Formally Verified Conditions for Regulatiry of Interval Matrices

Ioana Paşca

INRIA Sophia Antipolis
Calculemus at CICM, 2010

Interval arithmetic

Tool used to handle inaccuracies in computations.

$$
\begin{gathered}
-\pi * \sqrt{2} \approx-3.14 * 1.41=-4.4274 \\
{[-3.15,-3.14] *[1.41,1.42]=[-4.473,-4.4274]}
\end{gathered}
$$

If we know the bounds on the input data we can compute the bounds on the result.

Interval arithmetic, more formally

Definition

interval := closed, bounded, connected, nonempty subset of \mathbb{R}

$$
x:=[\underline{x}, \bar{x}]=\{\tilde{x} \in \mathbb{R} \mid \underline{x} \leq \tilde{x} \leq \bar{x}\}, \quad \text { where } \underline{x}, \bar{x} \in \mathbb{R}, \underline{x} \leq \bar{x}
$$

Notation $\mathbb{R} \mathbb{R}$ - set of intervals
Classification

- thin interval $\underline{x}=\bar{x}$
- thick interval $\underline{x}<\bar{x}$

Interval arithmetic, more formally

Definition

interval := closed, bounded, connected, nonempty subset of \mathbb{R}

$$
x:=[\underline{x}, \bar{x}]=\{\tilde{x} \in \mathbb{R} \mid \underline{x} \leq \tilde{x} \leq \bar{x}\}, \quad \text { where } \underline{x}, \bar{x} \in \mathbb{R}, \underline{x} \leq \bar{x}
$$

Notation $\mathbb{R} \mathbb{R}$ - set of intervals
Classification

- thin interval $\underline{x}=\bar{x}$
- thick interval $\underline{x}<\bar{x}$

Associated real quantities

- midpoint $\quad x_{c}:=\frac{x+\bar{x}}{2}$

$$
x=\left[x_{c}-\Delta_{x}, x_{c}+\Delta_{x}\right]
$$

- radius $\Delta_{x}:=\frac{\bar{x}-\underline{x}}{2}$

Basic interval operations

$$
x+z:=\square\{\tilde{x}+\tilde{z} \mid \tilde{x} \in x, \tilde{z} \in z\}
$$

Basic interval operations

$$
\begin{aligned}
x+z & :=\square\{\tilde{x}+\tilde{z} \mid \tilde{x} \in x, \tilde{z} \in z\}=\{\tilde{x}+\tilde{z} \mid \tilde{x} \in x, \tilde{z} \in z\}= \\
& =[\underline{x}+\underline{z}, \bar{x}+\bar{z}]
\end{aligned}
$$

Basic interval operations

$$
\begin{aligned}
x+z & :=\square\{\tilde{x}+\tilde{z} \mid \tilde{x} \in x, \tilde{z} \in z\}=\{\tilde{x}+\tilde{z} \mid \tilde{x} \in x, \tilde{z} \in z\}= \\
& =[\underline{x}+\underline{z}, \bar{x}+\bar{z}]
\end{aligned}
$$

do the same for opposite and multiplication

Rounded interval arithmetic

Usage

- in theory: $[\underline{x}, \bar{x}]$ with $\underline{x}, \bar{x} \in \mathbb{R}$
- in practice: $[\underline{x}, \bar{x}]$ with $\underline{x}, \bar{x} \in M$, where M is a machine representable subset of \mathbb{R}

Outward rounding

$$
\diamond x:=[\nabla \underline{x}, \Delta \bar{x}]
$$

Rounded interval arithmetic

Usage

- in theory: $[\underline{x}, \bar{x}]$ with $\underline{x}, \bar{x} \in \mathbb{R}$
- in practice: $[\underline{x}, \bar{x}]$ with $\underline{x}, \bar{x} \in M$, where M is a machine representable subset of \mathbb{R}

