
Formal verification of exact computations using
Newton’s method

Nicolas Julien, Ioana Paşca

INRIA Sophia Antipolis
[Nicolas.Julien|Ioana.Pasca]@sophia.inria.fr

Abstract. We are interested in the certification of Newton’s method.
We use a formalization of the convergence and stability of the method
done with the axiomatic real numbers of Coq’s Standard Library in order
to validate the computation with Newton’s method done with a library
of exact real arithmetic based on co-inductive streams. The contribution
of this work is twofold. Firstly, based on Newton’s method, we design and
prove correct an algorithm on streams for computing the root of a real
function in a lazy manner. Secondly, we prove that rounding at each step
in Newton’s method still yields a convergent process with an accurate
correlation between the precision of the input and that of the result. An
algorithm including rounding turns out to be much more efficient.

1 Introduction

The Standard Library of the Coq proof assistant [4, 1] contains a formalization
of real numbers based on a set of axioms. This gives the real numbers all the
desired theoretical properties and makes theorem proving more agreeable and
close to “pencil and paper” proofs [16]. However, this formalization has no (or
little) computational meaning. During this paper we shall refere to the reals
from this implementation as “axiomatic reals”. We note that Coq is not an
special case and proof assistants in general provide libraries with results from
real analysis [5, 7, 8, 10], but with formalizations for real numbers that are not
well suited for computations. However, in a proof process, it is often the case that
we are interested in computing with the real numbers (or at least approximating
such computations), so a considerable effort has been invested in having libraries
of exact computations for proof systems [13, 15, 18]. We shall refer to numbers
from such implementations as “exact reals”. These libraries provide certification
of computations for a set of operations and elementary functions on real numbers.

The results in this paper are concerned with Newton’s method. Under certain
conditions, this method ensures the convergence at a certain speed towards a
root of the given function, the unicity of this root in a certain domain and the
local stability. But, as the “paper” proof for these results depends on non-trivial
theorems from analysis like the mean value theorem and concepts like continuity,
derivation etc. the formal development conducted around them is based on the
axiomatic reals of Coq. We would like to transfer these “theoretical” properties

to the computations done with exact reals. Our work is thus conducted in two
directions. On one side we are interested in proving correct Newton’s method
on exact reals and having algorithms that are suited for our implementation of
the real numbers as co-inductive streams. On the other hand we are concerned
in providing appropriate theoretical results to support the correctness of the
algorithms and optimizations we make.

The paper is organized as follows: in section 2 we present the theoretical
results around Newton’s method that have been verified with the axiomatic
reals in Coq. This section gives the formalization of well-known results in [6]
and presents a new proof that was motivated by our implementation of the
method on exact reals. To clarify the need for this proof, in section 3 we present
a library of exact real arithmetic implemented with Coq’s co-inductive streams
and we discuss how computations with Newton’s method can be certified in this
setting. We also design and prove correct an algorithm for computing the root
of a function that is based on Newton’s method and is adapted for streams.
However, this algorithm is much more efficient when rounding is used during
the process. The theorem we present in section 2.1 justifies this optimization,
though the optimized algorithm is not completely certified. The applications of
our algorithm are given in section 4.4 along with perspectives opened by the
suggested improvements. We finish by discussing related work in section 5 as
well as conclusions and possible extensions of our work in section 6.

2 Kantorovitch’s theorem and related results

Kantorovitch’s theorem gives sufficient conditions for the convergence of New-
ton’s method towards the root of a given function and establishes the unicity
of this root in a certain domain. A version of this theorem as well as results
concerning the speed for the convergence of the process and its stability are dis-
cussed in [6]. Preliminary results around a formalization of these theorems inside
the Coq proof assistant are described in [19]. At present all the theorems listed
in this section are verified in the Coq proof assistant. The formal proof is based
on the axiomatic real numbers from Coq’s Standard Library. This choice is mo-
tivated by the concepts we needed to handle, as the library contains results from
real analysis concerning convergence, continuity, derivability etc. The theorems
listed bellow illustrate the type of concepts involved in the proof.

Theorem 1 (Existance) Consider an equation f(x) = 0, where f :]a, b[→ R ,
a, b ∈ R f(x) ∈ C(1)(]a, b[). Let x(0) be a point contained in]a, b[with its closed
ε-neighborhood Uε(x(0)) = {|x − x(0)| ≤ ε} ⊂]a, b[. If the following conditions
hold:

1. f ′(x(0)) 6= 0 and | 1
f ′(x(0))

| ≤ A0;

2. | f(x(0))
f ′(x(0))

| ≤ B0 ≤ ε
2 ;

3. ∀x, y ∈]a, b[, |f ′(x)− f ′(y)| ≤ C|x− y|
4. the constants A0, B0, C satisfy the inequality µ0 = 2A0B0C ≤ 1.

then, for an initial approximation x(0), the Newton process

x(n+1) = x(n) − f(x(n))
f ′(x(n))

, n = 0, 1, 2, . . . (1)

converges and lim
n→∞

x(n) = x∗ is a solution of the initial system, so that |x∗ −
x(0)| ≤ 2B0 ≤ ε.

Theorem 2 (Uniqness) Under the conditions of Theorem 1 the root x∗ of the
function f is unique in the interval [x(0) − 2B0, x

(0) + 2B0].

