Formal verification for numerical methods

Ioana Paşca

PhD thesis at INRIA Sophia Antipolis, Marelle Team Advisor: Yves Bertot

・ロト・(中下・(中下・(日下・)))

Robots

Robots

• efficiency

Robots

- efficiency
- safety

Inside the robot

lots of wires

Inside the robot

lots of wires

code

- computations
- numerical methods

00221	Public Function GetChecksum(ByVal sentence As String) As String
00222	Dim Character As Char
00223	Dim Checksum As Integer
00224	For Each Character In sentence
00225	Celect Case Character
00226	Case "\$"c
00227	' Ignore the dollar sign
00228	Case "*"c
00229	' Stop processing before the asterisk
00230	Exit For
00231	Case Else
00232	' Is this the first value for the checksum?
00233	/If Checksum = 0 Then
00234	'Yes. Set the checksum to the value
00235	Checksum = Convert.ToByte(Character)
00236	Else
00237	Checksum = Checksum Xor Convert.ToByte(Character)
00238	End If
00239	End Select
00240	Next
00241	Return Checksum.ToString("X2")
00242	Send Function

Ensure correctness of the code

tests

・ロト・日本・日本・日本・日本

Ensure correctness of the code

tests

proofs

- proof assistants
- formal verification

Proof assistants

- define data
- define functions
- prove properties
- trust proofs

Proof assistants

COQ and SSREFLECT

File Edit Navigation Try Tactics Templates Queries Display Compile Windows Help 🔲 🗶 💺 🏚 🕺 🚠 👱 😫 1 subgoal Minterval R.v cint : closedInt (x \in cint) <-> (Rie (low cint) x /\ Rie x (up cint)) x : R move=> cint x; rewrite in intb; split => H. y : R by move/andP :H => [H1 H2]; move/RleP: H1 => H1 Hx : low cint $\leq x \leq up$ cint by apply/andP; split; apply/RleP; elim H. Hy : low cint <= v <= up cint Oed. Hxy: x < yz : R Lemma in intP: forall (cint: closedInt) x. Hz : z \in open pred x y reflect (Rle (low cint) x / Rle x (up cint)) (x \in cin (1/1)Proof z \in cint move=> ci x. apply: (iffP idP); rewrite in intb. by move/andP => [H1 H2]; move/RleP: H1 => H1; n by move=> H; apply/andP; split; apply/RleP; elim H Oed. Lemma cint_axiom: forall (cint: closedInt) a0 b0, a0 \in cint -> b0 \in ci a0 < b0 -> {subset (open pred a0 b0) <= cint}. Proof. move=> cint x y Hx Hy Hxy z Hz. rewrite ->in int in Hx: rewrite ->in int in Hy. rewrite in int. rewrite -topredE /= /open pred in Hz. move/andP: Hz => [Hz1 Hz2]: move/RltP: Hz1 => H elim Hx => Hx1 Hx2; elim Hy => Hy1 Hy2. by split; left; [apply Rie It trans with x] apply Rit le Oed. Lemma cint to int: closedInt -> interval. move=> cint: apply (Interval (@cint axiom cint)). Line: 142 Char: 56 Cogide starte Ready in IntervalProp proving cint axiom

- define data
- define functions
- prove properties
- trust proofs

Example tasks and methods

compute a valid position for the robot by solving a system of equations

- use Newton's method and its properties
- use interval analysis based methods

Newton's method

Definition:

•
$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Properties:

- convergence to the root of function *f*
- speed of convergence
- local unicity of the root
- local stability

< ロ > < 同 > < 回 > < 回 >

Kantorovitch's theorem in one dimension

Consider an equation f(x) = 0, where $f :]a, b[\to \mathbb{R}, a, b \in \mathbb{R}, f \in C^{(1)}(]a, b[)$. Let $x_0 \in]a, b[$ such that $\overline{U_{\varepsilon}}(x_0) = \{x : |x - x_0| \le \varepsilon\} \subset]a, b[$. If:

