We report on our experience implementing category theory in Coq 8.5. The repository of this development can be found at https://bitbucket.org/amintimany/categories/. This implementation most notably makes use of features primitive projections for records and universe polymorphism that are new to Coq 8.5. The latter provides relative smallness and largeness in the development. This will be elaborated below. The former allows for specification of well-behaved dualities in the category theoretical sense. That is, we get definitional equalities such as:

\[
(C^{op})^{op} = C \quad (F^{op})^{op} = F \quad (N^{op})^{op} = N \\
(F \circ F')^{op} = F^{op} \circ F'^{op}
\]

Where C is a category, F and F' are functors and N is a natural transformation.

In this development the category Type_{Cat} plays the role of category of sets Set. This is the category of types in Coq as objects and functions among them as arrows. In the sequel, we will simply use Set to denote this category.

The following is the list of the most important notions and features of this development.

- basic constructions:
 - terminal/initial object
 - products/sums
 - equalizers/coequalizers
 - pullbacks/pushouts
 - exponentials
 - $+ \dashv \Delta \dashv \times$ and $(\times a) \dashv a$

- external constructions:
 - comma categories
 - product category
 - $\text{for } \text{Cat: } (\text{Obj} := \text{Category}, \text{Hom} := \text{Functor})$
 - cartesian closure
 - initial object
 - $\text{for } \text{Set: } (\text{Obj} := \text{Type}, \text{Hom} := \text{fun } A B \Rightarrow A \rightarrow B)$
 - initial object
 - sums
 - equalizers
 - coequalizers

- pullbacks
- cartesian closure
- local cartesian closure\(^1\)
- completeness
- co-completeness\(^1\)
- sub-object classifier ($\text{Prop} : \text{Type}$)\(^1\)
- topos\(^1\)

- the Yoneda lemma

- adjunction
 - hom-functor adjunction, unit-counit adjunction, universal morphism adjunction and their conversions
 - duality: $F \dashv G \Rightarrow G^{op} \dashv F^{op}$
 - uniqueness up to natural isomorphism

- kan extensions
 - global definition
 - local definition with both hom-functor and cones (along a functor)
 - uniqueness
 - preservation by adjoint functors
 - pointwise kan extensions (preserved by representable functors)

- (co)limits
 - as (left)right local kan extensions along the unique functor to the terminal category
 - (sum)product-(co)equalizer (co)limits
 - pointwise (as kan extensions)

- $T - (\text{co})\text{algebras}$ (for an endofunctor T)

\(^1\)uses the axioms of propositional extensionality and constructive indefinite description (axiom of choice).

In addition, we have used the axiom of functional extensionality and proof-irrelevance. The axiom of proof-irrelevance is mostly used in proofs of equality of arrows, e.g., to prove two functors are equal, one just needs to prove the object- and arrow-maps are equal.

Even though (co)limits are defined in general, we have defined most important and useful (co)limits separately: terminal object, products, equalizers and pullbacks. The duals of these notions, i.e., initial object, sums, coequalizers and pushouts, respectively, are simply defined as their counterparts in the opposite category. Similarly, only the right local kan extensions (in both versions) are defined directly and local left can extensions are simply assumed as local right kan extensions with opposite functors.

Although dualities behave nicely (in the aforemen-
tioned sense), working with dual definitions is not always as smooth. This is especially evident in rewriting equal-
ities. In some cases one has to add the equality to the proof context (usually applied to the arguments that are
difficult to match) and perform a simplification on them before they can be used with the `rewrite` tactic. In some
rare extreme cases, simplifications with tactics like `cbn` and `simpl` are not enough and one has to change the goal
in such a way that those lemmas can be used with, e.g.,
the `apply` tactic, instead of `rewrite`.