Theorem 3 (Speed of convergence) Under the conditions of Theorem 1 the
speed of the convergence of Newton’s method is given by |x(n)−x∗| ≤ 1

2n−1 µ2p−1
0 B0.

Theorem 4 (Local stability) If the conditions of Theorem 1 are satisfied and
if, additionally, 0 < µ0 < 1 and [x(0) − 2

µ0
B0, x

(0) + 2
µ0

B0] ⊂]a, b[, then for any
initial approximation x′(0) that satisfies |x′(0) − x(0)| ≤ 1−µ0

2µ0
B0 the associated

Newton’s process converges to the root x∗.

The convergence of the process ensures that Newton’s method is indeed appro-
priate for determining the root of the function. The unicity of the solution in
a certain domain is used in practice for isolating the roots of the function. The
result on the speed of the convergence means we know a bound for the distance
between a given element of the sequence and the root of the function. This rep-
resents the precision at which an element of the sequence approximates the root.
In practice this theorem is used to determine the number of iterations needed
in order to achieve a certain precision for the solution. The result on the sta-
bility of the process will help with efficiency issues as it allows the use of an
approximation rather than an exact real.

We do not present here the proofs of the theorems, we just give a few elements
of these proofs that are needed in understanding the next section. For details
on the proofs we refere the reader to [6]. The central element of the proof is
an induction process that establishes a set of properties for each element of
the Newton sequence. The proof introduces the auxiliary sequences {An}n∈N,
{Bn}n∈N and {µn}n∈N:

An = 2An−1 (2)

Bn = An−1B
2
n−1C =

1
2
µn−1Bn−1 (3)

µn := 2AnBnC = µ2
n−1 (4)

For each element of the Newton sequence, we are able to verify properties that
are similar to those for x(0). Reasoning by induction we get the following:

◦ f ′(x(n)) 6= 0 and | 1
f ′(x(n))

| ≤ An

◦ |f(x(n))/f ′(x(n))| ≤ Bn ≤ ε
2n+1

◦ µn ≤ 1

Notice that hypothesis 3. is a property of the function and it does not depend
on the elements of Newton’s sequence.
From the above relations we get the convergence, unicity and speed of conver-
gence for the sequence.

For Theorem 4 (local stability) we prove that the new initial approxima-
tion x′(0) satisfies similar hypotheses as those for x(0). The new constants are
A′ = 4

3+µ0
A0 and B′ = 3+µ0

4µ0
B0. This makes that µ′ = 2A′B′C = 1 and we can

verify that

◦ f ′(x′(0)) 6= 0 and | 1
f ′(x′(0))

| ≤ A′

◦ |f(x′(0))/f ′(x′(0))| ≤ B′

◦ µ′ ≤ 1

We are thus in the hypotheses of Theorem 1 and by applying this theorem we
conclude that the process converges to the same root x∗.

Notice, however, that for the new constants we get µ′ = 1. If we do a Newton
iteration, we would get the new µ′′ = µ′

2 = 1 (cf. equation (4)) and we would
not be able to do an approximation again, because Theorem 4 requires µ′′ < 1.
To correct this, we impose a finer approximation |x0−x′0| ≤

(1−µ0)
4µ0

B0. This new
approximation yields the following formulas for the constants:

A′ =
8

7 + µ0
A0 (5)

B′ =
µ2

0 + 46µ0 + 17
8(7 + µ0)µ0

B0 (6)

this makes that

µ′ =
µ2

0 + 46µ0 + 17
(7 + µ0)2

< 1 (7)

We summarize these results in:

Corollary 1 If the conditions of Theorem 1 are satisfied and if, additionally,
0 < µ0 < 1 and [x(0) − 2

µ0
B0, x

(0) + 2
µ0

B0] ⊂]a, b[, then for any initial approxi-
mation x′(0) that satisfies |x′(0)−x(0)| ≤ 1−µ0

4µ0
B0 the associated Newton’s process

converges to the root x∗.

2.1 Newton’s method with rounding

We now have all the necessary tools to state and prove a theorem on the behavior
of Newton’s method if we consider rounding at each step. The rounding we do is
just good enough to ensure the convergence. This theorem is particularly inter-
esting for computations in arbitrary or multiple precision, as it relates number
of iterations with the precision of the input and that of the result. This means
that for the first iterations we need a lower precision, as we are not close to the
root. We will later increase the precision of our input with the desired precision
for the result.

Theorem 5 We consider a function f :]a, b[→ R and an initial approximation
x(0) satisfying the conditions in Theorem 1.
We also consider a function rnd : N×R → R that models the approximation we
will make at each step in the perturbed Newton sequence:

t(0) = x(0) and t(n+1) = rndn+1(t(n) − f(t(n))/f ′(t(n)))
If

1. ∀n∀x, x ∈]a, b[⇒ rndn(x) ∈]a, b[
2. 1

2 ≤ µ0 < 1
3. [x(0) − 3B0, x

(0) + 3B0] ⊂]a, b[

4. ∀n∀x, |x− rndn(x)| ≤ 1
3n R0, where R0 = 1−µ2

0
8µ0

B0

then

a. the sequence {t(n)}n∈N converges and lim
n→∞

t(n) = x∗where x∗ is the root of
the function f given by Theorem 1

b. ∀n, |x∗ − t(n)| ≤ 1
2n−1 B0

The first hypothesis makes sure that the new value will also be in the range of
the function. The second and third hypotheses come from the use of the stabil-
ity property of the Newton sequence (see Corollary 1). The fourth hypothesis
controls the approximation we are allowed to make at each iteration. The con-
clusion gives us the convergence of the process to the same limit as Newton’s
method without approximations. Also we give an estimate of the distance from
the computed value to the root at each step.