Outward rounding

$$
\diamond x:=[\nabla \underline{x}, \Delta \bar{x}]
$$

Example

$$
[-3.15,-3.14] *[1.41,1.42]=[-4.473,-4.4274]
$$

M : decimal numbers with 2 digits

$$
[-3.15,-3.14] *^{\diamond}[1.41,1.42]=[-4.48,-4.42]
$$

Issues with rounded arithmetic

Rounded arithmetic

$$
\begin{gathered}
x+\diamond z=\diamond[\underline{x}+\underline{z}, \bar{x}+\bar{z}] \\
\{\tilde{x}+\tilde{z} \mid \tilde{x} \in x, \tilde{z} \in z\} \subseteq x+\diamond z
\end{gathered}
$$

Ideal arithmetic

$$
\{\tilde{x}+\tilde{z} \mid \tilde{x} \in x, \tilde{z} \in z\}=x+z
$$

Interval arithmetic in proof assistants

Nature of interval methods

- interval arithmetic was born to safely deal with errors

Usage

- interval arithmetic appears in critical software
- certified computation

Formalizations

- Coq, PVS, Isabelle
- focus on computation efficiency and automation of techniques

Computation driven formalizations

- basic operations
- elementary functions
- techniques to increase accuracy
- rounded interval arithmetic
- automated procedures to compute and prove bounds for expressions
- computations by external tools

Formalizing more "theoretical" results

- solving systems of linear equations with interval coefficients

Exercise

Consider the following system:

$$
\left\{\begin{array}{l}
{[1,2] x_{1}+[2,4] x_{2}=[-1,1]} \\
{[2,4] x_{1}+[1,2] x_{2}=[1,2]}
\end{array}\right.
$$

Find a box that contains all pairs $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ that satisfy the equations for some choice of coefficients in their respective intervals.

- correctness of methods for solving these systems is based on more involved theoretical results
- application: robot movement

Solving systems of linear interval equations

Two steps:
(- checking regularity of the associated interval matrix
(2) computing bounds of the solution set
exact solution

bounds for the solution set

Solving systems of linear interval equations

Two steps:
(1) checking regularity of the associated interval matrix
(2) computing bounds of the solution set
exact solution

bounds for the solution set

Interval matrices

Definition

$$
A=\left[A_{i j}\right]_{m \times n}, A_{i j} \in \mathbb{R} \mathbb{R} \quad A=\left(\begin{array}{cc}
{[1,2]} & {[2,4]} \\
{[2,4]} & {[1,2]}
\end{array}\right)
$$

Example

Characterization

$$
A=\left\{\tilde{A} \in M(\mathbb{R})_{m \times n} \mid \tilde{A}_{i j} \in A_{i j}\right\} \quad\left(\begin{array}{ll}
1 & 3 \\
2 & 2
\end{array}\right) \in A
$$

Associated real matrices

$$
\begin{array}{ll}
A_{c}:=\left[\left(A_{i j}\right)_{c}\right] & A_{c}=\left(\begin{array}{cc}
1.5 & 3 \\
3 & 1.5
\end{array}\right) \\
\Delta_{A}:=\left[\Delta_{A_{i j}}\right] & \Delta_{A}=\left(\begin{array}{cc}
0.5 & 1 \\
1 & 0.5
\end{array}\right)
\end{array}
$$

Operations on interval matrices

Addition

$$
A+B:=\square\{\tilde{A}+\tilde{B} \mid \tilde{A} \in A, \tilde{B} \in B\}
$$

Operations on interval matrices

Addition

$$
\begin{gathered}
A+B:=\square\{\tilde{A}+\tilde{B} \mid \tilde{A} \in A, \tilde{B} \in B\}=\{\tilde{A}+\tilde{B} \mid \tilde{A} \in A, \tilde{B} \in B\} \\
(A+B)_{i j}=A_{i j}+B_{i j}
\end{gathered}
$$

Regularity of interval matrices

An interval matrix A is called regular iff $\forall \tilde{A} \in A$, $\operatorname{det} \tilde{A} \neq 0$
and it is called singular otherwise $(\exists \tilde{A}, \tilde{A} \in A \wedge \operatorname{det} \tilde{A}=0)$.

