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Putting things in equations

Average membrane potential:

V (x , t)
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Putting things in equations

Intrinsic dynamic:

τ
∂V (x , t)

∂t
= −V (x , t)
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Putting things in equations

An external current (projection from the Thalamus, other cortical
areas):

τ
∂V (x , t)

∂t
= −V (x , t)+Iext(x , t)
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Putting things in equations

Local interaction:

τ
∂V (x , t)

∂t
= −V (x , t)+Iext(x , t)+

∫
Ω
wloc(x , y)S(V (y , t)) dy

S is a sigmoidal function.
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Putting things in equations

Lateral interaction:

τ
∂V (x , t)

∂t
= −V (x , t)+Iext(x , t)+

∫
Ω
wloc(x , y)S(V (y , t)) dy+∫

Ω
wlat(x , y)S(V (y , t − |x − y |/v)) dy

Note the propagation velocity v : propagation delays.
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Putting things in equations

Synaptic depression:

τ ∂V (x ,t)
∂t = −V (x , t)+Iext(x , t)

+
∫

Ω wloc(x , y)q(y , t)S(V (y , t)) dy+∫
Ω wlat(x , y)q(y , t)S(V (y , t − |x − y |/v)) dy

∂q(x ,t)
∂t = 1−q(x ,t)

τq
− βq(x , t)S(u(x , t))
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Is this different from using PDEs?
I PDEs have been found very useful in C.V.

I Scale Space and edge detection: Perona, J. Malik, PAMI, 1990
I Scale Space: L. Alvarez, F. Guichard, P.-L. Lions. J.-M. Morel,

Archive for Rational Mechanics and Analysis, 1992.
I Image segmentation (active contours, regions): N. Paragios, R.

Deriche, IJCV, 2002 and many others.
I Textbook: G. Aubert, P. Kornprobst, Mathematics of Image

Processing, Elsevier, 2006

I They can be implemented with neural fields with localized
connectivity functions: w(x , y) ' 0 if |x − y | large: G.-H.
Cottet, J. Biological Systems, 1995 and R. Edwards,
Mathematical Methods in the Applied Sciences, 2005.

I Hence they are more general and can “implement” non-local
algorithms such as A. Buades, B. Coll, and J.-M. Morel,
Multiscale Model. Simul., SIAM 2005.
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Orientation HyperColumns

From [Bressloff, Cowan,

Golubitsky et al., Phil.

Trans. R. Soc. Lond. B,

2001], drawn by Jack

Cowan.
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Tuning curves
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Tuning curves
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The equation

τ V̇ (θ, t) = −V (θ, t) +
π/2∫
−π/2

J(θ − θ̄)S(σV (θ̄, t))d θ̄π +

εIext(θ, t) t > 0

I Ring model of visual orientations selectivity
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Some history

I Selective response of neurons to orientations [Hubel and
Wiesel 1962]: balance between cortical computation and LGN
feedforward input?

I Cortical models [Somers et al. 1995, Ben-Yishai 1995, Hansel
and Sompolinsky 1997]

I Simplifications of spiking models [Somers et al. 1995, Douglas
et al. 1995, Carandini and Ringach 1997]

I Meant to reproduce interactions between contrast and
orientation selectivity [Dean 1981, Sclar and Freeman 1982,
Skottun et al. 1987, Alitto and Usrey 2004]

I Computation studies of the ring model of orientation tuning:
[Ermentrout 1998, Bressloff et al. 2000, Bressloff et al. 2001,
Shriki et al. 2003]
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Questions

I Can we predict the existence of tuning curves?

I Can we understand the dynamics of the model?

I Can we relate its parameters to known biological evidence?

I Can we come up with interesting predictions?
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Answer

I YES, thanks to qualitative mathematics.
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Key ingredients

1. Analysis of the symmetries of the model (rotational).

2. Reduction to finite dimensions

3. Bifurcation analysis (with respect to the slope of the sigmoid)
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Finding the tuning curves (no stimulus)

I For small values of σ there is a unique, untuned, solution
[Faugeras et al., SIAM Journal of Applied Mathematics, 2008].

I A tuned solution arises when the Jacobian of the fixed point
equations is singular.

I We obtain a pitchfork bifurcation:

0 =
σ − σ0

σ0
ρf + χ3 (ρf )3
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Finding the tuning curves (no stimulus)

0
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T

I Because of the O(2) symmetry we have a continuum of
tuning curves:

TCϕ(θ) = S
[
σ
(
v f0 + σ

√
J1ρ

f cos2(θ − ϕ)
)]
.

Olivier Faugeras NeuroMathComp Laboratory - INRIA Sophia/UNSA LJAD

Neural fields



Introduction Equations PDE methods Edges Motion Conclusion Acknowledgments

Finding the tuning curves (stimulus on)

I How many tuning curves remain solutions?

I What is their stability?
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Finding the tuning curves (stimulus on)

0
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0

I Opening up of the pitchfork

I 3 tuning curves: 1 stable, two unstable
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Finding the tuning curves (stimulus on)

The dynamics:

I TCπ/2 is unstable.

