Formal Proofs in Coq: Kantorovitch's Theorem

Ioana Pașca

University of Nice - Sophia Antipolis INRIA Sophia Antipolis PhD thesis advisor: Yves BERTOT

July 9, 2008

loana Pașca

Formal proofs in Coq

1 / 26

Proof Assistants

Coq

Formalizing mathematics

Proof Assistants

Coq

Verifying numerical algorithms

Formalizing mathematics

3

Proof assistant

- proof checker + proof-development system
- but, not a theorem prover

Motivation:

• increase reliability of mathematical proofs

Based on:

- a logic (classical/intuitionistic; first order/higher order ...) and
- set theory or
- type theory

Example:

- based on set theory (Tarski Grothendieck): Mizar
- based on type theory: HOL, Isabelle, Coq, ACL2, PVS, Agda, Lego, Nurpl, Minlog etc.

loana Pașca

(日) (周) (日) (日) (日)

Why type theory?

a powerful formal system that captures

- computation (via the inclusion of functional programs written in typed λ -calculus),
- *proof* (via the "formulas as types embedding", where types are viewed as propositions and terms as proofs)

Decidability of type checking = core of the type-theoretic theorem proving

In situation
$$\Gamma$$
 we have A.
Proof. p.
 $\Gamma \vdash_{\mathcal{T}} p : A$
 $\Box \vdash_{\mathcal{T}} p : A$

Proof Assistants

Proof Assistants	Coq	Verifying numerical algorithms	Formalizing mathema
		Applications	

in mathematics

- complicated or complex problems:
 - four color theorem (G. Gonthier)
 - Kepler conjecture and T. Hales proof (Flyspeck project)
- in computer science
 - software and hardware verification

イロト 不得 とくき とくき とうき

f Assistants

Coq

- Calculus of Inductive Constructions
 - dependent types
 - inductive types
- Intuitionistic, Higher-order Logic
- Presence of Proof Objects: the script generates and stores a term that is isomorphic to a proof that can be checked on independent/simple proof checker. ⇒ high reliability.
- Poincaré Principle There is a distinction between computations and proofs; computations do not require a proof. (E.g. 1+0 = 1 does not require a proof.)
- structurally well-founded recursion \Longrightarrow termination

イロン 不聞と 不良と 不良とう 見

Proof Assistants	Coq	Verifying numerical algorithms
------------------	-----	--------------------------------

Limits of Coq?

Marelle Team, INRIA, April 2008:

- = limitis of pure functional programming: no computational effects (side effects, interactive input/output, exceptions,..);
- proof checker and not prover (2 researchers);
- syntactic restrictions: difficult to have different views/representations of one object;
- constructive logic ;
- structural recursion, guardedeness...;
- higher-order unification;
- deciding guardedness;
- need for a better organised documentation.

What is the one best thing about Coq?

Marelle Team, INRIA, April 2008:

- dependent types;
- type theory ⇒ formal rigour;
- implicit arguments, type inference;
- extraction;
- replication of proofs;
- simple, uniform notation.

Successfull applications of Coq (http://coq.inria.fr/)

Mathematics

- Geometry,
- Set Theory,
- Algebra,
- Number theory,
- Category Theory,
- Domain theory,
- Real analysis and Topology,
- Probabilities.

-

Successfull applications of Coq (http://coq.inria.fr/)

Computer Science

- Mathematics
 - Geometry,
 - Set Theory,
 - Algebra,
 - Number theory,
 - Category Theory,
 - Domain theory,
 - Real analysis and Topology,
 - Probabilities.