Proof. Our proof is based on those for theorems 1 - 4 and corollary 1. To give
the intuition behind the proof, we decompose Newton’s perturbed process t(n)

as follows:

1. set t(0) := x(0)

2. do a Newton iteration to get x(1) := t(0) − f(t(0))
f ′(t(0))

3. do an approximation of the result to get t(1) := rnd(x(1))
4. set t(0) := t(1) and go to step 2.

Now let’s look at these steps individually:

◦ At step 1. we start with the initial x(0) that satisfies the conditions in The-
orem 1. This means that Newton’s method from this initial point converges
to the root x∗ (cf. Theorem 1).

◦ At step 2. we consider a Newton sequence starting with x(1). This sequence is
the same as the sequence at step 1. except that we “forget” the first element
of the sequence and start with the second. It is trivial that this sequence
converges to the root x∗. We note that (cf. proof of Theorem 1) we can
associate the constants A1, B1 to the initial iteration of this sequence and
get the corresponding hypotheses from Theorem 1.

◦ At step 3. we consider Newton’s sequence starting from t(1). This initial
point is just an approximation of the initial point of the previously considered
sequence. From Corollary 1 we get the convergence of the new sequence to the
same root x∗. Moreover, the proof of Corollary 1 gives us the constants A′, B′

associated to the initial point that also satisfy the hypotheses of Theorem 1.
This means we can start the process over again.

If we take x(0) and then all the initial iterations of the sequences formed at step
3. we get back our perturbed Newton’s sequence. But decomposing the problem
as we did gives the intuition of why this sequence should converge. However,
just having a set of sequences that all converge to the same root does not suffice
to prove that the sequence formed with all initial iterations of these sequences
will also converge to the same root. The reason is simple, the approximation
at step 3. could bring us back to the initial point x(0) which would still yield
a convergent Newton’s sequence, but which would not make the new element
of the perturbed sequence any closer to the root than the previous one. To get
the convergence of the perturbed sequence we need to control the approximation
we make. We will see in what follows that hypothesis 4. suffices to ensure the
convergence of the new process.

To make the intuitive explanation more formal we consider the sequence of
sequences of real numbers {Yp}p∈N defined as follows:

Y n
0 = x(n) is the original Newton’s sequence;

Y1 is given by
Y 0

1 = rnd1(x(1));
Y n+1

1 = Y n
1 −f(Y n

1)/f ′(Y n
1) is the Newton’s sequence associated to the initial

iteration Y 0
1 ;

we continue in the same manner and for an arbitrary p we define Yp as follows
Y 0

p+1 = rndp+1(Y 1
p);

Y n+1
p+1 = Y n

p+1 − f(Y n
p+1)/f ′(Y n

p+1).
We notice that taking the first element in each of these sequences forms our
perturbed Newton’s process:

Y 0
0 = x(0) = t(0) and

Y 0
n+1 = rndn+1(Y 0

n − f(Y 0
n)/f ′(Y 0

n)) = rndn+1(t(n) − f(t(n))/f ′(t(n))) = t(n+1)

Following our plan, we now show that for each p the sequence {Y n
p }n∈N

converges to x∗ and ensures a certain bound in the error.

◦ We start with sequence {Y n
0 }n∈N. Since it coincides with the initial sequence,

the properties from Theorem 1 are trivially satisfied. For the initial point Y 0
0

we have the associated constants A0, B0. Applying Theorem 1 we get that
lim

n→∞
Y n

0 = x∗ and |x∗ − Y 0
0 | ≤ 2B0.

◦ Before considering {Y n
1 }n∈N, we note that the sequence Y

n

0 = Y n+1
0 (i.e. the

previously considered sequence where we start from the second element) also
satisfies the conditions, with initial point Y

0

0 = Y 1
0 and constants A0 = 2A0

and B0 = A0B
2
0C. The laws for these constants are deduced from relations

(2), (3). We get that lim
n→∞

Y
n

0 = x∗ and |x∗ − Y
0

0| = |x∗ − Y 1
0 | ≤ 2B0 =

2(A0B
2
0C).

◦ Now we consider {Y n
1 }n∈N. The initial point of this sequence is Y 0

1 = rnd1(Y 0
0 −

f(Y 0
0)/f ′(Y 0

0)) = rnd1(Y
0

0). We are in the situation of Corollary 1, where we
have a converging sequence ({Y n

0}n∈N) and we introduce an approximation
in the initial iteration. To be able to apply this corollary we need to verify
0 < µ0 < 1, [Y

0

0− 2
µ0

B0, Y
0

0 + 2
µ0

B0] ⊂]a, b[and |rnd1(Y
0

0)−Y
0

0| ≤
1−µ0
4µ0

B0.
We will show later on that under our hypotheses these three conditions are
indeed verified. From Corollary 1 we get the new constants according to re-
lations (5), (6). This makes that we find ourselves again in the conditions of
Theorem 1 and we can deduce that lim

n→∞
Y

n

1 = x∗ and |x∗ − Y 0
1 | ≤ 2B′ =

2µ2
0+46µ0+17
8(7+µ0)µ0

B0.