1.
$$f'(x_0) \neq 0$$
 and $\left|\frac{1}{f'(x_0)}\right| \leq A_0;$
2. $\left|\frac{f(x_0)}{f'(x_0)}\right| \leq B_0 \leq \frac{\varepsilon}{2};$

3.
$$\forall x, y \in]a, b[, |f'(x) - f'(y)| \le C|x - y|$$

4. $\mu_0 = 2A_0B_0C \le 1$.

then, the Newton process $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$, n = 0, 1, 2, ... converges and $\lim_{n \to \infty} x_n = x^*$ is a solution of the initial equation, so that $|x^* - x_0| \le 2B_0 \le \varepsilon$.

 for every element of the Newton's sequence show that hypotheses 1 - 4 are verified, with different constants;

 infer that Newton's sequence is a Cauchy sequence and, by the completeness of ℝ, a convergent sequence;

• prove that the limit of the sequence is a root of the given function.

Working with real numbers

use the COQ standard library on real numbers

- axiomatic definition: archimedean, total order field, satisfying the least upper bound principle
- classical real analysis
- proofs close to "pen and paper" mathematics

other approaches

- constructive definition
- intuitionistic logic
- non-standard analysis

Formal proof in one dimension

Some CoQ code:

Theorem kanto_exist: $\exists xs:R, Un_cv Xn xs \land c_disc X0 (2*B0) xs \land f xs = 0.$

◆□▶ ◆□▶ ◆目▶ ◆目▶ →目 → ⊙へ⊙

Let f(x) = 0 be a system with p equations and p variables, with $f \in C^{(2)}(\omega)$ and $\overline{U_{\varepsilon}}(x_0) = \{ \|x - x_0\| \le \varepsilon \} \subset \omega.$ If:

1. the Jacobian matrix $W(x) = \begin{bmatrix} \frac{\partial f_i}{\partial x_j} \end{bmatrix}$ for $x = x_0$ has an inverse $\Gamma_0 = W^{-1}$ with $\|\Gamma_0\| \le A_0$;

$$2. \|\Gamma_0 f(x_0)\| \leq B_0 \leq \frac{\varepsilon}{2};$$

3.
$$\sum_{k=1}^{p} \frac{|\frac{\partial^2 f_i(x)}{\partial x_j \partial x_k}| \le C \text{ for } i, j = 1, 2, ..., p \text{ and} \\ x \in \overline{U_{\varepsilon}}(x_0);$$

4.
$$2pA_0B_0C \le 1$$
.

n

Then, Newton's process: $x_{n+1} = x_n - W^{-1}(x_n)f(x_n)$ converges to $x^* = \lim_{n \to \infty} x_n$.

イロト イポト イヨト イヨト

Let f(x) = 0 be a system with p equations and p variables, with $f \in C^{(2)}(\omega)$ and $\overline{U_{\varepsilon}}(x_0) = \{ \|x - x_0\| \le \varepsilon \} \subset \omega.$ If:

1. the Jacobian matrix $W(x) = \left[\frac{\partial f_i}{\partial x_i}\right]$ for

 $x = x_0$ has an inverse $\Gamma_0 = W^{-1}$ with $\|\Gamma_0\| \le A_0$;

$$2. \|\Gamma_0 f(x_0)\| \leq B_0 \leq \frac{\varepsilon}{2};$$

3.
$$\sum_{k=1}^{p} \left| \frac{\partial^2 f_i(x)}{\partial x_j \partial x_k} \right| \le C \text{ for } i, j = 1, 2, ..., p \text{ and}$$
$$x \in \overline{U_{\varepsilon}}(x_0);$$

4. $2pA_0B_0C \le 1$.

Then, Newton's process: $x_{n+1} = x_n - W^{-1}(x_n)f(x_n)$ converges to $x^* = \lim_{n \to \infty} x_n$.

