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Boundary and curvature measures

Point cloud geometry
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@ Given a set of points sampled near an unknown shape, can we
infer the geometry of that shape?
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Detecting singularities
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Boundary and curvature measures

Detecting singularities

@ the volume of a cell is very sensitive
to perturbation
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Boundary and curvature measures

Detecting singularities

o the volume of a cell is very sensitive
to perturbation

@ but if one consider the union of
Voronoi cells whose site is
contained in a given ball...
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Boundary and curvature measures

Projection on a compact set

Definition
The projection px : R — K C R” maps any point x € R” to its
closest point in K. It is defined outside of the medial axis of K.
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Boundary and curvature measures

Measures

Definition
A measure is a map u that takes a subset B C R” and outputs a
nonnegative number p(B). It must be additive, ie if (B;) are

disjoint subsets,
nl(lUBi) =D uB)
icN ieN

measure = mass distribution
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Boundary and curvature measures

Boundary measure

Definition
For E C R”, the boundary measure ji g is defined as follows :

VB C K, pk e(B)=vol"({x € E|pk(x) € B})

that is, the n-volume of the part of E that projects on B.

@ measure supported in K
@ contains a lot of geometric information about K

o defined for all compact sets K C R"!
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Boundary and curvature measures

Smooth object

Med(R? \ K)

@ Let K C R” be an n-dimensional object with smooth boundary.
@ The smallest distance between K and its medial axis is called
reach(K).
e Take E = K" = {x € R";d(x, K) < r}, assuming
r < reach(K).
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Boundary and curvature measures

Smooth object

Med(®® \ K)
@ K"\ K is the (one to one) image of the map

f:0Kx[0,r] — R"
(x,t) — x+ tng(x)
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Boundary and curvature measures

Smooth object

@ K"\ K is the (one to one) image of the map

fiOK x (0,r] — R”
(x,t) +— x+ tng(x)

@ Hence
vol"(K"\ K) = / |det d;‘(x7t)f| dxdt
K x(0,]
@ A calculation shows that :
n—1
det dfixof = const(n, k) ox(x) t*
k=0

where o (x) is the degree k elementary symmetric function of g@
the principal curvatures at x : ok = 3 i1y ci(ky Ki(1)--Ki(k)
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Boundary and curvature measures

Smooth object

Tube formula (Steiner, Weyl, Federer)
If r < reach(K) :

vol"(K") = vol"(K Z const(n, k) [/ ox_1] r¥
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Boundary and curvature measures

Smooth object

Tube formula (Steiner, Weyl, Federer)
If r < reach(K), for B C K :

,U/K,K’(B) = VO/n(B) +Z CO”St(I‘l, k) [/ O'k_l] I’k
SN—— h—1 BNoK
—_——

ok (B) oy “(B)

The @i are the (signed) curvature measures of K.

If K is d-dimensional, they vanish identically for i > d.
®9 (K) is the Euler characteristic of K.

They are intrinsic, i.e. they do not depend on the embedding. S Q
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Boundary and curvature measures

Convex polyhedron

rdA

ﬂ
J

0 x r2de

Qxr?

@ the boundary measure of a convex polyhedron K can be
decomposed as a sum :

furc kr(B) = Yp_q const(n, k) ®,_(B) r*.
e the curvature measure @) is the i-dimensional measure .
supported on the /-skeleton of K whose density is the local o

external dihedral angle.
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Boundary and curvature measures

The boundary measure of a point cloud

the boundary measure is a sum of weighted Dirac masses :

pe,cr = Z vol"(Vor(x;) N C")dy,

I
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Some applications in geometric inference
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Some applications in geometric inference

Recovering sharp features using boundary measures

Here, the volumes of the Voronoi cells are evaluated using a
Monte-Carlo method. Cost scales linearly with ambient dimension.
Approximation error does not depend on the ambient dimension.  fruich
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Some applications in geometric inference

Dimension estimation using boundary measures

Here, the volumes of the Voronoi cells are evaluated using a
Monte-Carlo method. Cost scales linearly with ambient dimension.
Approximation error does not depend on the ambient dimension.
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Some applications in geometric inference

The extremal measure of a point cloud

o If we let r go to infinity, we obtain a measure that says how
extreme a point is in the data.

e it is actually the 0 curvature measure of the convex hull of
the point cloud.

