗ . . .⊗ 〈αk, βk〉) (∗).

Since A ← B1 ⊗ . . . ⊗ Bk ∈ ground(P), we have that A : (α, β) ← B1 :
(α1, β1), . . . , Bk : (αk, βk) ∈ ground(P F). Using our induction hypothesis, we

have that each Bi : (αi, βi) ∈ T̂P F ↑ k. Hence, we obtain A : (α1, β1⊗ . . .⊗αk, βk)

∈ T̂P F ↑ (k + 1) and, using (∗), we have that A : (α, β) ∈ T̂P F ↑ (k + 1).

Now we need to prove that if A : (α, β) ∈ lfp(T̂P F) for the BAP P F obtained
from P using Definition 28, then A receives interpretation 〈α, β〉 in the least
fixed point of ΦP for a Fitting horn-clause bilattice program P .

Basis step. Let lfp(T̂P F) be obtained at the first iteration of T̂P F , and that

A : (α, β) ∈ T̂P F ↑ 1. Then there is a clause A : (α, β) ← ∈ ground(P F).
But then, according to the definition of P F , A ← (α, β) ∈ ground(P). Hence,
(ΦP ↑ 1)(I)(A) = 〈α, β〉.

Inductive step. Suppose for k we have that if Bi : (αi, βi) ∈ T̂P F ↑ k, then

(Φ ↑ k)(I)(Bi) = 〈αi, βi〉, (i ∈ {1 . . . k}). Let A : (α, β) ∈ T̂P F ↑ (k + 1). Then
there is a clause A : (α, β) ← B1 : (α′

1, β
′
1), . . . , Bk : (α′

k, β
′
k) ∈ ground(P F),

and each (α′
i, β

′
i) ≥k (αi, βi), each Bi : (α′

i, β
′
i) ∈ T̂P F ↑ k and, according to the

definition of P F , (α, β) = (α′
1, β

′
1 ⊗ . . .⊗ α′

k, β
′
k) (∗). This clause translates the

clause A ← B1 ⊗ . . . ⊗ Bk ∈ ground(P). Now, using our induction hypothesis,
for each Bi we have that (Φ ↑ k)(I)(Bi) = 〈α′

i, β
′
i〉. But then, according to the

definitions of I and ΦP , (Φ ↑ (k+1))(I)(A) = 〈α′
1, β

′
1〉⊗ . . .⊗〈α′

k, β
′
k〉, and, since

we have (∗), it follows that (Φ ↑ (k + 1))(I)(A) = 〈α, β〉.

Definition 29. We define the following process of translation of Fitting clauses
(cf. Definition 25) into annotated clauses.

1. If F consists of literals L1, . . . , Ln, substitute them by annotated literals L1 :
(τ1, σ1), . . . , Ln : (τn, σn), where each (τi, σi) is a variable annotation. We call
the resulting formula F ′.

2. Each clause of the form A← F ′ should be transformed into

A : (ϑ((τ1, . . . , τn), (σ1, . . . , σn)))← F ′′

using the following rule: if A← F ′ is

A← L1 : (τ1, σ1), . . . , Lk : (τk, σk) ◦ Lk+1 : (τk+1, σk+1), . . . , Ln : (τn, σn),

then replace it by A : (((τ1, σ1), . . . , (τk, σk)) ◦ ((τk+1, σk+1), . . . (τn, σn))) ←
L1 : (τ1, σ1), . . . , Lk : (τk, σk), Lk+1 : (τk+1, σk+1), . . . , Ln : (τn, σn), where ◦
stands for one of ∨, ∧ and ⊕.

Note that the symbols ∨, ∧, ⊕ appearing in the bodies of the clauses denote
connectives in the language, and the symbols ∨, ∧, ⊕ appearing in the heads of
the clauses denote operations defined on the underlying bilattice. We say that
the resulting annotated clause

A : (ϑ((τ1, . . . , τn), (σ1, . . . , σn)))← F ′′

translates the Fitting (k-existential) clause A← F .

Theorem 5. A formula A receives a value 〈α, β〉 in the least fixed point of ΦP

for a Fitting logic program P if and only if A : (α, β) ∈ lfp(T̂P F) for the BAP
P F obtained from P using the rules from Definition 29.

