Denotational semantics, normalisation, and the simply-typed $\lambda \mu$ -calculus

Vladimir Komendantsky

INRIA – Sophia Antipolis

22 June 2007

Contents

1 [Basics of a denotational semantics](#page-2-0)

3 [Semantics of normalisation](#page-13-0)

[Basics of a denotational semantics](#page-2-0) [Example model for the](#page-8-0) $\lambda \mu$ -calculus [Semantics of normalisation](#page-13-0)

Contents

1 [Basics of a denotational semantics](#page-2-0)

Denotational semantics for a lambda calculus

- Lambda calculus is commonly known as a theory of computable functions.
- The relationship of this theory to actual functions, e.g. functions between sets, is established by means of a suitable denotational semantics.
- Denotational semantics gives meaning to a language by assigning mathematical objects as values to its terms.
- \bullet The $\lambda\mu$ -calculus is a lambda calculus with additional constructs for representing the constructive content of classical proofs and handling continuations.
- We introduce a (strong) normalisation method for simply-typed $\lambda\mu$ -terms that is obtained by constructing an inverse of the semantic evaluation functional. The method is inspired by that of Berger & Schwichtenberg (1991).

Typing rules of the $\lambda\mu$ -calculus

Decision problem for the $\lambda\mu$ -calculus

For any possibly open $\lambda\mu$ -terms M and N of type A, decide whether $\Gamma \vdash M = N : A \mid \Delta$, where = denotes the equality of λµ-terms in context.

With each $\lambda\mu$ -term M we associate its abstract normal form $\inf(M)$, for which there exists a reverse function fn from normal forms to terms such that

(NF1, completeness) $\Gamma \vdash fn(nf(M)) = M : A \mid \Delta$ (NF2, soundness) $\Gamma \vdash M = N : A \upharpoonright \Delta$ implies $\inf_{\Gamma, \Delta} (M) = \inf_{\Gamma, \Delta} (N)$

Note

nf is allowed not to be injective and hence there is no *inverse* function nf^{−1} in general.

Why this gives a semantics of normalisation

The conditions (NF1) and (NF2) imply the soundness and completeness property:

 $\Gamma \vdash M = N : A \mid \Delta$ iff $\text{nf}_{\Gamma, \Delta}(M) \equiv \text{nf}_{\Gamma, \Delta}(N)$

Connections to the continuation semantics

(Strachey & Wadsworth 1974)

Continuation semantics is a method to formalise the notion of a control flow in programming languages. Any term is evaluated in a context which represents the "rest of computation". Such context is called continuation.

(Lafont, Streicher & Reus 1993; Hofmann & Streicher 1998; Selinger 1999)

By the call-by-name continuation passing style translation, a judgement of the $\lambda\mu$ -calculus

$$
x_1:B_1,\ldots,x_n:B_n \vdash M:A \mid \alpha_1:A_1,\ldots,\alpha_m:A_m \qquad (1)
$$

is translated to the judgement of the $\lambda^{R \times}$ -calculus

$$
x_1:C_{B_1},\ldots,x_n:C_{B_n},\alpha_1:K_{A_1},\ldots,\alpha_m:K_{A_m}\vdash \underline{M}:C_A\qquad(2)
$$

Call-by-name continuation passing style translation

The taget calculus of the CPS translation has a pair of types

 K_A – the type of continuations of type A C_A – the type of computations of type A

for each type A of the $\lambda\mu$ -calculus, defined as follows:

$$
K_{\sigma} = \sigma \quad \text{where } \sigma \text{ is a type constant}
$$

\n
$$
K_{B^A} = C_A \times K_B
$$

\n
$$
K_{\perp} = 1
$$

\n
$$
C_A = R^{K_A}
$$

The CPS translation is defined by means of inductive [rules.](#page-19-0)

[Basics of a denotational semantics](#page-2-0) **[Example model for the](#page-8-0)** $\lambda \mu$ **-calculus** [Semantics of normalisation](#page-13-0)

Contents

(2) [Example model for the](#page-8-0) $\lambda \mu$ -calculus

Complete partial orders

A subset P of a partial order is directed if every finite subset of P has an upper bound in P.

A complete partial order (cpo) is a partial order having least upper bounds (lubs) of all directed subsets but not necessarily a least element.

A function between two cpos is Scott-continuous if it preserves lubs of directed sets.

A pointed cpo (also, domain) is a cpo that has also a least element called the bottom element.

By B^A we mean the space of Scott-continuous functions from A to B.

Negated domains

A negated domain is an object of the form R^A , where A is a cpo and R is some chosen domain (= pointed cpo) of "responses". The domain $R \cong R^1$ is the meaning of the proposition \perp (false). The denotation of a λ -term is an object of a domain R^A mapping
elements of A (continuations) to elements of R elements of A (continuations) to elements of R (responses/answers).