I unstable eigenvalue: εβ
ρf
√
J1

.
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Biological/psychophysical prediction

I Dynamical “mixture” stimulus:

Iext(t) = (1− ψ(t))IDG
0 + ψ(t)IDG

π/2

t0

1
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Biological/psychophysical prediction

I π
2 illusion:

stimulus cortical 
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Perceptual switching dynamics of a multistable barber pole
stimulus: the phenomenon

.

.

D
(v
=
0
◦ )

H (v = −45◦)

V
(v

=
45

◦ )

I Initially percept is D followed by a transition to either H or V.

I Later we see regular switches between H and V.
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The model

I Interaction between V1 and MT.

I V1 is represented as a ring model of directions of motion

Ȧ(θ, t) = −A(θ, t) + S

(
λ

(
π/2∫
−π/2

J(θ − θ̄)A(θ̄, t)d θ̄π +

εIMT (θ, t)

))
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The model

I Interaction between V1 and MT.

I V1 is represented as a ring model of directions of motion

Add adaptation:
Ȧ(θ, t) = −A(θ, t) + S

(
λ

(
π/2∫
−π/2

J(θ − θ̄)A(θ̄, t)d θ̄π −

kαα(θ, t) + εIMT (θ, t)

))
εα̇(θ, t) = −α(θ, t) + A(θ, t),
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The model

I Interaction between V1 and MT.

I V1 is represented as a ring model of directions of motion

and noise

Ȧ(θ, t) = −A(θ, t) + S

(
λ

(
π/2∫
−π/2

J(θ − θ̄)A(θ̄, t)d θ̄π −

kαα(θ, t) + βX (θ, t) + εIMT (θ, t)

))
εα̇(θ, t) = −α(θ, t) + A(θ, t)
dX (θ, t) = −εX (θ, t) + σdW (θ, t)
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Representation of the stimulus in direction space

.

.
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v

vv v

I1D

I1D I2D Iext

+ =
6

?

w1D

We assume that in MT 2D cues play a more important role than
1D cues and set w1D = 0.5.
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Organisation of solutions in the parameter-plane (no noise)
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I Model response in terms of max firing rate matched to data
from Sclar et al (1990).
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Experimental recordings and characteristic behaviour
Eye movement recording data from individual 15s presentations;
carried out by Andrew Meso..

.
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.

.

v̄

v̄

t(s)

t(s)

H

D

V

H

D

V

Characteristic behaviour:

I Directions H or V are held for extended durations that vary.

I The direction D is seen briefly in transitions between H and V.
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Distributions of switching times

I Are the switches driven by noise or adaptation?
Rubin and Hupé (2005), Shpiro et al (2009), Theodoni et al
(2011).
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(a) (b)

I The log-normal distribution cannot be rejected for c = 0.08.

I The gamma distribution cannot be rejected for c = 0.16.

Prediction: It is possible to move smoothly from noise-driven to
adaptation-driven perceptual switching by varying the contrast.
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Examples of switching behaviour with noise

With small β 6= 0 the time between switches varies.
.

.
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(a)

(d)

(b)

(e)

(c)

(f)

c = 0.16 c = 0.16 c = 0.16

c = 0.08 c = 0.08 c = 0.08

I Close to contrast threshold the switching appears to be
primarily noise driven.

I Above contrast threshold the switching appears to be more
adaptation driven.
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Contrast and switching rate: all subjects together

I We show mean and SD of switching time distributions over a
range of contrast values.

I Error bars from experimental data come from the averaging
across trials and subjects.

.
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Model
Experiment: reported
Experiment: computed

Contrast c

M
ea
n
#

sw
it
ch
es Common characteristics:

With increasing contrast, both the model
and the experimental results show an early
rise, peak and fall in the number of
switches.

I Initial rise and saturation due to changing signal to noise ratio.

I Drop off above contrast threshold can be captured by
assuming that w1D decreases at high contrast.

Olivier Faugeras NeuroMathComp Laboratory - INRIA Sophia/UNSA LJAD

Neural fields



Introduction Equations PDE methods Edges Motion Conclusion Acknowledgments

Perception threshold: individual subject data
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With increasing threshold:

I The optimal number of switches occurs at a higher contrast.

I The optimal number of switches is lower.

I The curve becomes flatter around the optimal contrast value.
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Conclusion about neural fields

1. Similarity with the so-called “convolutional networks” in
machine learning. (see Yann LeCun’s talk)

2. Similarity with PDE techniques in computer vision.

3. Successes

I Neural fields are phenomenological models well-grounded in
biology.

I They can be analyzed mathematically.
I They can be fitted to experimental data.
I They can produce interesting biological predictions.

4. Caveats

I More work needs to be done on the learning side (add a
dynamics on the interaction kernels)

I They have not been applied to many computer vision problems
(but see Tobi Delbruck’s and Heiko Neumann’s talks)
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