Proof. The proof is obtained by induction on the number of iterations of the
semantic operators and uses Lemma 1 and Definition 29.

Next, we extend Van Emden’s implication-based approach to the case when a
bilattice instead of the unit interval of reals is taken as the underlying structure
of a logic program. We also show that the resulting extended programs can be
transformed into BAPs.

Definition 30. Van Emden’s quantitative logic programs consist of definite clauses
of the form

A←
�� ���� ��f −B1, . . . , Bn,

where f is a factor or threshold taken from the interval [0, 1] of reals. Atoms
B1, . . . , Bn are thought of as being connected using &.

The atoms A, B1, . . . , Bn receive their interpretation from the interval [0, 1],
and the value of the head A of a clause is computed as g ×min(|B1|, . . . , |Bn|),
where min(|B1|, . . . , |Bn|) is the minimum value of the atoms B1, . . . , Bn.

Definition 31. An implication-based bilattice normal logic program P consists
of a finite set of program clauses of the form

A←
�� ���� ��f, g − L1, . . . , Ln,

where A is an atomic formula called the head of the clause, the L1, . . . , Ln are
literals forming the body of the clause, and f , g are factors or thresholds taken
from the interval [0, 1] of reals. The literals L1, . . . , Ln are thought of as being
connected using ⊗.

All formulae receive their interpretation from the bilattice B = L1�L2, where
L1 = L2 = ([0, 1],≤k,≤t). The value of the head of a clause A is computed as
f ×min(|L1|1, . . . , |Ln|1), g×min(|L1|2, . . . , |Ln|2), where min(|L1|i, . . . , |Ln|i) is
the minimum value of the literals L1, . . . , Ln, and the index i ∈ {1, 2} denotes
the first or second elements of a member of the bilattice. Empty bodies are
thought of as having interpretation 〈1, 1〉.

Definition 32. We say that an annotated clause

A : (f ×min(τ1, . . . τn), g ×min(σ1, . . . σn))← L1 : (τ1, σ1), . . . , Ln : (τn, σn),

where each τi, σi is a variable, translates the clause

A←
�� ���� ��f, g − L1, . . . , Ln

from the implication-based bilattice logic program.

We give here the definition of the immediate consequence operator T ′
P for

the implication-based bilattice logic programs – it generalizes Van Emden’s TP

operator to the bilattice case in the obvious way.

Definition 33. T ′
P (I)(A) = {lubk〈(f×min{|Li|1}), (g×min{|Li|2}〉| i ∈ {1, . . . , n}

and A←
�� ���� ��f, g − L1, . . . , Ln is a variable-free instance in P}.

The next definition is applicable only to logic programs which can be either
finitely interpreted or interpreted by infinite bilattices whose subsets always have
lub with respect to the k-ordering.

Definition 34. We denote by lfp∗(T̂P) the set of formulae obtained from the

lfp(T̂P) through the following process: if we have strictly ground formulae A :

(α1, β1), A : (α2, β2), . . . ∈ lfp(T̂P), then we replace them by A : (α, β), where
(α, β) = lubk(〈α1, β1〉, 〈α2, β2〉, . . .) in the bilattice B.

Theorem 6. A formula A receives the value 〈α, β〉 in the least fixed point of
(T ′

P) for an implication-based bilattice normal logic program P if and only if

A : (α, β) ∈ lfp∗(T̂P V E) for the BAP P V E whose clauses are obtained from P as
described in Definition 32.

Note that the proof of the analogous theorem in [10] uses the argument that
lfp(TP) is always finite. This is not always the case here. Consider Examples 1
and 3: this annotated logic program can be seen as a translation of Van Em-
den’s bilattice-based logic program into an annotated program, but it can be
interpreted only by an infinite bilattice.

To prove the theorem, we use the fact that in programs P V E, annotation
functions are not contained in the bodies of clauses and, as a consequence, the
annotation functions in the heads generate a descending sequence (relative to
≤k) of elements of B which tends to 〈0, 0〉. Any subset of this bilattice has a
lub.

Proof. The proof proceeds by induction on the number of iterations of TP and

T̂ V E
P needed to reach the least fixed point.