We are in the appropriate conditions to start this process again and explain
in the same manner the properties for {Y n

2 }n∈N, {Y n
3 }n∈N, etc. The auxiliary

sequences are given by the following relations:

A′0 = A0 and A′n+1 =
8

7 + µn(2A′n)

B′
0 = B0 and B′

n+1 =
µn

2 + 46µn + 17
8(7 + µn)µn

(A′nB′
n

2
C)

µn = 2(2A′n)(A′nB′
n

2
C)C = (2A′nB′

nC)2

we also consider

µ′n+1 = 2A′n+1B
′
n+1C =

µ2
n + 46µn + 17

(7 + µn)2
=

µ′
2
n

2
+ 46µ′

2
n + 17

(7 + µ′2n)2

Rn =
1− µn

4µn

Bn =
1− µ′

2
n

4µ′2n
(
1
2
µ′nB′

n) =
1− µ′

2
n

8µ′n
B′

n

Using the above reasoning steps, we get by induction that |Y 0
n − x∗| ≤ 2B′

n

and we also manage to show ∀n, B′
n+1 ≤ 1

2B′
n ≤ 1

2n−1 B0. The latter relations is
deduced from the above formulas by basic manipulations. It trivially implies the
convergence of the perturbed sequence to the root x∗.

We need some auxiliary results to ensure that Corollary 1 is applied in the
appropriate conditions each time we make a rounding. These results are as follow:

◦ 0 < 1
2 ≤ µ0 = µ′0 ≤ µ′n ≤ µ′n+1 ≤ . . . < 1

◦ Rn+1 ≤ 1
3Rn ≤ . . . ≤ 1

3n R0 = 1
3n

1−µ0
4µ0

B0 = 1
3n

1−µ2
0

8µ0
B0

◦ |Y 0
n+1 − Y 0

n | ≤ 1
2n B0 + 1

3n R0

◦ [Y
0

n − 2
µn

Bn, Y
0

n + 2
µn

Bn] ⊆ [Y 0
0 − 3B0, Y

0
0 + 3B0] ⊂]a, b[

We do not discuss all the details as they are elementary reasoning steps concern-
ing inequalities, second degree equations or geometric series. All these results
have been formalized in Coq to ensure that no steps are overlooked.

Remarks. Independent of certification of exact computations, this proof has an
interest from a proof engineering point of view. We were able to come up with
the proof because we had formalized theorems 1 - 4 inside a proof assistant. Such
a formalization forces the user to understand the structure of the proof on one
hand and to handle details with care on the other. Thus, an assisted proof is
usually more structured and more detailed than a paper proof (especially in do-
mains where automatic techniques are difficult to implement, like real analysis).
For example, while on paper the auxiliary sequences {An}n∈N, {Bn}n∈N appear
during the proof, on the computer they are defined appart from the proof, al-
lowing the user to better understand their importance and use similar sequences
in the new proof. A proof assistant is also helpful with syntactic aspects like
properly constructing the induction hypothesis and doing the bookkeeping to
make sure all needed details are taken into consideration.

3 A Coq library for exact real arithmetic

The exact real library we are considering represents a real in the interval [−1, 1]
as a lazy infinite sequence of signed digits of an arbitrary integer base. The signed
digits of a base β are the integers in [−β + 1, β − 1]. We denote s1::s the infinite
sequence beginning by the digit s1 and followed by the infinite sequence s. The
real number r represented by such an infinite sequence s in base β is :

r = JsKβ = Js1::s2::s3:: . . .Kβ =
∞∑

i=1

si

βi
.

A real number represented by a stream and for which we know the first digit
can be written as: r = Js1::sKβ =

s1+JsKβ

β .
Having signed digits makes our representation redundant. For example we

can represent 1
3 as J3::3::3::3 . . .K10 but also as J4::− 7::4::− 7 . . .K10.

For each digit k the set of real numbers that admit a representation beginning
by this digit is: [k−1

β , k+1
β]. The sets associated to consecutive digits overlap with

a constant magnitude of 2
β . The main benefit of this redundancy is that we are

able to design algorithms for which we can decide a possible first digit of the
output. Without redundancy this is in general undecidable. Take the example
of addition: J0::3 . . .K10 + J0::6 . . .K10 may need infinite precision to decide
whether the first digit is 0 or 1. In the case of signed digits we give 1 as a first
digit knowing we can always go back to a smaller number by using a negative
digit. We also note that in our example it was sufficient to know two digits of
the input to decide the first digit of the output and this is true for addition in
general.

Designing an algorithm therefore requires approximating the result to a pre-
cision that is sufficient to determine a possible first digit. In the library this is
supported by the function make_digit and the required precision is β−2

2β2 . Also,
since our real numbers are infinite streams, the algorithms need to be designed

in such a way that we are always able to provide an extra digit of the result.
This is done by co-recursive calls on our co-inductive streams.

