
Coqoon/PIDE : Asynchronous Coq proof
development in Eclipse

Alexander Faithfull and Jesper Bengtson

IT University of Copenhagen

At the 6th Coq Workshop in Vienna, we presented Coqoon[1], an IDE for
Coq with sophisticated features like syntax highlighting, context-aware search
functionality driven by a rich model of Coq code, and an integrated build system
with automatic dependency resolution. Coqoon is one part of a larger effort
to build a platform for using Coq to reason about Java programs, based on
Mehnert’s work on Kopitiam [2].

Up until recently, Coqoon behaved similarly to Proof General or CoqIDE
with coqtop keeping track of the current proof state and Coqoon highlighting
the script that had been parsed to reach that state. Any changes in the marked
region would result in coqtop backtracking to the point that the change was
made and the code between these points would have to be replayed before the
developer could continue working from the original point.

The Isabelle proof assistant started moving away from this way of developing
proofs around seven years ago when Wenzel introduced the PIDE-protocol [4].
This protocol provides an API that lets development environments communicate
asynchronously with the proof assistant which makes them work more like stan-
dard software IDEs – changes to the code can be made anywhere, only code that
is dependent on those changes must be recompiled, and all errors (regardless of
their location) are reported back to the user. This type of functionality has up
until now only been enjoyed by Isabelle users, but recent advances has made it
possible to make it available in Coq IDEs as well.

PIDE for Coq 2014 saw two major advances in the Coq backend to facilitate
asynchronous proof development in Coq.

The first was a state transaction machine (STM) by Barras and Tassi, added
in Coq 8.5, which provides the necessary infrastructure required to communicate
assynchronously with coqtop. The second was by Tankink who used the STM
to port the PIDE-protocol to Coq. As a proof of concept Tankink also created
a prototype Coq editor [3] using PIDE.

Working with Tankink, we have added support for the PIDE protocol to
Coqoon. The PIDE editor automatically re-evaluates commands and their de-
pendencies whenever they change.

Support for non-Coqoon users To make it possible for non-Coqoon users to
work with Coqoon projects, the Coqoon build system used to finish building a
project by writing out a snapshot of its dependency tree as a Makefile with rules
that simulated Coqoon’s own behaviour. However, these Makefiles only worked



reliably for simple projects—when projects depended on other projects, or on
external developments, the resulting Makefile was totally unportable. Worse yet,
the build system’s constant attempts to regenerate this file often led to version
control merge conflicts.

Recent versions of Coqoon adopt a different approach. The builder, instead
of producing a project-specific Makefile, now adds a generic configure script to
every project; when run, this script parses the Coqoon project configuration and
produces a machine-specific Makefile from it, prompting the user if they need to
provide a path for a dependency that cannot be resolved automatically.

Embedding Coq proofs Since Coqoon is an Eclipse plugin it is possible to
create hooks from existing Eclipse projects into Coq projects. We have started
working on one such approach where we combine the standard Java development
environment of Eclipse with Coqoon. This allows us to provide a new type of
editor, aware of the interleavings in the documents that it displays. This aware-
ness allows the editor to provide both Coq- and Java-specific services, like syntax
highlighting or code completion for both Java code and embedded Coq proofs.
Ultimately, this will make it possible to write Java programs and proofs of their
correctness in the same IDE – and, by taking advantage of the asynchrony of
PIDE, with very similar workflows.

Conclusion Coqoon continues to develop, and the new support for asynchronous
proof editing makes it behave more like an IDE than ever before.

More information about Coqoon, including installation instructions and links
to both precompiled Eclipse plugins and the source code, is available from https:

//coqoon.github.io/.

References

1. Alexander John Faithfull and Jesper Bengtson. Coqoon: towards a modern IDE for
Coq. In 6th Coq Workshop, Vienna, Austria, July 2014. URL: https://coqoon.
github.io/docs/coq6.pdf.

2. Hannes Mehnert. Kopitiam: Modular incremental interactive full functional static
verification of java code. In NASA Formal Methods, pages 518–524, 2011. URL:
http://dx.doi.org/10.1007/978-3-642-20398-5_42.

3. Carst Tankink. Asynchronous interaction for Coq. In 6th Coq Workshop, Vienna,
Austria, July 2014.

4. Makarius Wenzel. Isabelle/jedit — a prover IDE within the PIDE framework.
CoRR, abs/1207.3441, 2012. URL: http://arxiv.org/abs/1207.3441.

https://coqoon.github.io/
https://coqoon.github.io/
https://coqoon.github.io/docs/coq6.pdf
https://coqoon.github.io/docs/coq6.pdf
http://dx.doi.org/10.1007/978-3-642-20398-5_42
http://arxiv.org/abs/1207.3441

	Coqoon/PIDE : Asynchronous Coq proof development in Eclipse