@ Monte Carlo : repeatedly pick a random direction and
increment the mass of the lowest point in that direction.
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Some applications in geometric inference

Normal & principal directions estimation

Replace volumes of Voronoi cells by their covariance matrices.
This gives a tensor-valued measure.
. N .
e small/large eigenvalues ~ tangent/normal space ;
@ principal curvatures/directions? £
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Stability of projections & boundary measures

Stability

@ Assume point cloud C samples compact K well,
e.g. du(K, C) < e. This means that

CCcK¢and K C C¢

® Are puk g and pc g close? In which sense?
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Stability of projections & boundary measures

Wasserstein distance

@ Assume measures p and v are discrete :

p=22Ciox, v =) didy,

. @ we suppose that mass(u) = mass(v)
® ® @ a transport plan between is a set of nonnegative
coefficients p;; specifying the amount of mass

. e which is transported from x; to y;, with

. .

d_pi=diand 3 pj=c
@ ® i R
@ . @ the cost of a transport plan is

Cp) = Xi Ixi — il pij
o W(p,v)=inf, C(p)
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Stability of projections & boundary measures

Kantorovich-Rubinstein theorem

Theorem

For two measures 1 and v with common finite mass and bounded
support,

W(ujl/):sup|/fd,u—/fdy|
f

where the sup is taken over all 1-Lipschitz functions R” — R.

Convergence for Wasserstein distance implies pointwise
convergence after convolving with a “tent” function for example.
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Stability of projections & boundary measures

Wasserstein distance between boundary measures

i (dx)
We consider the following transport plan : the element of mass
Pk (x)dx coming from an element of mass dx at x € E will be
transported to px/(x)dx.
the total cost of this transport is :

[ e =Gl dx = 1ok = sl
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Stability of projections & boundary measures

A convergence result for projections

Theorem (Federer)

If (K,) converges to K for the Hausdorff distance, with

reach(K,) > reach(K) > r > 0, then pk, converges uniformly to
px on K'.

Not sufficient for our purpose.
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Stability of projections & boundary measures

e

the projections px and px. may differ a lot only on a small
neighborhood of the medial axis of K.

mzomo

TRICA

F. Chazal, D. Cohen-Steiner, Q. Mérigot Boundary measures for geometric inference



Stability of projections & boundary measures

A L stability theorem for projections

Theorem
If E is an open set of R” with rectifiable boundary, and K and K’
are two close enough compact subsets :

Ik — prelly 2 o= / ok — pxe
L&)~ /g

< C(n)[vol"(E) + diam(K)vol"* (9E)]/Rxdu(K, K')

where Rk = sup,cg d(x, K).

@ close enough means that dy (K, K’) does not exceed
min(Ryk, diam(K),diam(K)?/Rk)

@ C(n) = 0(v/n)
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Stability of projections & boundary measures

Optimality of the stability theorem for projections (1)

e taking E included in the dark region shows that the term
vol""}(DE) is necessary. E@
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Stability of projections & boundary measures

Optimality of the stability theorem for projections (2)

K = unit disk in R?
Ky = polygonal approximation with sidelength ¢

o dy(K, Ky) ~ (2.

@ A certain fraction of the mass of uk, £ is
concentrated at the vertices. Hence

W (pk,.E, itk ,E) = Q)
® So [lpk = Pl 1 gy = du(K, Ke)'/?
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Stability of projections & boundary measures

Optimality of the stability theorem for projections (2)

K = unit line segment in R?
Ky = circle arcs whose center lie is at distance R > 0 of K

1

-

E

o dy(K, Ky) ~ 2.
@ Almost half of the mass of 1k, £ is concentrated at the
vertices. Hence W (uk, g, uk.g) = Q(¢) o -
v T N1)2 5@
e So HpK - pKeHLI(E) = dH(K7 Kf) ¥
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Stability of projections & boundary measures

Sketch of proof

Function vk : x — ||x||* — d2(x) is convex.

