Boundary measures for geometric inference

F. Chazal D. Cohen-Steiner Q. Mérigot

Geometrica

October 16, 2007

Outline

- Stability of projections & boundary measures

Boundary and curvature measures

Some applications in geometric inference Stability of projections & boundary measures

Point cloud geometry

• Given a set of points sampled near an unknown shape, can we infer the geometry of that shape?

- the volume of a cell is very sensitive to perturbation
- but if one consider the union of Voronoï cells whose site is contained in a given ball...

- the volume of a cell is very sensitive to perturbation
- but if one consider the union of Voronoï cells whose site is contained in a given ball...

- the volume of a cell is very sensitive to perturbation
- but if one consider the union of Voronoï cells whose site is contained in a given ball...

- the volume of a cell is very sensitive to perturbation
- but if one consider the union of Voronoï cells whose site is contained in a given ball...

Projection on a compact set

Definition

The projection $p_K : \mathbb{R}^n \to K \subset \mathbb{R}^n$ maps any point $x \in \mathbb{R}^n$ to its closest point in K. It is defined outside of the *medial axis* of K.

Measures

Definition

A measure is a map μ that takes a subset $B \subset \mathbb{R}^n$ and outputs a nonnegative number $\mu(B)$. It must be additive, *ie* if (B_i) are disjoint subsets,

$$\mu\left(\bigcup_{i\in\mathbb{N}}B_i\right)=\sum_{i\in\mathbb{N}}\mu(B_i)$$

measure = mass distribution

Boundary measure

Definition

For $E \subset \mathbb{R}^n$, the boundary measure $\mu_{K,E}$ is defined as follows :

$$\forall B \subseteq K, \ \mu_{K,E}(B) = \mathit{vol}^n(\{x \in E \mid \mathsf{p}_K(x) \in B\})$$

that is, the n-volume of the part of E that projects on B.

- measure supported in K
- contains a lot of geometric information about K
- defined for all compact sets $K \subseteq \mathbb{R}^n$!

Smooth object

- Let $K \subset \mathbb{R}^n$ be an *n*-dimensional object with smooth boundary.
- The smallest distance between K and its medial axis is called reach(K).
- Take $E = K^r \equiv \{x \in \mathbb{R}^n; d(x, K) \le r\}$, assuming $r < \operatorname{reach}(K)$.

Smooth object

• $K^r \setminus K$ is the (one to one) image of the map

$$\begin{array}{rccc} f:\partial K\times [0,r] & \to & \mathbb{R}^n \\ (x,t) & \mapsto & x+t\overrightarrow{n_K}(x) \end{array}$$

Smooth object

• $K^r \setminus K$ is the (one to one) image of the map

$$f: \partial K \times (0, r] \rightarrow \mathbb{R}^n$$

 $(x, t) \mapsto x + t \overrightarrow{n_K}(x)$

Hence

$$\operatorname{vol}^n(\operatorname{K}^r\setminus\operatorname{K})=\int_{\partial\operatorname{K} imes(0,r]}|\det df_{(x,t)}f|\;dxdt$$

• A calculation shows that :

$$det \ df_{(x,t)}f = \sum_{k=0}^{n-1} const(n,k) \sigma_k(x) \ t^k$$

where $\sigma_k(x)$ is the degree k elementary symmetric function of the principal curvatures at $x : \sigma_k = \sum_{i(1) < \ldots < i(k)} \kappa_{i(1)} \dots \kappa_{i(k)}$

Smooth object

lf r

Tube formula (Steiner, Weyl, Federer)

<
$$reach(K)$$
 :
 $vol^n(K^r) = vol^n(K) + \sum_{k=1}^n const(n,k) [\int_{\partial K} \sigma_{k-1}] r^k$

Smooth object

Tube formula (Steiner, Weyl, Federer)

If
$$r < reach(K)$$
, for $B \subset K$:

$$\mu_{K,K'}(B) = \underbrace{vol^{n}(B)}_{\Phi_{K}^{n}(B)} + \sum_{k=1}^{n} const(n,k) \underbrace{\left[\int_{B \cap \partial K} \sigma_{k-1}\right]}_{\Phi_{K}^{n-k}(B)} r^{k}$$

- The Φ_K^i are the (signed) *curvature measures* of K.
- If K is d-dimensional, they vanish identically for i > d.
- $\Phi_K^0(K)$ is the Euler characteristic of K.
- They are intrinsic, *i.e.* they do not depend on the embedding.