- Infinite Structures,
- Pr. Lang.: Data Types and Data Structures;
- Pr. Lang.: Semantics and Compilation;
- Formal Languages Theory and Automata;
- Decision Procedures and Certified Algorithms;
- Concurrent Systems and Protocols;
- Operating Systems;
- Biology and Bio-CS, 🕞

Example -> demo

give the definitions of the objects one wants to model

```
Inductive nat : Type :=
  1 0 : nat
  | S : nat \rightarrow nat.
Fixpoint plus (n m:nat) {struct n} : nat :=
  match n with
  | 0 \Rightarrow m
  | S p \Rightarrow S (p + m)
  end
where "n + m" := (plus n m) : nat_scope.
prove properties of these objects
Lemma plus_n_Sm : \forall n m:nat, S (n + m) = n + S m.
Proof.
 intros n m.
 induction n;
   [simpl; trivial]
   simpl; rewrite IHn; trivial].
Oed.
                                           イロト 不得下 イヨト イヨト ヨー シック
```

loana Pașca

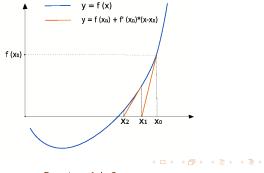
Proof Assistants	Coq	Verifying numerical algorithms	Formalizing mathematics
		Context	

- using proof assistants to verify numerical algorithms
- formalization of mathematics in Coq (multivariate analysis)

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Newton's method

- find the root of a function f
- definition: $x_{n+1} = x_n \frac{f(x_n)}{f'(x_n)}$
- Kantorovitch's theorem gives sufficient conditions for the convergence of Newton's method to the root of the function f
- it holds in the general case of a system of *p* equations with *p* variables



loana Pașca

Formal proofs in Coq

13 / 26

Coq

Proof Assistants

Coq

Verifying numerical algorithms

Formalizing mathematics

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Kantorovitch's theorem in the real case

Given the equation
$$f(x) = 0$$
, with $f :]a, b[\rightarrow \mathbb{R} , a, b \in \mathbb{R}$
 $f(x) \in C^{(1)}(]a, b[)$ and
 $x^{(0)} \in]a, b[$ so that $\overline{U_{\varepsilon}}(x^{(0)}) = \{|x - x^{(0)}| \le \varepsilon\} \subset]a, b[$.
If:

1.
$$f'(x^{(0)}) \neq 0$$
 and $|\frac{1}{f'(x^{(0)})}| \leq A_0;$
2. $|\frac{f(x^{(0)})}{f'(x^{(0)})}| \leq B_0 \leq \frac{\varepsilon}{2};$
3. $\forall x, y \in [a, b], |f'(x) - f'(y)| \leq C|x - y|$
4. $2A_0B_0C \leq 1.$

Then, Newton's method: $x^{(n+1)} = x^{(n)} - \frac{f(x^{(n)})}{f'(x^{(n)})}$ converges and $x^* = \lim_{n \to \infty} x^{(n)}$ is the unique solution of the initial equation in the domain $\{|x^* - x^{(0)}| \le 2B_0\}$.

loana Pașca

Formal proofs in Coq

15 / 26

The problem with real numbers

- the real numbers are not representable on a computer
 - infinite set \rightarrow finite set
 - several models: float, double, arbitrary precision, apriximations using interval arithmetic etc.
- the floating point numbers are not suitable for proofs
 - they do not respect classic properties : associativity of the addition etc.
 - presence of concepts like underflow, overflow etc.

Proof Assistants	Coq	Verifying nu

Possible solution

- do proofs on "classic" reals
- implement the algorithms on "machine" reals
- link the 2 representations in order to verify the algorithms

(日) (周) (日) (日) (日)

Proof Assistants

The proofs

- in Coq, the standard library Reals
- axiomatic definition, i.e. impose the expected mathematical proprieties: (x + y) + z = x + (y + z) etc.

```
Variable a b A0 B0 C X0: R.
Variable f: R \rightarrow R.
Hypothesis Hder_f: \forall x, a < x < b \rightarrow derivable_pt f x.
. . .
(*code the hypotheses of the theorem*)
. . .
Fixpoint Xn (f: R \rightarrow R) (f': R \rightarrow R) (X0: R) (n: nat):R:=
 match n with
 |0 \Rightarrow X0
  |S n \Rightarrow Xn n - f(Xn n) / f'(Xn n)
 end.
. . .
Theorem Kanto exist:
\exists xs: R, conv Xn xs \land f xs = 0.
                                                イロト (得) (手) (手) ( 手) ののの
```

The algorithms

use a model for "machine" reals

• e.g. reals with arbitrary precision can be modeled with infinite streams of digits