First, we need to prove that if a formula A receives the value 〈α, β〉 in the least
fixed point of (T ′

P) for an Implication-based Bilattice Normal Logic Program P ,

then A : (α, β) ∈ lfp∗(T̂ V E
P) for the BAP P V E whose clauses are obtained from

P as shown in Definition 32.
Basis step. Let lfp(T ′

P) = T ′
P ↑ 1 and suppose that (T ′

P ↑ 1)(I)(A) = 〈α, β〉.
Thus, A ←

�� ���� ��a, b − ∈ ground(P). But then there is a clause A : (α, β) ← in

ground(P V E), and hence A : (α, β) ∈ T̂P V E ↑ 1.
Inductive step. Suppose the theorem holds for k, that is, for each Bi, if

(T ′
P ↑ k)(I)(Bi) = 〈αi, βi〉, then Bi : (αi, βi) ∈ T̂P V E ↑ k. Let (T ′

P ↑ (k +
1))(I)(A) = 〈α, β〉. This means that

A←
�� ���� ��f, g −B1, . . . , Bk ∈ ground(P), (∗)

and 〈α, β〉 = 〈lub(f×min(|B1|1, . . . , |Bk|1)), lub(g×min(|B1|2, . . . , |Bk|2)). More-
over, for each Bj, j = 1, . . . , k, we know that

(T ′
P ↑ k)(I)(Bj) = 〈αj, βj〉. (∗∗)

Thus, we may conclude that lub(min(|B1|, . . . , |Bk|)) = 〈α
f
, β

g
〉. Since B1, . . . , Bk

are connected using ⊗, there is a Bi amongst the B1, . . . , Bk such that |Bi| =
〈α

f
, β

g
〉, and we pick the greatest value of all such Bi. We have the follow-

ing translation of (∗) : A : (f × min(α1, . . . , αk), g × min(β1, . . . , βk)) ← B1 :
(α1, β1), . . . , Bk : (αk, βk) ∈ ground(P V E). Using (∗∗) and the induction hypoth-

esis, we know that each Bj : (αj, βj) ∈ T̂P V E ↑ k, and Bi : (α
f
, β

g
) is amongst them.

This means that A : (f ×min(α1, . . . , αk), g×min(β1, . . . , βk)) ∈ T̂P V E ↑ (k +1),

and, since 〈α
f
, β

g
〉 ≤k 〈αj, βj〉 for any j ∈ {1, . . . , k}, A : (f×min(α1, . . . , αk), g×

min(β1, . . . , βk)) = A : (f × α
f
, g × β

g
) = A : (α, β).

Now we need to prove that if A : (α, β) ∈ lfp∗(T̂ V E
P) for the BAP P V E whose

clauses are obtained from P as shown in Definition 32, then A receives the value
〈α, β〉 in the least fixed point of (T ′

P) for an Implication-based Bilattice Normal
Logic Program P .

Basis step. Let lfp∗(T̂ V E
P) be obtained on the first iteration of T̂ V E

P and A :

(α, β) ∈ lfp∗(T̂ V E
P) ↑ 1. Thus, A : (α, β)← ∈ ground(P V E). But then

A←
�� ���� ��α, β − ∈ ground(P).

Inductive step. Suppose that if Bj : (α, β) ∈ T̂P V E ↑ k, then (T ′
P ↑ k)(I)(Bj) =

〈αj, βj〉 for j = 1, . . . , k. Let A : (α, β) ∈ lfp∗(T̂ V E
P ↑ (k + 1)). Then

A : (f ×min(α1, . . . , αk), g ×min(β1, . . . , βk))← B1 : (α′
1, β

′
1), . . . , Bk : (α′

k, β
′
k)

∈ ground(P V E) (∗ ∗ ∗), each (α′
i, β

′
i) ≥k (αi, βi) and

(α, β) = (f ×min(α′
1, . . . , α

′
k), g ×min(β′

1, . . . , β
′
k)) (∗ ∗ ∗∗),

and each Bj : (α′
j, β

′
j) ∈ T̂P V E ↑ k. The clause (∗ ∗ ∗) translates the clause

A←
�� ���� ��f, g −B1, . . . , Bk

from ground(P). By the induction hypothesis, we know that each (T ′
P ↑ k)(I)(Bj)