Boundary and curvature measures

Some applications in geometric inference Stability of projections & boundary measures

Convex polyhedron

• the boundary measure of a convex polyhedron K can be decomposed as a sum :

 $\mu_{K,K^r}(B) = \sum_{k=0}^n const(n,k) \Phi_{n-k}(B) r^k.$

 the curvature measure Φⁱ_K is the *i*-dimensional measure supported on the *i*-skeleton of K whose density is the local external dihedral angle.

F. Chazal, D. Cohen-Steiner, Q. Mérigot Boundary measures for geometric inference

The boundary measure of a point cloud

the boundary measure is a sum of weighted Dirac masses :

$$\mu_{\mathcal{C},\mathcal{C}^r} = \sum_i \textit{vol}^n(\textit{Vor}(x_i) \cap \mathcal{C}^r)\delta_{x_i}$$

Outline

Boundary and curvature measures

2 Some applications in geometric inference

Stability of projections & boundary measures

Recovering sharp features using boundary measures

Here, the volumes of the Voronoï cells are evaluated using a Monte-Carlo method. Cost scales linearly with ambient dimension. Approximation error does not depend on the ambient dimension.

F. Chazal, D. Cohen-Steiner, Q. Mérigot Boundary measures for geometric inference

Dimension estimation using boundary measures

Here, the volumes of the Voronoï cells are evaluated using a Monte-Carlo method. Cost scales linearly with ambient dimension. Approximation error does not depend on the ambient dimension.

The extremal measure of a point cloud

- If we let r go to infinity, we obtain a measure that says how extreme a point is in the data.
- it is actually the 0th curvature measure of the convex hull of the point cloud.
- Monte Carlo : repeatedly pick a random direction and increment the mass of the lowest point in that direction.

Normal & principal directions estimation

Replace **volumes** of Voronoï cells by their **covariance matrices**. This gives a tensor-valued measure.

- $\bullet\,$ small/large eigenvalues $\simeq\,$ tangent/normal space
- principal curvatures/directions?

Outline

Boundary and curvature measures

Stability of projections & boundary measures

Stability

 Assume point cloud C samples compact K well, e.g. d_H(K, C) ≤ ε. This means that

 $\mathcal{C} \subset \mathcal{K}^{\varepsilon}$ and $\mathcal{K} \subset \mathcal{C}^{\varepsilon}$

• Are $\mu_{K,E}$ and $\mu_{C,E}$ close? In which sense?

Wasserstein distance

- Assume measures μ and ν are discrete : $\mu = \sum_{i} c_i \delta_{x_i}, \ \nu = \sum_{j} d_j \delta_{y_j}$ we suppose that mass $(\mu) = mass(\nu)$
- a transport plan between is a set of nonnegative coefficients p_{ij} specifying the amount of mass which is transported from x_i to y_i, with

$$\sum_i p_{ij} = d_j$$
 and $\sum_j p_{ij} = c_i$

the cost of a transport plan is C(p) = ∑_{ij} ||x_i - y_j|| p_{ij}
W(μ, ν) = inf_p C(p)

Kantorovich-Rubinstein theorem

Theorem

For two measures μ and ν with common finite mass and bounded support,

$$W(\mu,
u) = \sup_{f} |\int f d\mu - \int f d
u|$$

where the sup is taken over all 1-Lipschitz functions $\mathbb{R}^n \to \mathbb{R}$.

Convergence for Wasserstein distance implies pointwise convergence after convolving with a "tent" function for example.

Wasserstein distance between boundary measures

 $p_{K'}(dx)$

We consider the following transport plan : the element of mass $p_K(x)dx$ coming from an element of mass dx at $x \in E$ will be transported to $p_{K'}(x)dx$.

the total cost of this transport is :

$$\int_{E} \|p_{K}(x) - p_{K'}(x)\| \, \mathrm{d}x = \|p_{K} - p'_{K}\|_{L^{1}(E)}$$

A convergence result for projections

Theorem (Federer)

If (K_n) converges to K for the Hausdorff distance, with reach $(K_n) \ge \text{reach}(K) > r > 0$, then p_{K_n} converges uniformly to p_K on K^r .

Not sufficient for our purpose.