(日)

Let f(x) = 0 be a system with p equations and p variables, with $f \in C^{(2)}(\omega)$ and $\overline{U_{\varepsilon}}(x_0) = \{ \|x - x_0\| \le \varepsilon \} \subset \omega.$ If:

1. the Jacobian matrix $W(x) = \begin{bmatrix} \frac{\partial f_i}{\partial x_j} \end{bmatrix}$ for $x = x_0$ has an inverse $\Gamma_0 = W^{-1}$ with $\|\Gamma_0\| \le A_0$;

$$2. \|\Gamma_0 f(x_0)\| \leq B_0 \leq \frac{\varepsilon}{2};$$

3.
$$\sum_{k=1}^{p} \left| \frac{\partial^2 f_i(x)}{\partial x_j \partial x_k} \right| \le C \text{ for } i, j = 1, 2, ..., p \text{ and}$$
$$x \in \overline{U_{\varepsilon}}(x_0);$$

4. $2pA_0B_0C \leq 1$.

Then, Newton's process: $x_{n+1} = x_n - W^{-1}(x_n)f(x_n)$ converges to $x^* = \lim_{n \to \infty} x_n$.

- real vectors
- real matrices
- sequences of vectors
- functions of several variables
- partial derivatives

イロト 不得 トイヨト イヨト 二日

Let f(x) = 0 be a system with p equations and p variables, with $f \in C^{(2)}(\omega)$ and $\overline{U_{\varepsilon}}(x_0) = \{ \|x - x_0\| \le \varepsilon \} \subset \omega.$ If:

1. the Jacobian matrix $W(x) = \begin{bmatrix} \frac{\partial f_i}{\partial x_i} \end{bmatrix}$ for $x = x_0$ has an inverse $\Gamma_0 = W^{-1}$ with $\|\Gamma_0\| \le A_0$;

$$2. \|\Gamma_0 f(x_0)\| \leq B_0 \leq \frac{\varepsilon}{2};$$

3.
$$\sum_{k=1}^{p} \left| \frac{\partial^2 f_i(x)}{\partial x_j \partial x_k} \right| \le C \text{ for } i, j = 1, 2, ..., p \text{ and}$$
$$x \in \overline{U_{\varepsilon}}(x_0);$$

4. $2pA_0B_0C \le 1$.

Then, Newton's process: $x_{n+1} = x_n - W^{-1}(x_n)f(x_n)$ converges to $x^* = \lim_{n \to \infty} x_n$.

- real vectors
- real matrices
- sequences of vectors
- functions of several variables
- partial derivatives

イロト 不得 トイヨト イヨト 二日

Setting up the formalization

We need to talk about

- real numbers
- matrices

We use

- Coq standard library Reals
- SSREFLECT library matrix

Mix SSREFLECT and standard COQ !

Mix SSREFLECT and COQ

IN SSREFLECT

- hierarchy of algebraic structures
- abstract matrices, but operations when elements are from a ring

イロト 不得 トイヨト イヨト

16/47

in COQ's Reals library

- real numbers defined by axioms
- ring structure

Dealing with real matrices

- use existing results for SSREFLECT library
- define new concepts: e.g. the norm of a real matrix, matrix sequences and series
- prove properties

$$\|A\| < 1 \Rightarrow \exists S, \sum_{n=1}^{\infty} A^n = S$$

$$\|A\| < 1 \Rightarrow \det(I_p - A) \neq 0$$

instantiate to a given norm: e.g. the maximum norm

Definition norm_m (A: 'M_(m, n)): R :=
 \big[Rmax/R0]_i \sum_j (Rabs (A i j)).

イロト 不得 トイヨト イヨト 二日

Formal proof in several dimensions

Some Cog code:

Theorem kantoroRp_exist: ∃ xs: vec R p, conv Xn xs ∧ norm (dif_v xs X0) ≤ 2*b0 ∧ f xs = vect0.