 $0, d_1 d_2 d_3 \dots$

• encode Newton's method on this type of reals

```
Fixpoint mXn (g: mR \rightarrow mR) (g':mR \rightarrow mR) (mX0: mR) (n: nat):mR:=
match n with
|0 \Rightarrow mX0
|S n \Rightarrow mXn n - g(mXn n) / g'(mXn n)
end.
```

loana Pașca

イロト 不得 トイヨト イヨト ヨー うらつ

The link

 say that a "machine" real x represents a certain "classical" real r

represents x r

do reasoning steps like

represents $x_1 r_1 \wedge represents x_2 r_2 \rightarrow represents (x_1 \oplus x_2) (r_1 + r_2)$

• ... in order to prove: $\forall f : R \rightarrow R, g : mR \rightarrow mR$

represents x0 r0 \land ($\forall x r$, represents x r \rightarrow represents g(x) f(r))

 $\Rightarrow \forall n, represents (mXn g g' x 0 n) (Xn f f' r 0 n)$

• and the root of g represents the root of f

loana Pașca

イロト 不得 トイヨト イヨト ヨー うらつ

Coq

Proof Assistants

Coq

Verifying numerical algorithms

Formalizing mathematics

loana Pașca

Formal proofs in Coq

ا £ الم الم الح £ 23 / 26

イロト イポト イヨト イヨト

Kantorovitch's theorem

Let f(x) = 0 be a system with p equations and p variables, with $f(x) \in C^{(2)}(\omega)$ and $\overline{U_{\varepsilon}}(x^{(0)}) = \{ \|x - x^{(0)}\| \le \varepsilon \} \subset \omega$. If:

• the Jacobian matrix $W(x) = \left[\frac{\partial f_i}{\partial x_j}\right]$ for $x = x^{(0)}$ has an inverse $\Gamma_0 = W^{-1}$ with $\|\Gamma_0\| \le A_0$;

•
$$\|\Gamma_0 f(x^{(0)})\| \leq B_0 \leq \frac{\varepsilon}{2};$$

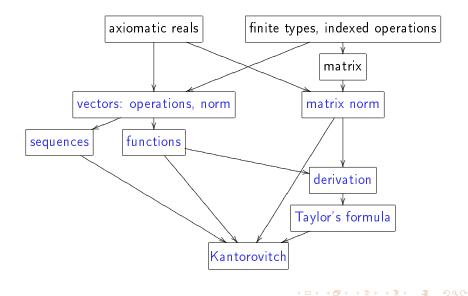
- $\sum_{k=1}^{p} \left| \frac{\partial^2 f_i(x)}{\partial x_j \partial x_k} \right| \le C$ for i, j = 1, 2, ..., p and $x \in \overline{U_{\varepsilon}}(x^{(0)});$
- $2pA_0B_0C \leq 1$.

Then, Newton's process: $x^{(n+1)} = x^{(n)} - W^{-1}(x^{(n)})f(x^{(n)})$ converges and $x^* = \lim_{n \to \infty} x^{(n)}$ is the unique solution of the initial system in the domain $||x - x^{(0)}|| \le 2B_0$.

loana Pașca

イロト 不得 トイヨト イヨト ヨー うらつ

Organization of the multidimensional proof



Interesting references

for an introduction to proof assistants

 H. Barendregt and H. Geuvers, Proof Assistants using Dependent Type Systems at http://www.cs.ru.nl/ herman/PUBS/HBKassistants.ps.gz

for details on the Coq proof system

- http://coq inria fr/
- Y. Bertot, P. Casteran, Coq'Art: the Calculus of Inductive Constructions

for details on formalization of numerical analysis in Coq

 M. Mayero, Using Theorem Proving for Numerical Analysis, at ftp://ftp.inria.fr/INRIA/LogiCal/Micaela.Mayero/papers/odyssee.ps.gz

for a description of the exact arithmetic library based on co-inductive streams

 N. Julien, Certified exact real arithmetic using co-induction in arbitrary integer base at http://hal.inria.fr/inria-00202744

loana Pașca

Formal proofs in Coq

26 / 26