Systems of linear interval equations

A system of linear interval equations with coefficient matrix $A \in M(\mathbb{R})_{m \times n}$ and right-hand side $b \in \mathbb{R}^{m}$ is defined as the family of linear systems of equations

$$
\tilde{A} \tilde{x}=\tilde{b} \text { with } \tilde{A} \in A, \tilde{b} \in b
$$

The solutions set of such a system is given by:

$$
\Sigma(A, b):=\left\{\tilde{x} \in \mathbb{R}^{n} \mid \exists \tilde{A} \in A, \exists \tilde{b} \in b \text { such that } \tilde{A} \tilde{x}=\tilde{b}\right\}
$$

Proof example

Theorem

$$
\Sigma(A, b)=\left\{\tilde{x} \in \mathbb{R}^{n} \mid A \tilde{x} \cap b \neq \emptyset\right\}
$$

Proof excerpt.

We show: $\left\{\tilde{x} \in \mathbb{R}^{n} \mid A \tilde{x} \cap b \neq \emptyset\right\} \subseteq \Sigma(A, b)$.
Consider \tilde{x} such that $A \tilde{x} \cap b \neq \emptyset$.
Then $A \tilde{x} \cap b$ contains some $\tilde{b} \in \mathbb{R}^{m}$.
Clearly $\tilde{b} \in b$.
Also, $\tilde{b} \in A \tilde{x}$ and by relation (1), $\tilde{b}=\tilde{A} \tilde{x}$ for some $\tilde{A} \in A$.
Therefore $\tilde{x} \in \Sigma(A, b)$.

$$
\begin{equation*}
A \tilde{x}=\{\tilde{A} \tilde{x} \mid \tilde{A} \in A\} \tag{1}
\end{equation*}
$$

Setting up the formalization

We need to talk about

- real numbers
- matrices

We use

- COQ standard library Reals
- SSREFLECT library matrix

Mix SSReflect and standard CoQ!

Mix SSReflect and CoQ

in SSREFLECT

- hierarchy of algebraic structures
- abstract matrices, but operations when elements are from a ring
in Coq's Reals library
- real numbers defined by axioms
- ring structure

Bricks of the formalization

- intervals: definition, operations and properties
- interval matrices: definition, operations and properties
- properties of real matrices
- criteria for regularity of interval matrices

Yet another formalization of intervals

Definition
$x:=[\underline{x}, \bar{x}]=\{\tilde{x} \in \mathbb{R} \mid \underline{x} \leq \tilde{x} \leq \bar{x}\}, \quad$ where $\underline{x}, \bar{x} \in \mathbb{R}, \underline{x} \leq \bar{x}$

Structure IR: Type := ClosedInt
\{ inf: R ; sup: R ; leq_proof: inf \leq_{b} sup \}.

Intervals as sets

- coerce IR to $\mathrm{R} \rightarrow$ bool

Equality of intervals
Lemma eq_intervalP
$\forall x \quad z: I R, x=z \leftrightarrow \inf x=\inf z \wedge \sup x=\sup z$.

Interval properties

$x+z=[\underline{x}+\underline{z}, \bar{x}+\bar{z}]=\{\tilde{x}+\tilde{z} \mid \tilde{x} \in x, \tilde{z} \in z\}$
Addition is

- associative
- commutative $\quad \Rightarrow(\mathbb{R},+)$ is a monoid
- neutral element $[0,0]$

But
$-x+x \neq[0,0]$, if x is thick $\quad \Rightarrow(\mathbb{R},+)$ is NOT a group $\Rightarrow(\mathbb{I} \mathbb{R},+, *)$ is NOT a ring

Interval matrices

- use SSREFLECT library
- define specific operations on interval matrices, as intervals do not have a ring structure