Universe levels, smallness and largeness

In this implementation, we use universe levels as the
underlying notion of smallness/largeness. In other
words, each category has universe levels that indica-
ate its relative smallness/largeness. In practice, the
type of categories has two universe level parameters,
Category@{i,j} : Type@{max(i+1,j+1)}, where i is the
level of the type of objects and j is the level of the type of
arrows. This relative notion of smallness/largeness works
so well, in fact, that we can prove the following theorem
in our implementation:

```
Theorem Complete_Preorder (C : Category) (CC : Complete C) :
  forall x y : (Obj C), Hom x y ≃ ((Arrow C) → Hom x y)
```

where y' is the limit of the constant functor from the
discrete category $(\text{Arrow } C)$ that maps every object to
y and $(\text{Arrow } C)$ is the type of all homomorphisms of
category C. This though, would result in a contradiction
as soon as we have two objects c and d in C for which
Hom $c d$ has more than one element. That is, we have effec-
tively shown that any complete category is a preorder
category, i.e., between any two objects there is at most
one arrow. This is indeed absurd as the category Set
is complete and there are types in Coq that have more
than one function between them! However, this theorem
holds for small categories. That is, any small and complete
category is a preorder category.\footnote{This theorem and its proof are taken from \cite{1}.} Expectedly, the
restrictions on the universe levels of this theorem do in-
deed confirm this fact. That is, this theorem is in fact
only applicable to categories in which the level of the type
of objects is less than or equal to the level of the type of
arrows. Hence, Coq will refuse to apply this theorem to
the category Set with a universe inconsistency error as for
it the level of the type of arrows is strictly less than the
level of the type of objects.

On the other hand, the universe polymorphism of
Coq treats inductive types by considering copies of them
at different levels. See \cite{2}. That implies that if we have
$C : \text{Category@{i,j}}$ and we additionally have that
$C : \text{Category@{i',j'}}$, Coq enforces $i = i'$ and $j = j'$. In
this setting, the category of (relatively small) categories
Cat, which in the implementation has type

$\text{Cat@{i,j,k,l}} : \text{Category@{i,j}}$

is not the category of all smaller categories. Rather it is
the category of categories that are at level k and l and
not any lower level.

Apart from the fact that Cat defined this way is
not the category of all relatively small categories, these
restrictions on universe levels impose practical restric-
tions as well. For instance, looking at the fact that
$\text{Cat@{i,j,k,l}}$ has exponentials (functor categories), we
we can see the restriction that $j = k = 1$. That is only those
copies have exponentials for which this restriction holds.

Looking back at the category of types, Set, we had
the restriction that the level of the type of arrows is strictly
less than that of objects. This means, there is no version
of Cat that both has exponentials and a version of Set
in its objects.

This means that we can’t simply assume that Cat has
exponentials and get the exponential transpose of the
hom-functor to be the Yoneda embedding\footnote{However, using the definition of currying defined independently of the notion of exponentials for functors can be used to this end and it is precisely how we have defined the Yoneda embedding.}

Moreover, we can use the Yoneda lemma to show that
in any cartesian closed category, for any objects a, b and c:

$$(a^{b c}) \simeq a^{b \times c}$$

Yet, this theorem can’t be applied to Cat, even though it
holds for Cat.

On the other hand, if we show that Set has the type
unit as its terminal object, we, strangely, get the restric-
tion that the level of the type of arrows of Set is universe
Set but, expectedly, not for objects. A similar problem
happens with showing that the category whose object
type and arrow type are unit is the terminal object of
Cat. It is not clear to the authors wether this is inten-
sional or the result of a bug. In any case, we have elected
to go around this problem by postulating existence of a
universe polymorphic type that has a single inhabitant:

```
Parameter UNIT : Type.
Parameter TT : UNIT.
Axiom UNIT_SINGLETON : forall x y : UNIT, x = y.
```

References

[2] Jason Gross, Adam Chlipala, and David I. Spiva-
k. Experience implementing a performant category-
theory library in coq. In Interactive Theorem Proving
- 5th International Conference, ITP 2014. Proceed-

polymorphism in coq. In Interactive Theorem Pro-
ving, ITP 2014, Proceedings, pages 499–514, July
2014.