In Coq, co-induction [9] provides a way to describe potentially infinite datatypes
as our infinite sequences of digits. It offers both efficient lazy evaluation and nice
proof schemes. The type of infinite sequences of objects of some type A is define
as follows

CoInductive stream (A : Set) : Set := | Cons : A → stream A → stream A.

Cons should not be understood as a way to construct an infinite stream from
another since we cannot build an initial infinite stream, but as a way to de-
compose an infinite stream into a finite part and an infinite part that could be
described again with a new Cons and so on.

Our real numbers will be streams of signed digits, so we also need to create
a model for the digits. They are abstracted with respect to the base and the
implementation of integers, so both the base and the type of integers can be
chosen by the user. Here we will denote their type by digit.

We can define new streams using co-recursive functions, for instance the
stream of 0s, which obviously represents the real number 0.

CoFixpoint zero : stream digit := Cons 0 zero.

To prove the correctness of the algorithms on streams of digits we first define
a relation between these streams and the axiomatic reals of Coq. This relation
is based on the relation between the real value of a sequence, its first digit and
the real value of the following sequence as noted previously. We formalize this
relation as a co-inductive predicate :

CoInductive represents (β : Z) : stream digit →R →Prop :=
| rep : ∀ s r k, −β < k < β → −1 ≤ r ≤ 1 →
represents β s r → represents β (Cons k s) k+r

β
.

This relation also makes sure that streams only represent reals in [−1, 1] and
that the digits are in the set of the allowed signed digits.

The correctness of our algorithms is verified when we manage to express a
represents relation between our implementation and the standard in the Coq
library. For instance the proof that the multiplication is correct is formulated in
this way :

Theorem mult correct :
∀ x y vx vy, represents x vx → represents y vy → represents (x ⊗ y) (x ∗ y).

In means that every time we have an exact real (i.e. a stream of digits) x that
represents an axiomatic real vx and an y that represents a vy than our multi-
plication of streams x and y (here denoted ⊗) will represent the multiplication
of axiomatic reals vx and vy.

For further details on algorithms and proofs for this library we refer the
reader to [13].

4 Newton’s method on exact reals

4.1 Correctness of Newton’s method

We want to prove correctness of computation with Newton’s method on exact
reals in the same manner we proved correctness of multiplication in section
3. We code Newton’s algorithm for both exact reals and axiomatic reals. For
simplification we use a function g on exact reals to represent the ratio f(x)

f ′(x) of
axiomatic reals.

Fixpoint EXn g ex0 n {struct n}: stream digit:= match n with
| 0 ⇒ ex0 | S n ⇒ let exn:= (EXn g x0 n) in exn 	 g exn end.

Fixpoint Xn f f’ x0 n {struct n}: R:= match n with
| 0 ⇒ x0 | S n ⇒ let xn:= (Xn x0 f f’ n) in xn − f xn / f’ xn end.

The relation between elements of the same rank in the two sequences:
∀ n, represents (EXn g EX0 n) (Xn X0 f f’ n)

is almost trivial, if we have a represents relation for the initial iteration and
for the function.

Theorem EXn correct : ∀ g ex0 f f’ x0 n, represents ex0 x0 →
(∀ x vx, represents x vx → represents (g x) (f vx / f ’ vx)) →
(∀n, −1 ≤Xn x0 f f’ n ≤1) → represents (EXn g ex0 n) (Xn x0 f f’ n).

The proof follows from the correction of the subtraction on streams with respect
to the subtraction on axiomatic reals.

This theorem allows us to transfer properties proved for Newton’s method
on axiomatic reals to the method implemented on exact reals. If we satisfy the
conditions of Theorem 1 for the function f and the initial iteration X0, then
we can compute the root of the function at an arbitrary accuracy, given by
Theorem 3 (speed of convergence). From the same theorem we get the rank to
which we need to compute for a given accuracy to be obtained. However, if we
wanted to increase this accuracy, we would need to redo all the computation for
the new rank. We want to avoid this and take advantage of the lazy evaluation
characteristic for streams: we can design an algorithm that uses Newton’s method
to compute an arbitrary number of digits for the root of a given function, under
certain conditions for this function.

Remark In the implementation we use tail recursive version of the method to
improve efficiency. The equivalent definitions given above help in better under-
standing the problem.

4.2 An algorithm for exact computation of roots

We consider a function f : [−1, 1] → R with x∗ the root of f and a suitable
initial approximation x(0) for Newton’s process. We have to find a possible first
digit of the result x∗ in base β. For this we use make_digit which requires a
precision of β−2

2β2 of the result to make the appropriate choice of the first digit.