Definition mmul_i (A: 'M[IR]_(m, n)) (x: 'cV[IR]_(n)) :=

$$
\text { \col_i } \backslash \text { big }\left[+_{\mathbb{R}} / 0\right]_{-} \mathrm{j}(\mathrm{~A} \mathrm{i} \mathrm{j}) *_{\mathbb{R}}(\mathrm{x} j) .
$$

$$
(A * x)_{i}=\sum_{j=0}^{n-1} A_{i j} x_{j}
$$

- prove specific properties

$$
A \tilde{x}=\{\tilde{A} \tilde{x} \mid \tilde{A} \in A\}
$$

Results on real matrices

- norm for real matrices
- properties for symmetric and positive definite matrices
- eigenvalues for real matrices
- Rayleigh quotients
- Perron Frobenius theorem

Results on real matrices

- norm for real matrices
- properties for symmetric and positive definite matrices
- eigenvalues for real matrices
- Rayleigh quotients
- Perron Frobenius theorem

The issues

eigenvalues for real matrices:

- roots of the characteristic polynomial
- they can be complex
- Rayleigh quotient: $\frac{x^{\top} A x}{x^{\top} x}, x \neq 0, A$ - symmetric

$$
\forall x \in \mathbb{R}^{n}, x \neq 0, \lambda_{\min }(A) \leq \frac{x^{\top} A x}{x^{T} x} \leq \lambda_{\max }(A)
$$

spectral radius: $\rho(A)=\max \{|\lambda(A)|\}$

Theorem (Perron Frobenius)

If $A \in \mathbb{R}^{n \times n}$ is nonnegative then the spectral radius $\rho(A)$ is an eigenvalue of A, and there is a real, nonnegative vector $x \neq 0$ with $A x=\rho(A) x$.

Formalized criteria of regularity

Criterion

A is regular if and only if $\forall \tilde{x} \in \mathbb{R}^{n}, 0 \in A \tilde{x} \Rightarrow \tilde{x}=0$.
Criterion
A is regular if and only if $\forall \tilde{x} \in \mathbb{R}^{n},\left|A_{c} \tilde{x}\right| \leq \Delta_{A}|\tilde{X}| \Rightarrow \tilde{x}=0$.

Formalized criteria of regularity

Criterion

A is regular if and only if $\forall \tilde{x} \in \mathbb{R}^{n}, 0 \in A \tilde{x} \Rightarrow \tilde{x}=0$.

Criterion

A is regular if and only if $\forall \tilde{x} \in \mathbb{R}^{n},\left|A_{c} \tilde{x}\right| \leq \Delta_{A}|\tilde{x}| \Rightarrow \tilde{x}=0$.
Criterion (using positive definiteness)
If the matrix $\left(A_{c}^{T} A_{c}-\left\|\Delta_{A}^{T} \Delta_{A}\right\| I\right)$ is positive definite for some consistent matrix norm $\|\cdot\|$, then A is regular.

Criterion (using the midpoint inverse)
If the following inequality holds $\rho\left(\left|I-R A_{C}\right|+|R| \Delta_{A}\right)<1$ for an arbitrary matrix R, then A is regular.

Criterion (using eigenvalues)
If the inequality $\lambda_{\max }\left(\Delta_{A}^{T} \Delta_{A}\right)<\lambda_{\min }\left(A_{c}^{T} A_{c}\right)$ holds, then A is regular.

How far from the real world

- adapt results for rounded rounded arithmetic
- treat methods for bounding the solution set
- finish proving the admitted results

leq_proof: inf \leq_{b} sup

Lemma Rle_dec: $\forall r 1$ r2, $\{r 1<=r 2\}+\{\sim r 1<=r 2\}$.
Definition Rleb r1 r2 :=
match (Rle_dec r1 r2) with
|left \Rightarrow true
|right \Rightarrow false
end.
inf \leq_{b} sup \rightsquigarrow Rleb inf sup \rightsquigarrow is_true (Rleb inf sup) \rightsquigarrow
\rightsquigarrow Rleb inf sup $=$ true
Boolean equality is decidable and therefore proof irrelevant.