▲□▶▲□▶▲≣▶▲≣▶ ▲□ ● ● ●

What about computations?

What about computations?

 in CoQ axiomatic real numbers are appropriate for proofs, but not for computations

use libraries for exact real arithmetic

- compute a real number in [-1, 1] with arbitrary precision
- real numbers represented as streams of signed digits in base β e.g. $\frac{1}{3} = 0.333 \dots = [\![3::3::3\dots]\!]_{10} = [\![4::-7::4::-7\dots]\!]_{10}$ $[\![s]\!]_{\beta} = [\![d_1::d_2::d_3:\dots]\!]_{\beta} = \sum_{i=1}^{\infty} \frac{d_i}{\beta^i}; \ -\beta < d_i < \beta$
- notice $\llbracket d_1 : : \overline{s} \rrbracket_{\beta} = \frac{d_1 + \llbracket \overline{s} \rrbracket_{\beta}}{\beta}$

- compute a real number in [-1, 1] with arbitrary precision
- real numbers represented as streams of signed digits in base β e.g. $\frac{1}{3} = 0.333 \dots = [\![3::3::3\dots]\!]_{10} = [\![4::-7::4::-7\dots]\!]_{10}$ $[\![s]\!]_{\beta} = [\![d_1::d_2::d_3:\dots]\!]_{\beta} = \sum_{i=1}^{\infty} \frac{d_i}{\beta^i}; \ -\beta < d_i < \beta$
- notice $\llbracket d_1 : : \overline{s} \rrbracket_{\beta} = \frac{d_1 + \llbracket \overline{s} \rrbracket_{\beta}}{\beta}$
- redundant representation \rightarrow useful for designing algorithms e.g. $[\![0::3::\ldots]\!]_{10} + [\![0::6::\ldots]\!]_{10} = ?$ $[\![0::3::3:\ldots]\!]_{10} + [\![0::6::5:\ldots]\!]_{10} = [\![1::-1::\ldots]\!]_{10}$ $[\![0::3::3:\ldots]\!]_{10} + [\![0::6::7:\ldots]\!]_{10} = [\![1::0::\ldots]\!]_{10}$

 $\llbracket \boldsymbol{s} \rrbracket_{\beta} = \llbracket \boldsymbol{d}_1 :: \boldsymbol{d}_2 :: \boldsymbol{d}_3 :: \ldots \rrbracket_{\beta} = \llbracket \boldsymbol{d}_1 :: \overline{\boldsymbol{s}} \rrbracket_{\beta}; \ -\beta < \boldsymbol{d}_i < \beta$

in CoQ: co-inductive definitions and co-recursive functions

```
Colnductive Stream (A: Type): Type:=

| Cons: A \rightarrow Stream A \rightarrow Stream A.

Notation "x :: s" := Cons x s.

CoFixpoint Sopp (s: Stream digit): Stream digit:=

match s with | d<sub>1</sub> :: \overline{s} \Rightarrow (-d_1) :: Sopp \overline{s} end.
```

$$\llbracket d_1 :: \overline{s} \rrbracket_{\beta} = \frac{d_1 + \llbracket \overline{s} \rrbracket_{\beta}}{\beta}$$

link the exact reals with axiomatic reals

```
Variable \beta : \mathbb{N}.

Colnductive represents: Stream digit \rightarrow \mathbb{R} \rightarrow \text{Prop}:=

| rep: \forall s r k, -\beta < k < \beta \rightarrow -1 \le r \le 1 \rightarrow

represents s r \rightarrow represents (k::s) \frac{k+r}{\beta}.

Notation " s \simeq r " := represents s r.
```

certify implementations via this relation

Theorem Sopp_correct: \forall s r, s \simeq r \rightarrow (Sopp s) \simeq (-r).