To determine the number of Newton iterations that ensures this precision we use
Theorem 3 (speed of convergence), which gives us n s.t. |x(n) − x∗| ≤ β−2

2β2 . We
choose as a first digit for x∗ the first digit d1 of a representation of x(n) . This
gives us x∗ = d1+x∗1

β , where x∗1 is the number formed from the remaining digits

of x∗. Since f(x∗) = 0, we get f(d1+x∗1
β) = 0. This means we can define a new

function f1(x) := f(d1+x
β), and x∗1 is the root of f1. Determining the second digit

of x∗ is equivalent to determining the first digit of x∗1. We repeat the previous
steps for function f1 and we take as the initial approximation the remaining
digits of x(n), given by x(n) = βx(n) − d1. Now we have a co-recursive process
to produce the digits of the root of our function one by one. If we simplify our
algorithm by using g = f

f ′ , when we transform g in g1 we get

g1(x) :=
f1(x)
f ′1(x)

=
f(d1+x

β)
1
β f ′(d1+x

β)
= β × g(

d1 + x

β
)

For the exact real implementation in Coq we express the algorithm on streams
of digits, so we remind that for the stream d1::x, we have Jd1::xKβ =

d1+JxKβ

β

CoFixpoint exact newton (g: stream digit → stream digit) ex0 n:=
match (make digit (EXn g ex0 n) with
|d1::x’ ⇒ d1::exact newton (fun x ⇒ (β � g (d1::x))) x’ n

end.

We note that the multiplication by the base is done by a specific function, for
efficiency.

The formal certification of this algorithm means we have to prove that the
output of this algorithm represents the root of the function f . For this we use
Theorems 1 - 3 (see section 2) on axiomatic reals and the theorem EXn_correct
(section 4.1) that links Newton’s method on exact reals to Newton’s method on
streams. We need to show that if the initial function f satisfies the hypotheses
of Theorem 1 then the function f1 built at the co-recursive call will also satisfy
these hypotheses, thus yielding a correct algorithm.

The hypotheses of Theorem 1 impose that

1. f ∈ C(1)(]− 1, 1[)
2. ∀x, y ∈]− 1, 1[, |f ′(x)− f ′(y)| ≤ C|x− y|
3. f ′(x(0)) 6= 0 and | 1

f ′(x(0))
| ≤ A0;

4. | f(x(0))
f ′(x(0))

| ≤ B0 ≤ ε
2 ;

5. µ0 = 2A0B0C ≤ 1.

We analyze f1(x) := f(d1+x
β) for which we have f ′1 = 1

β f ′ and the new initial
iteration x(n) = βx(n) − d1

1. the class of the function is obviously the same, so f ∈ C(1)(]− 1, 1[)
2. |f ′1(x)− f ′1(y)| = | 1β f ′(d1+x

β)− 1
β f ′(d1+y

β)| ≤ 1
β C|d1+x

β − d1+y
β | = 1

β2 C|x− y|

3. f ′1(x
(n)) = f ′(x(n)) 6= 0 and | 1

f ′1(x
(n))

| = |β 1
f ′(x(n))

| ≤ βAn;

4. | f1(x
(n))

f ′1(x
(n))

| = |β f(x(n))
f ′(x(n))

| ≤ βBn;
5. µn = 2βAnβAn

1
β2 C = 2AnBnC ≤ 1.

Relations 3. - 5. are given by the proof of Theorem 1. We are now able to prove
by co-induction the following correctness theorem

Theorem exact newton correct:
∀ g ex0 f f ’ x0 n,

(∗ hypotheses on f, f ’, x0 from Theorem 1 ∗)
(∗ hypothesis on the number of iterations n∗)
(∀ x vx, represents x vx → represents (g x) (f vx / f ’ vx)) →
represents ex0 x0 → represents (exact newton g ex0 n) x∗.

4.3 Improvements of the algorithm

Though short, elegant and certified, the algorithm presented in this section is
not usable in practice as it is very slow. There are two main reasons for this:

1. The certified computations from the library require a precision of the operands
higher than that of the result. We saw that in the case of addition on extra
digit is required, but for other operations and function this precision can be
higher. When we have an expression where we perform several operations,
the precision demanded for each individual operand is a lot higher than the
precision of the output. In the case of Newton’s method, each iteration only
brings a certain amount of information, so using a higher precision will not
improve the result.

2. This approach relies on the higher-order capabilities of the functional pro-
gramming language: the first argument of the exact_newton function is
itself a function that becomes more and more complex as exact_newton
calls itself recursively. The management of this function is somehow trans-
parent to the programmer, but it has a cost: a new closure is built at every
recursive call to exact_newton and when the function g is called, all the
closures built since the initial call have to be unraveled to obtain the opera-
tions that really need to be performed. This cost can be avoided by building
directly a first older data structure.

We discuss two possible improvements of this algorithm, dealing with these
two issues. For the first point the solution is simple, just use the significant digits
in the stream. Determining which are these significant digits and certifying the
result is still possible thanks to Theorem 5. We implement a truncate function
that given a stream s returns the stream containing the first n digits of s and
sets the rest to zero. This function represents the rnd function on axiomatic
reals (see Theorem 5).

Fixpoint truncate s n {struct n} :=
match n with | 0 ⇒ zero | S n ⇒

match s with | d :: s’ ⇒ d :: truncate s’ n end
end.

The perturbed Newton’s method becomes:

Fixpoint Etn g ex0 (n : nat) {struct n} : stream digit := match n with
| 0 ⇒ ex0 | S n ⇒ let tn := (Etn g ex0 n) in (truncate (tn 	 (g tn)) (φ n)) end.

The function φ controls the approximation we can make at each iteration and
follows the constrains imposed by Theorem 5. The exact_newton algorithm
will work in the same way with this sequence as with the original method.

CoFixpoint exact newton rnd (g: stream digit → stream digit) ex0 n:=
match (make digit (Etn g ex0 n) with
|d1::x’ ⇒ d1::exact newton rnd (fun x ⇒ (β � g (d1::x))) x’ n

end.