= 〈α′
j, β

′
j〉. Thus, (T ′

P ↑ (k +1))(I)(A) = 〈lub(f ×min(|B1|1, . . . , |Bk|1)), lub(g×
min(|B1|2, . . . , |Bk|2))〉. Using (∗ ∗ ∗∗), T ′

P ↑ (k + 1))(I)(A) = 〈lub(α), lub(β)〉.
Now, using Definition 34, we know that from all possible (α, β) we picked the
greatest, and thus T ′

P ↑ (k + 1))(I)(A) = 〈α, β〉.

Theorems 5 and 6 exhibit classes of bilattice-based logic programs which
can be translated into BAPs and, consequently, whose least fixed point can be
approximated according to Theorem 4.

There is another interesting consequence of Lemma 1, Theorems 5 and 6.
Since all these theorems were proven using the restricted operator T̂P and we
showed in §4 that, unlike the extended semantic operator TP , T̂P does not com-
pute all the logical consequences of P , it is straightforward to show that the
Fitting semantic operator and the operator á la Van Emden do not compute all
the logical consequences of bilattice-based logic programs in the general case.

Example 4. Consider the following simple example of a Horn clause Fitting pro-
gram P : B ← (1, 0), B ← (0, 1), A ← B and the corresponding implication-
based logic program P : B ←�� ���� ��1, 0 − , B ←�� ���� ��0, 1 − , A←�� ���� ��1, 1 −B.

The least fixed point of ΦP (and of T ′
P) gives us I(B) = 〈1, 0〉, I(B) =

〈0, 1〉, I(A) = 〈1, 0〉, I(A) = 〈0, 1〉. According to Definitions 28 and 32 we have
the following translation of this programs into BAP P F (P V E): B : (1, 0) ←,
B : (0, 1)←, A : (τ, σ)← B : (τ, σ).

The least fixed point of T̂P F (T̂P V E) gives the following set: {B : (1, 0), B :
(0, 1), A : (1, 0), A : (0, 1)}. But the least fixed point of TP F is {B : (1, 0), B :
(0, 1), A : (1, 0), A : (0, 1), B : (1, 1), A : (1, 1)}. Clearly, if we consider all the
clauses within a logic program as connected using ⊗, and if we use the result
established in Propositions 4, 5, we obtain B : (1, 1), A : (1, 1) as the logical
consequence of P F (P V E), and I(A) = 〈1, 1〉, I(B) = 〈1, 1〉 as the logical conse-
quence of P .

This also shows that the general annotated programs of Kifer and Subrah-
manian cannot be generalized to the bilattice-based case as it was done in [10]
without losing correctness of the computation of the least fixed point of their
semantic operator. However, the so-called completion for Fitting logic programs
can improve this situation. Each Fitting logic program can be completed if a
program is represented as a set of ground instances of clauses and all clauses
A← body1, . . . , A← bodyn having the same head A are replaced by one clause
A← body1⊕ . . .⊕bodyn. In this case, ΦP computes all the logical consequences
of the program P and the translation of P into a BAP always gives a program
whose semantic operator TP never uses the rules captured in items 1b and 2 of
Definition 20. This means that for such programs, TP and T̂P are the same, and
all the results established for TP hold for T̂P . 5

6 Conclusions and further work

The main part of our work is devoted to a careful examination of the declarative
and fixed-point semantics of bilattice-based annotated logic programs. In par-
ticular, we have shown that unlike the usual approach to many-valued logic pro-
gramming semantics (see, for example, [5], [7], [15], [10] and many others), the
immediate consequence operator for bilattice-based annotated logic programs
cannot be obtained as a simple extension of the classical semantic operator. We
have given some examples displaying the immediate consequence operators as
defined in [5], [7], [15], [10], and shown that these operators do not compute all
the logical consequences of a program, but only some of them. Finally, we pro-
posed an original definition of the immediate consequence operator computing
all the logical consequences of a given bilattice-based annotated logic program,
and proved its continuity. A separate section is devoted to theorems display-
ing how the fixed points of semantic operators defined by Fitting, Van Emden,
and Kifer and Subrahmanian can be computed by means of the new semantic

5 The same completion given for implication-based logic programs would destroy soundness of T ′
P .

operator within the framework of BAPs. We do not consider the issue of imple-
mentation here, but note that the close relationship of our work to that of [5],
[7], [15], [10] should make this possible.