29 / 47

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト … ヨ

Implementation of Newton's method $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$

 we can express properties on elements of Newton's sequence

Implementation of Newton's method $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$

- we can express properties on elements of Newton's sequence
- but, we cannot reason about the root of the function
- we want to compute the root in arbitrary precision

Goal define a co-recursive algorithm to compute the root x^* of the function f

- produce the first digit
- use a guarded co-recursive call

Goal define a co-recursive algorithm to compute the root x^* of the function f

- produce the first digit
- use a guarded co-recursive call

Idea

- start with f and x₀
- speed of convergence \Rightarrow *n* s.t. $x_n = \frac{d_1 + \overline{x_n}}{\beta} \Rightarrow x^* = \frac{d_1 + \overline{x^*}}{\beta}$

Goal define a co-recursive algorithm to compute the root x^* of the function f

- produce the first digit
- use a guarded co-recursive call

Idea

- start with f and x₀
- speed of convergence \Rightarrow *n* s.t. $x_n = \frac{d_1 + \overline{x_n}}{\beta} \Rightarrow x^* = \frac{d_1 + \overline{x^*}}{\beta}$

•
$$f(x^*) = 0 \Rightarrow f(\frac{d_1 + \overline{x^*}}{\beta}) = 0$$

- define $f_1(x) := f(\frac{d_1+x}{\beta}) \Rightarrow f_1(\overline{x^*}) = 0$
- repeat process to get the first digit of x^{*}; start with f₁ and x_n

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ ・ りゅう

Goal define a co-recursive algorithm to compute the root x^* of the function f

- produce the first digit
- use a guarded co-recursive call

Idea

- start with f and x₀
- speed of convergence \Rightarrow *n* s.t. $x_n = \frac{d_1 + \overline{x_n}}{\beta} \Rightarrow x^* = \frac{d_1 + \overline{x^*}}{\beta}$

•
$$f(x^*) = 0 \Rightarrow f(\frac{d_1 + \overline{x^*}}{\beta}) = 0$$

- define $f_1(x) := f(\frac{d_1+x}{\beta}) \Rightarrow f_1(\overline{x^*}) = 0$
- repeat process to get the first digit of x^{*}; start with f₁ and x_n

•
$$g = \frac{f}{f'} \Rightarrow g_1(x) := \frac{f_1(x)}{f'_1(x)} = \frac{f(\frac{d_1+x}{\beta})}{\frac{1}{\beta}f'(\frac{d_1+x}{\beta})} = \beta \times g(\frac{d_1+x}{\beta})$$

32 / 47

イロト (過) (ヨ) (ヨ) (ヨ) (コ)

Idea

- to produce a first digit of x^* determine $x_n = \frac{d_1 + \overline{x_n}}{\beta}$ s.t. $x^* = \frac{d_1 + \overline{x^*}}{\beta}$
- do a co-recursive call with function $g_1(x) = \beta \times g(\frac{d_1+x}{\beta})$ and $\overline{x_n}$

Algorithm

```
CoFixpoint exact_newton g s<sub>0</sub> n:=

match (make_digit (Sxn g s<sub>0</sub> n)) with

|d_1::\overline{s_n} \Rightarrow d_1:: exact_newton (fun s \Rightarrow (\beta \odot g(d_1::s))) \overline{s_n} n

end.
```

Idea

- to produce a first digit of x^* determine $x_n = \frac{d_1 + \overline{x_n}}{\beta}$ s.t. $x^* = \frac{d_1 + \overline{x^*}}{\beta}$
- do a co-recursive call with function $g_1(x) = \beta \times g(\frac{d_1+x}{\beta})$ and $\overline{x_n}$