Example

the projections p_K and $p_{K_{\varepsilon}}$ may differ a lot only on a small neighborhood of the medial axis of K.

A L¹ stability theorem for projections

Theorem

If E is an open set of \mathbb{R}^n with rectifiable boundary, and K and K' are two *close enough* compact subsets :

$$\begin{aligned} \|p_{\mathcal{K}} - p_{\mathcal{K}'}\|_{L^{1}(E)} &:= \int_{E} \|p_{\mathcal{K}} - p_{\mathcal{K}'}\| \\ &\leq C(n)[vol^{n}(E) + \operatorname{diam}(\mathcal{K})vol^{n-1}(\partial E)]\sqrt{R_{\mathcal{K}}d_{\mathcal{H}}(\mathcal{K},\mathcal{K}')} \end{aligned}$$

where $R_{\mathcal{K}} = \sup_{x \in E} d(x, \mathcal{K}).$

 close enough means that d_H(K, K') does not exceed min(R_K, diam(K), diam(K)²/R_K)

$$O(n) = O(\sqrt{n})$$

Optimality of the stability theorem for projections (1)

• taking E included in the dark region shows that the term $vol^{n-1}(\partial E)$ is necessary.

Optimality of the stability theorem for projections (2)

K = unit disk in \mathbb{R}^2 $K_\ell =$ polygonal approximation with sidelength ℓ

- $\mathsf{d}_H(K, K_\ell) \simeq \ell^2$.
- A certain fraction of the mass of μ_{Kℓ,E} is concentrated at the vertices. Hence W(μ_{Kℓ,E}, μ_{K,E}) = Ω(ℓ)

• So
$$\|p_{\mathcal{K}} - p_{\mathcal{K}_{\ell}}\|_{\operatorname{\mathsf{L}}^{1}(E)} \simeq \mathsf{d}_{\mathcal{H}}(\mathcal{K}, \mathcal{K}_{\ell})^{1/2}$$

Optimality of the stability theorem for projections (2)

K = unit line segment in \mathbb{R}^2 $K_\ell =$ circle arcs whose center lie is at distance R > 0 of K

- $d_H(K, K_\ell) \simeq \ell^2$.
- Almost half of the mass of μ_{Kℓ,E} is concentrated at the vertices. Hence W(μ_{Kℓ,E}, μ_{K,E}) = Ω(ℓ)

• So
$$\|p_K - p_{K_\ell}\|_{\mathsf{L}^1(E)} \simeq \mathsf{d}_H(K, K_\ell)^{1/2}$$

Sketch of proof

Lemma

Function $v_K : x \mapsto ||x||^2 - d_K^2(x)$ is convex.

$$v_{\mathcal{K}}(x) = \|x\|^2 - \inf_{y \in \mathcal{K}} \|x - y\|^2$$

=
$$\sup_{y \in \mathcal{K}} [\|x\|^2 - \|x - y\|^2]$$

which is a sup of affine functions.

Sketch of proof

Lemma

 $\nabla v_{\mathcal{K}} = 2p_{\mathcal{K}}$ almost everywhere.

$$\nabla v_{\mathcal{K}}(x) = 2x - 2d_{\mathcal{K}}(x) \cdot \nabla d_{\mathcal{K}}(x)$$

= $2x - 2d_{\mathcal{K}}(x) \frac{x - p_{\mathcal{K}}(x)}{d_{\mathcal{K}}(x)}$
= $2p_{\mathcal{K}}(x)$

We want to bound the L^1 distance between the gradients of two convex functions.

Sketch of proof

What do we know about v_K and $v_{K'}$? We assume $d_H(K, K') = \varepsilon \leq \operatorname{diam}(K)$ and let $R_K = \sup_E d_K$

1 v_K and $v_{K'}$ are uniformly close :

$$|v_{K} - v'_{K}| = |d_{K}^{2} - d_{K'}^{2}| \\ = |d_{K} - d_{K'}|(d_{K} + d_{K'}) \\ \leq 3 R_{K} \varepsilon$$

② ∇v_{K} and $\nabla v_{K'}$ are both contained in 2K ∪ 2K', which has diameter ≤ 2 diam(K) + 4 ε ≤ 6 diam(K).