The declarative semantics for BAPs as it is defined in §4 allows us to propose
an SLD-resolution for BAPs and prove its soundness and completeness relative to
our semantics. Like the resolution procedures given in [9] for lattice-based logics,
this SLD-resolution is enriched with additional rules reflecting the properties of
the extended semantic operator for BAPs and is an alternative to the constrained
resolution for general annotated logic programs of Kifer and Subrahmanian, see
[10].

Theorem 4 on approximation of the least fixed point of the semantic opera-
tor for BAPs can be seen as a step towards establishing suitable artificial neural
networks for the class of logic programs described in this paper, see [2] and
[14], for example. The main requirement which is usually made when building
such neural network architecture is to preserve its finite properties. This is why
bilattice-based annotated logic programs, which provide a continuous semantic
operator and an approximation theorem for it, can be seen as a contribution
towards creating universal neural networks which can handle probabilistic, in-
complete and inconsistent knowledge.

Another field of possible extension of our results is to relate BAPs to proba-
bilistic logic programs, as they were defined and studied, for example, in [1], [3]
and other papers.

Finally, it would be interesting to show how we can extend BAPs to logic
programs with interval-based annotations, and thereby establish linear program-
ming for them. Such work would relate to [11] and [13] and others and would
use many of the results established by these authors.

References

1. Fahiem Bacchus. Lp, a logic for representing and reasoning with statistical knowledge. Compu-
tational Intelligence, 6:209–231, 1990.

2. Arthur d’Avila Garsez, Krysia B. Broda, and Dov M. Gabbay. Neural-Symbolic learning Systems.
Foundations and applications. Springer-Verlag, 2002.

3. Ronald Fagin, Joseph Y. Halpern, and Nimrod Megiddo. A logic for reasoning about probabilities.
Information and Computation, 87(1,2):78–128, 1990.

4. M. C. Fitting. Bilattices in logic programming. In G. Epstein, editor, The twentieth International
Symposium on Multiple-Valued Logic, pages 238–246. IEEE, 1990.

5. M. C. Fitting. Bilattices and the semantics of logic programming. Journal of logic programming,
11:91–116, 1991.

6. M. C. Fitting. Metric methods: Three examples and a theorem. The Journal of Logic Program-
ming, 21:113–127, 1994.

7. M. C. Fitting. Fixpoint semantics for logic programming — A survey. Theoretical computer
science, 278(1-2):25–51, 2002.

8. M. L. Ginsberg. Multivalued logics: a uniform approach to reasoning in artificial intelligence.
Computational Intelligence, 4:265–316, 1988.

9. Michael Kifer and Eliezer L. Lozinskii. Ri: A logic for reasoning with inconsistency. In Proceedings
of the 4th IEEE Symposium on Logic in Computer Science (LICS), pages 253–262, Asilomar, 1989.
IEEE Computer Press.

10. Michael Kifer and V. S. Subrahmanian. Theory of generalized annotated logic programming and
its applications. Journal of logic programming, 12:335–367, 1991.

11. Laks V. S. Lakshmanan and Fereidoon Sadri. On a theory of probabilistic deductive databases.
Theory and Practice of Logic Programming, 1(1):5–42, January 2001.

12. J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 2nd edition, 1987.
13. Raymond Ng and V. S. Subrahmanian. Probabilistic logic programming. Information and com-

putation, 101(2):150–201, 1992.
14. Anthony Karel Seda. On the integration of connectionist and logic-based systems. In Proceedings

of MFCSIT2004, Electronic Notes in Theoretical Computer Science, Elsevier, 2004. To appear.
15. M. van Emden. Quantitative deduction and fixpoint theory. Journal of Logic Programming,

3:37–53, 1986.
16. M. van Emden and R. Kowalski. The semantics of predicate logic as a programming language.

Journal of the Assoc. for Comp. Mach., 23:733–742, 1976.