Algorithm

```
\begin{array}{l} \textbf{CoFixpoint exact_newton g } s_0 \text{ n}:=\\ \textbf{match (make_digit (Sxn g s_0 n)) with}\\ |d_1::\overline{s_n} \Rightarrow d_1::\texttt{exact_newton } (\textit{fun } s \Rightarrow (\beta \odot g(d_1::s))) \ \overline{s_n} \text{ n}\\ \textbf{end.} \end{array}
```

```
Theorem exact_newton_correct: (* ... *)
(exact_newton g s<sub>0</sub> n) \simeq x^*.
```

• ensure the same hypotheses for $\overline{x_n}$ and g_1 as for x_0 and g

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ ・ りゅう

▲□▶▲□▶▲≣▶▲≣▶ ▲□ ● ● ●

Computation with rounding

- computations on machines are inexact
- modify Newton's method the method to include rounding

$$x_{0} x_{n+1} = x_{n} - \frac{f(x_{n})}{f'(x_{n})}$$
$$t_{0} = x_{0} t_{n+1} = rnd_{n+1} \left(t_{n} - \frac{f(t_{n})}{f'(t_{n})} \right)$$

Certified rounding

prove that $t_n \rightarrow x^*$

use local stability: $\forall x'_0 \in U_{x_0}, x_n(x'_0) \rightarrow x^*$

•
$$x_n(x_0): x_0, x_1, x_2, x_3, \ldots \to x^*$$

- $x_n(x_1)$: $x_1, x_2, x_3 \ldots \rightarrow x^*$
- $x_n(\widetilde{x_1})$: $\widetilde{x_1}, \widetilde{x_2}, \widetilde{x_3} \ldots \rightarrow x^*$
- $X_n(\widetilde{X_2})$: $\widetilde{X_2}, \widetilde{X_3} \ldots \to X^*$
- $x_n(\widetilde{\widetilde{x}_2})$: $\widetilde{\widetilde{x}_2}, \widetilde{\widetilde{x}_3} \dots \to x^*$

• . . .

Certified rounding

prove that $t_n \rightarrow x^*$

use local stability: $\forall x'_0 \in U_{x_0}, x_n(x'_0) \rightarrow x^*$

- $x_n(x_0)$: $x_0, x_1, x_2, x_3, \dots \to X^*$ • $x_n(x_1)$: $x_1, x_2, x_3, \dots \to X^*$ • $x_n(\widetilde{x_1})$: $\widetilde{x_1}, \widetilde{x_2}, \widetilde{x_3} \dots \to X^*$ • $x_n(\widetilde{x_2})$: $\widetilde{x_2}, \widetilde{x_3} \dots \to X^*$ • $x_n(\widetilde{\widetilde{x_2}})$: $\widetilde{\widetilde{x_2}}, \widetilde{\widetilde{x_3}} \dots \to X^*$ • $x_n(\widetilde{\widetilde{x_2}})$: $\widetilde{\widetilde{x_2}}, \widetilde{\widetilde{x_3}} \dots \to X^*$ • $\widetilde{\widetilde{x_2}} = t_2$
- ...

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Newton with rounding

Let $f :]a, b[\to \mathbb{R} \text{ and } x_0 \text{ satisfying the conditions in Kantorovitch's theorem and let$ *rnd* $: <math>\mathbb{N} \times \mathbb{R} \to \mathbb{R}$. If

- 1. $\forall n \forall x, x \in]a, b[\Rightarrow rnd_n(x) \in]a, b[$
- 2. $\frac{1}{2} \le \mu_0 < 1$
- 3. $[x_0 3B_0, x_0 + 3B_0] \subset]a, b[$
- 4. $\forall n \forall x, |x rnd_n(x)| \leq \frac{1}{3^n} R_0$, where $R_0 = \frac{1 \mu_0^2}{8\mu_0} B_0$

then, for the perturbed Newton's sequence

$$t_0 = x_0$$
 and $t_{n+1} = rnd_{n+1}(t_n - f(t_n)/f'(t_n))$

a. the sequence $\{t_n\}_{n \in \mathbb{N}}$ converges and $\lim_{n \to \infty} t_n = x^*$ where x^* is the root of the function *f* given by Kantorovitch's theorem

b.
$$\forall n, |x^* - t_n| \leq \frac{1}{2^{n-1}}B_0$$

・ロト・日本・ヨト・ヨー シック

Formalization of a numerical method

- 1. formalize the necessary mathematical theories
- 2. prove the theorems
- 3. handle computations
- 4. handle optimizations