2 : 2
x||* = inf ||x —
x| yeKH vl

vi(x)

2 2
sup[[[x||* = [lx — y[I]
yeK

which is a sup of affine functions.
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Stability of projections & boundary measures

Sketch of proof

Vvk = 2pk almost everywhere.

Vvk(x) = 2x—2dk(x).Vdk(x)
x — pk(x)
dk(x)

= 2x — 2dk(x)
= 2pk(x)

We want to bound the L! distance between the gradients of two
convex functions.
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Stability of projections & boundary measures

Sketch of proof

What do we know about vk and v/ ?
We assume dy(K, K') = ¢ < diam(K) and let Rx = supgdg

© vk and vk are uniformly close :

vk — vkl = |di — di/|
= |dk — dk|(dk + dk’)
< 3Rge

@ Vvk and Vv are both contained in 2K U 2K’, which has
diameter < 2diam(K) + 4 ¢ < 6diam(K).
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Stability of projections & boundary measures

An inequality

If f,g: E — R are convex and k = diam(Vf(E) U Vg(E)) then

IVF = Vgl 2 g < Cln) [vol"(E) + k vol"(DE)] | — g}

+ C(n) vol" " (OE) [If — gl
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Stability of projections & boundary measures

1-dimensional case

Let f,g : | — R be two convex functions such that que
Vx €1, |f(x) — g(x)] < and diam(f'(I) U g'(/)) < k. Then,

/I\f' —g'| < C[(length(1) + k)V5 + 4]
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Stability of projections & boundary measures

Proof of the 1-dimensional case

/\f'—g'\ < C[(length(1) + k)V/3 + 9]
)

© No disk of radius /26 /7 can fit
between the graphs of ' and g’.

Q Hence A C AVH/T,
© length(0A) < 2(k + length(/))
Q For any curve S C R? :

area(S") < S%W[Iength(S).r + ],

o
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Stability of projections & boundary measures

Proof of the general case

Considering restrictions of £ and g to an affine line ¢ C R” with
direction v (||v|| = 1), we get :

C[ length(¢ N E) + k. (#(¢ N OE) + V3) V6

IN

/ /
/mE ‘f\mE — &lnE

/ (VF —Velv)| < C[length(¢n E)+ k. (#(¢ N OE) + v/3) |3
INE

integrating over all lines and using the Crofton formulas gives the
n-dimensional bound.
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Stability of projections & boundary measures

Stability of boundary measures

Theorem

If K is a fixed compact set, and E an open set with smooth
boundary, then

W(pk g, ik g) < C(n, E, K) du(K, K')!/?

as soon as K’ is close enough to K.

A similar result holds for ik kr and gk e
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Stability of projections & boundary measures

Estimating curvature measures

© for any K with positive reach, there exists measures ® ; such
that for r < reach(K), uk (B) = >.i_; oK% '(B)r'
@ can be computed knowing only the boundary measures for

n+ 1 values ry < ... < r, : denote the result by CD%),-.

If reach(K) > r, and K’ is close to K, there is a constant
C(K,n,(r)) such that

dL (®rin @) < C(K, 0, (1) di(K, K2

CO (Hausdorff) closeness implies closeness of differential properties E@
at a given scale. €
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Stability of projections & boundary measures

Discussion

© The boundary measure and its tensor version encode “much”
of the geometry of a compact set.

@ these measures depend continuously on the compact set for
the Hausdorff distance (whatever the compact).

© what can we do when the underlying shape has zero reach?

@ what happens if we replace nearest neighbors by approximate
nearest neighbors in the Monte-Carlo algorithm ?

© how can we deal with outliers?
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