Though the proof for this new algorithm is not finalized yet, we feel there is
no real difficulty in obtaining it as both the algorithm and the optimization we
make are certified.

To tackle the second point in our list of possible improvements we make
explicit the construction of the new function g in the co-recursive call.

CoFixpoint exact newton aux
(g : stream digit → stream digit) (Xn : stream digit) k n :=

let Xn’ := make k digits x0 (EXn g x0 n) k in
(nth k Xn’) :: exact newton aux g Xn’ (S k) n.

Definition exact newton2 (g : stream digit → stream digit)
(X0 : stream digit) n := exact newton aux g X0 0 n.

The function make_k_digits takes three arguments: two streams x and y
and an integer k and produces k + 1 digits of y by copying the first k digits
in x and computing the digit k + 1 by using make_digit. For the function
to perform correctly we must ensure that the first k digits in y can indeed be
the same as those in x. In our case this results from the theorem on the speed
of convergence of Newton’s method, which make sure that a certain element is
close enough to the root. The way the algorithm works is that it does iterations
always for the same function g. It produces digits one at a time. Once it reached
enough precision to certify an extra digit, the (k+1)th, it gets this digit by using
the function nth and it continues to compute where it left of.

This algorithm performs better than the previous one, but the optimizations
performed in this case seem more difficult to certify. At the time of writing
this paper we have the good properties on make_k_digit and the proof of
correctness of the algorithm is in progress.

4.4 Applications to the square root

Newton’s method is commonly used for the implementation of nth root function
or division. We discuss the example of the square root to illustrate the behaviour
of our algorithms. The square root of a positive real number a is the root of the
function fsqrt(x) = x2−a. The corresponding function gsqrt is fsqrt(x)

f ′sqrt(x) = x
2 −

a
2x .

Due to restrictions about implementing the inverse function of exact reals, the

library provides functions of the family x 7→ 1
βnx where n > 0. So we chose

instead the function fsqrt(x) = β2x2−a which corresponds to gsqrt(x) = x
2−

a
2β2x .

The root of this function is
√

a
β . So a final multiplication by the base will give

the expected result. We apply the algorithm to this function gsqrt and the user
provide a suitable initial approximation. The process will actually converge for
any positive initial approximation. We prove in Coq that the resulting function
actually computes a representation of the square root function on axiomatic reals
divided by the base.

Definition Ssqrt (a : stream digit) ex0 n := exact newton (g sqrt a) ex0 n.
Theorem sqrt correct : ∀ (a : stream digit) (va : R),

represents a va → represents (Ssqrt a) ((sqrt va)/β).

The original algorithm is slow. For example the computation of the first digit

of
√

1
2 in base 2124 using the original algorithm blocks the system, while for the

same algorithm improved with approximations we get the equivalent precision of
37 decimal digits in 12 seconds. The second algorithm exact_newton2 brings
an improvement at each new digit we want to obtain making the algorithm
run in average twice as fast. We should also take into consideration that using
f(x) = a

x2 − 1 can improve our execution times considerably as there is only
one division involved. Nevertheless, our intention here was not to implement
an efficient square root, but to test the capabilities of the previous presented
algorithms.

5 Related work

This work presents different angles in the formal verification of a numerical
algorithm. For the moment such developments are not very popular. A lot of work
is being done concerning formally verified exact real arithmetic libraries. Besides
the library presented here, the development [15] for PVS [21] and [18] also for
Coq are two of the most recent such implementations. These two libraries have
computations that are certified with respect to the real analysis formalizations in
PVS and C-CoRN [5], respectively. A significant part of the work presented here
could be reproduced in any of these libraries. In the case of [18] the exact reals
operations and functions are certified via an isomorphism between the exact reals
and the C-CoRN real structure; there is also an isomorphism between C-CoRN
reals and Standard Library reals (see [14]), so in theory it should be possible to
certify computations by using the presented proofs and the two isomorphisms.

Concerned with exact real arithmetic and also with co-inductive aspects we
mention the work of Niqui [17]. This works aims to obtain all field operations on
real numbers via the Edalat-Potts algorithm for lazy exact arithmetic.

Results of the convergence of Newton’s method with rounding have been
proved for some special cases like the the inverse and the square root [3]. Of
course, in these cases the speed of convergence is better than in the general case.

The certification of a square root algorithm has been the subject of several
formal developments. We mention [2] for the certification of the GMP square

root algorithm, [11] for an Intel architecture square root algorithm and [20] for
the verification of the square root algorithm in an IBM processor. A general
algorithm using Newton’s method was developped by Hur and Davenport [12]
on a different representation of exact reals but not in a certified setting.

6 Conclusions and perspectives

As a case study of theorem proving in numerical analysis, this work tries to
underline three aspects of such a development: how do design and formalize
the necessary proofs from “paper” mathematics, how to prove correct numerical
methods implemented on exact reals and provide certified computations, how to
design and verify specific algorithms for an implementation of exact reals. The
Coq development can be found at http://www-sop.inria.fr/marelle/
Exact_Newton.