Another formal study

Interval arithmetic

• tool used to handle inaccuracies in computations.

$$-\pi * \sqrt{2} \approx -3.14 * 1.41 = -4.4274$$

 $[-3.15, -3.14] \ast [1.41, 1.42] = [-4.473, -4.4274]$

Another formal study

Interval arithmetic

• tool used to handle inaccuracies in computations.

$$-\pi * \sqrt{2} \approx -3.14 * 1.41 = -4.4274$$

 $[-3.15, -3.14] \ast [1.41, 1.42] = [-4.473, -4.4274]$

· solve systems of linear interval equations

$$\begin{cases} [1,2]x_1 + [2,4]x_2 = [-1,1] \\ [2,4]x_1 + [1,2]x_2 = [1,2] \end{cases}$$

41/47

Solving systems of linear interval equations

Two steps:

- 1. checking regularity of the associated interval matrix
- 2. computing bounds of the solution set

イロト イポト イヨト イヨ

Solving systems of linear interval equations

Two steps:

- 1. checking regularity of the associated interval matrix
- 2. computing bounds of the solution set

Regular interval matrices

$$A = \begin{pmatrix} [2,4] & [-1,1] \\ [-1,1] & [2,4] \end{pmatrix}$$

A is regular iff $orall ilde{A} \in A, \det ilde{A}
eq 0$

$$\begin{split} \tilde{A} &= \begin{pmatrix} \tilde{A}_{11} & \tilde{A}_{12} \\ \tilde{A}_{21} & \tilde{A}_{22} \end{pmatrix}, \begin{array}{c} \tilde{A}_{11} \in [2,4], & \tilde{A}_{12} \in [-1,1] \\ \tilde{A}_{21} \in [-1,1], & \tilde{A}_{22} \in [2,4] \\ det \tilde{A} \neq 0 \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへ(?)

Criteria for regularity of interval matrices

Criterion

A is regular if and only if $\forall \tilde{x} \in \mathbb{R}^n, 0 \in A\tilde{x} \Rightarrow \tilde{x} = 0$.

Criterion

A is regular if and only if $\forall \tilde{x} \in \mathbb{R}^n, |A_c \tilde{x}| \leq \Delta_A |\tilde{x}| \Rightarrow \tilde{x} = 0.$

Criterion (using positive definiteness)

If the matrix $(A_c^T A_c - || \Delta_A^T \Delta_A || I)$ is positive definite for some consistent matrix norm $|| \cdot ||$, then A is regular.

Criterion (using the midpoint inverse)

If the following inequality holds $\rho(|I - RA_c| + |R|\Delta_A) < 1$ for an arbitrary matrix R, then A is regular.

Criterion (using eigenvalues)

If the inequality $\lambda_{max}(\Delta_A^T \Delta_A) < \lambda_{min}(A_c^T A_c)$ holds, then A is regular.

Organization of the formal proof

Work for eigenvalues

spectral radius: $\rho(A) = \max\{|\lambda(A)|\}$

Theorem (Perron Frobenius)

If $A \in \mathbb{R}^{n \times n}$ is nonnegative then the spectral radius $\rho(A)$ is an eigenvalue of A, and there is a real, nonnegative vector $x \neq 0$ with $Ax = \rho(A)x$.

Conclusion

Contributions:

- formalization of mathematical concepts
- two formal studies:
 - Newton's method
 - regularity of interval matrices

Perspectives:

- for interval analysis: study computation
- study for floating point numbers