Remark

In order to guarantee for negated domains parametrised by R to have a least-fixed-point operator, one should assume that R has a least element.

Continuation semantics in the setting of negated domains

Due to isomorphism $(R^B)^{R^A} \cong R^{R^A \times B}$, the cpo of continuations for the exponential $({R}^{B})^{R^{A}}$ is ${R}^{A}\times{B},$ which means that a continuation for a function f from R^A to R^B is a pair $\langle d, k \rangle$, where $d \in R^A$ is an argument for f and $k \in R$ is a continuation for $f(d)$ $d \in R^A$ is an argument for f and $k \in B$ is a continuation for $f(d)$. Negation is defined as $\neg R^A := R^A \Rightarrow R^1.$ We have $\neg R^A \cong R^{R^A \times 1} \cong R^{R^A}.$ There is a canonical map from R^{R^A} to R^A which provides an interpretation of the classical law $\neg \neg P \Rightarrow P$ (reductio ad absurdum). This interpretation can be assigned as meaning to the control operator C of λC -calculus (Felleisen 1986; Griffin 1990).

Interpretation of $\lambda\mu$ -calculus lexical constructs

- Naming α M is interpreted as application of the meaning of M (that is an element of a domain R^A) to the continuation bound to α (that is an element of a cpo A) thus resulting in an element of R.
- \bullet μ -abstraction $\mu\alpha$.M is interpreted as functional abstraction over the continuation variable α at the level of continuation semantics.

[Basics of a denotational semantics](#page-2-0) [Example model for the](#page-8-0) $\lambda \mu$ -calculus **[Semantics of normalisation](#page-13-0)**

Long β η-normal form

The set of λ -terms in long $\beta\eta$ -normal form is inductively defined by

$$
(xM_1 \ldots M_n): \sigma \qquad \lambda x.M
$$

where σ is a base type.

The idea of our method is to compute the long β η-n.f. by evaluating a $\lambda \mu$ -term in an appropriate continuation model.

Sets equipped with partial equivalence relations

A per-set A is a pair $A = (|A|, \sim_A)$, where |A| is a set and \sim_A is a partial equivalence relation (per), that is a symmetric and transitive relation, on |A|.

A per-function between per-sets $A = (|A|, \sim_A)$ and $B = (|B|, \sim_B)$ is a function $f: |A| \rightarrow |B|$ such that $a \sim_A a'$ implies $f(a) \sim_B f(a')$, for all $a, a' \in |A|$.

Obtaining the semantics of normalisation

- **1** Consider a simple denotational semantics for $\lambda \mu$ -calculus with a given signature (base types and constants) and a fixed response object R.
- 2 Annotate interpretations of contexts and terms by sequences of object/control variables.
- Relate interpretations of β η-convertible terms by a per.
- ⁴ Construct an annotated canonical model (and hence find the canonical interpretation of the $\lambda\mu$ -calculus in that model).
- **6** Consider two naturally isomorphic interpretations: the presheaf interpretation of the canonical model by the Yoneda embedding, and the interpretation freely extending the interpretation of objects of the canonical model by the Yoneda embedding.
- ⁶ The normalisation function can then be obtained by "dipping" the free presheaf interpretation of a $\lambda\mu$ -term into the natural isomorphism above.

Soundness and completeness of the normalisation function

Theorem (Completeness, NF1)

There is a function fn from abstract normal forms to terms such that, for a well-typed $\lambda \mu$ -judgement $\Gamma \vdash M : C \mid \Delta$,

$$
\Gamma \vdash \mathrm{fn}(\mathrm{nf}([\![\Gamma \vdash M : C \mid \Delta]\!]^0)) = M : C \mid \Delta
$$

is a valid equation of the $\lambda\mu$ -calculus.

Theorem (Soundness, NF2)

For a valid equation $\Gamma \vdash M = N : C \perp \Delta$ of the $\lambda \mu$ -calculus, it holds that

 $\operatorname{nf}(\llbracket \Gamma \vdash M : C \mid \Delta \rrbracket^0) \equiv \operatorname{nf}(\llbracket \Gamma \vdash N : C \mid \Delta \rrbracket^0).$

[CPS translation](#page-18-0)

Inductive rules for the call-by-name continuation passing style translation

$$
\frac{x}{C^A} = \lambda k^{K_A}.xk \text{ where } x : A
$$
\n
$$
\frac{c^A}{MN} = \lambda k^{K_B}.xk
$$
\n
$$
\frac{MN}{MN} = \lambda k^{K_B}.M\langle N, k \rangle \text{ where } M : B^A, N : A
$$
\n
$$
\frac{\lambda x^A.M}{[\alpha]M} = \lambda k^{K_\perp}.M\alpha \text{ where } M : A
$$
\n
$$
\frac{\mu \alpha^A.M}{[\alpha]M} = \lambda \alpha^{K_A}.M \text{ where } M : \perp
$$