To the best of the authors’ knowledge, the result and proof of Theorem 5
are new, though the authors are not experts in numerical analysis. Using only a
predetermined precision for our computation makes it that our formalization can
be seen as an (imperfect) model of computation in multiple or arbitrary precision,
thus validating Newton’s method in such a context. The proof of Theorem 5 was
motivated by the need to improve the algorithm discussed in section 4.2. The
contribution of proof assistants in obtaining this proof is twofold: the proof was
motivated by a formal development and the proof was constructed inside the
proof assistant, following the pattern of existing proofs.

The algorithms presented in section 4 are also new. The certified algorithm,
though it is not of practical use, it can serve as a model in obtaining proofs for
our optimized algorithms. The next step is to put together the two proofs we
presented here and get a formally verified algorithm for computing roots in a
(more) efficient manner. With the results presented here we see no difficulties in
obtaining this proof.

The axiomatic formalization on Newton’s method contains the multivariable
version of the theorems 1 - 4. This means we can solve systems of (non-)linear
equations using this method. Exact real arithmetic libraries do not yet treat
such cases, so it would be an interesting experiment to see to what extent the
results presented here can be obtained in the multivarite setting. We note that
the proof of Theorem 5 has the same structure for the multivarite case. We
presented here the real case to make it easier for the reader to follow and to
show the correspondence with results from section 4.2.

Acknowledgments

We thank Yves Bertot for his help and constructive suggestions.

References

1. Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Devel-
opment, Coq’Art:the Calculus of Inductive Constructions. Springer-Verlag, 2004.

2. Yves Bertot, Nicolas Magaud, and Paul Zimmermann. A Proof of GMP Square
Root. J. Autom. Reasoning, 29(3-4):225–252, 2002.

3. R.P. Brent and P. Zimmermann. Modern Computer Arithmetic. 2006. In prepa-
ration. Available at http://www.loria.fr/zimmerma/mca/pub226.html.

4. Coq development team. The Coq Proof Assistant Reference Manual, version 8.1,
2006.

5. L. Cruz-Filipe, H. Geuvers, and F. Wiedijk. C-CoRN: The Constructive Coq
Repository at Nijmegen. In A. Asperti, G. Bancerek, and A. Trybulec, editors,
Mathematical Knowledge Management, Third International Conference, MKM,
volume 3119 of LNCS, pages 88–103. Springer-Verlag, 2004.

6. B. Démidovitch et I. Maron. Éléments de calcul numérique. Mir - Moscou, 1979.
7. Jacques D. Fleuriot. On the mechanization of real analysis in Isabelle/HOL. In

J. Harrison and M. Aagaard, editors, Theorem Proving in Higher Order Logics:
13th International Conference, TPHOLs 2000, volume 1869 of Lecture Notes in
Computer Science, pages 146–162. Springer-Verlag, 2000.

8. R. Gamboa and M. Kaufmann. Nonstandard Analysis in ACL2. Journal of auto-
mated reasoning, 27(4):323–428, November 2001.

9. Eduardo Giménez. Codifying guarded definitions with recursive schemes. In Peter
Dybjer, Bengt Nordström, and Jan Smith, editors, Types for proofs and Programs,
volume 996 of LNCS, pages 39–59. Springer Verlag, 1994.

10. John Harrison. Theorem Proving with the Real Numbers. Springer-Verlag, 1998.
11. John Harrison. Formal verification of square root algorithms. Formal Methods in

System Design, 22(2):143–153, 2003.
12. Namhyun Hur and James H. Davenport. A generic root operation for exact real

arithmetic. 2064:82–??, 2001.
13. Nicolas Julien. Certified exact real arithmetic using co-induction in arbitrary in-

teger base. In Functional and Logic Programming Symposium (FLOPS), LNCS.
Springer, 2008.

14. Cezary Kaliszyk and Russell O’Connor. Computing with classical real numbers.
CoRR, abs/0809.1644, 2008.

15. David R. Lester. Real Number Calculations and Theorem Proving. In Otmane Aı̈t
Mohamed, César Muñoz, and Sofiène Tahar, editors, TPHOLs, volume 5170 of
Lecture Notes in Computer Science, pages 215–229. Springer, 2008.

16. Micaela Mayero. Formalisation et automatisation de preuves en analyses reelle et
numerique. PhD thesis, Université de Paris VI, 2001.

17. Milad Niqui. Coinductive formal reasoning in exact real arithmetic. Logical Meth-
ods in Computer Science, 4(3:6):1–40, September 2008.

18. Russell O’Connor. Certified Exact Transcendental Real Number Computation in
Coq. In Theorem Proving in Higher Order Logics, 21st International Conference,
TPHOLs 2008, Montreal, Canada, pages 246–261, 2008.

19. Ioana Paşca. A Formal Verification for Kantorovitch’s Theorem. In Journées
Francophones des Langages Applicatifs, pages 15–29, 2008.

20. Jun Sawada and Ruben Gamboa. Mechanical verification of a square root algorithm
using taylor’s theorem. In Mark Aagaard and John W. O’Leary, editors, FMCAD,
volume 2517 of Lecture Notes in Computer Science, pages 274–291. Springer, 2002.

21. Natarajan Shankar, Sam Owre, and John M. Rushby. The PVS Proof Checker: A
Reference Manual. Computer Science Laboratory, SRI International, Menlo Park,
CA, February 1993.