An inequality

Lemma

If $f,g:E
ightarrow\mathbb{R}$ are convex and $k=\mathsf{diam}(
abla f(E)\cup
abla g(E))$ then

$$\begin{aligned} \|\nabla f - \nabla g\|_{\mathsf{L}^{1}(E)} &\leq C(n) \left[\operatorname{vol}^{n}(E) + k \operatorname{vol}^{n-1}(\partial E) \right] \, \|f - g\|_{\infty}^{1/2} \\ &+ C(n) \operatorname{vol}^{n-1}(\partial E) \, \|f - g\|_{\infty} \end{aligned}$$

1-dimensional case

Lemma

Let $f, g: I \to \mathbb{R}$ be two convex functions such that que $\forall x \in I, |f(x) - g(x)| \le \delta$ and $\operatorname{diam}(f'(I) \cup g'(I)) \le k$. Then, $\int_{I} |f' - g'| \le C[(\operatorname{length}(I) + k)\sqrt{\delta} + \delta]$

Proof of the 1-dimensional case

f

Lemma

A

Т

k

$$\int_{I} \left| f' - g' \right| \le C[(\mathsf{length}(I) + k)\sqrt{\delta} + \delta]$$

$$each a \in \partial A^{\sqrt{2\delta/\pi}}$$

3
$$\mathsf{length}(\partial A) \leq 2(k + \mathsf{length}(I))$$

④ For any curve
$$S \subset \mathbb{R}^2$$

$$\operatorname{area}(S^r) \leq \frac{9\pi}{4} [\operatorname{length}(S).r + r^2]_{\operatorname{Grad}}$$

Proof of the general case

Considering restrictions of f and g to an affine line $\ell \subset \mathbb{R}^n$ with direction v (||v|| = 1), we get :

$$\begin{aligned} \int_{\ell \cap E} \left| f'_{|\ell \cap E} - g'_{|\ell \cap E} \right| &\leq C[\operatorname{length}(\ell \cap E) + k. \left(\#(\ell \cap \partial E) + \sqrt{\delta} \right)] \sqrt{\delta} \\ \int_{\ell \cap E} \left| \langle \nabla f - \nabla g | v \rangle \right| &\leq C[\operatorname{length}(\ell \cap E) + k. \left(\#(\ell \cap \partial E) + \sqrt{\delta} \right)] \sqrt{\delta} \end{aligned}$$

integrating over all lines and using the Crofton formulas gives the *n*-dimensional bound.

Stability of boundary measures

Theorem

If K is a fixed compact set, and E an open set with smooth boundary, then

$$\mathsf{W}(\mu_{\mathcal{K},\mathcal{E}},\mu_{\mathcal{K}',\mathcal{E}})\leq \mathsf{C}(\mathsf{n},\mathcal{E},\mathcal{K})\,\mathsf{d}_{H}(\mathcal{K},\mathcal{K}')^{1/2}$$

as soon as K' is close enough to K.

A similar result holds for $\mu_{K,K'}$ and $\mu_{K',K''}$.

Estimating curvature measures

- for any K with positive reach, there exists measures $\Phi_{K,i}$ such that for $r < \operatorname{reach}(K)$, $\mu_{K,r}(B) = \sum_{i=1}^{n} \Phi_{K}^{n-i}(B)r^{i}$
- ② can be computed knowing only the boundary measures for *n* + 1 values *r*₀ < . . . < *r_n* : denote the result by $\Phi_{K,i}^{(r)}$.

Corollary

If reach $(K) > r_n$ and K' is *close* to K, there is a constant C(K, n, (r)) such that

$$\mathsf{d}_{\mathsf{bL}}\left(\Phi_{\mathcal{K},i},\Phi_{\mathcal{K}',i}^{(r)}\right) \leq C(\mathcal{K},n,(r))\,\mathsf{d}_{\mathcal{H}}(\mathcal{K},\mathcal{K}')^{1/2}$$

 \mathcal{C}^0 (Hausdorff) closeness implies closeness of differential properties at a given scale.

F. Chazal, D. Cohen-Steiner, Q. Mérigot Boundary measures for geometric inference

Discussion

- The boundary measure and its tensor version encode "much" of the geometry of a compact set.
- these measures depend continuously on the compact set for the Hausdorff distance (whatever the compact).
- what can we do when the underlying shape has zero reach?
- what happens if we replace nearest neighbors by approximate nearest neighbors in the Monte-Carlo algorithm?
- bow can we deal with outliers?

