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Objectives

« Learn about basic performance measurement and
analysis methods and techniques for HPC applications

« (et to know Scalasca, a scalable and portable
performance analysis tool



Performance tuning: an old problem

@

“The most constant difficulty in
contriving the engine has arisen from
the desire to reduce the time in which
the calculations were executed to the
shortest which is possible.”

Charles Babbage
1791 - 1871
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Outline

* Principles of parallel performance
« Performance analysis techniques
* Practical performance analysis using Scalasca



Why parallelism at all?
Moore's Law is still in charge...
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Free lunch is over...

Need for Parallelism

Performance

Time

Parallelism is crucial for optimal performance

* Other names and brands may be claimed as the property of others.

L}  Copyright * 2007, Intel Corporation. All rights reserved.
*Intel and the Intel logo are registered trademarks of Intel Corporation. Other brands and names are the property of thelr respective owners



Parallelism

« System/application level

— Server throughput can be improved by spreading workload
across multiple processors or disks

— Ability to add memory, processors, and disks is called scalability
 |Individual processor
— Pipelining

— Depends on the fact that many instructions do not depend on the
results of their immediate predecessors

* Detailed digital design
— Set-associative caches use multiple banks of memory
— Carry-lookahead in modern ALUs



Amdahl’s Law for parallelism

* Assumption — program can be parallelized on p
processors except for a sequential fraction f with

O<f =l

1
Speedup(p) = 1 <—

« Speedup limited by sequential fraction



Available parallelism

* Overall speedup of 80 on 100 processors

f =0.0025



Law of Gustafson

Amdahl’s Law ignores increasing problem size

— Parallelism often applied to calculate bigger problems instead of
calculating a given problem faster

Fraction of sequential part may be function of problem
size
Assumption

— Sequential part has constant runtime 7;
— Parallel part has runtime t,(n,p)

Speedup

¢ +7,(N,1)
7y +7,(n,p)

Speedup(n,p) =

If parallel part can be

perfectly parallelized



Parallel efficiency

Speedup(p)

Efficiency(p) =

* Metric for cost of parallelization (e.g., communication)
* Without super-linear speedup

Efficiency(p) <1

« Super-linear speedup possible
— Critical data structures may fit into the aggregate cache



Scalability

» Weak scaling

— Ability to solve a larger input problem by using more resources
(here: processors)

— Example: larger domain, more particles, higher resolution

« Strong scaling

— Ability to solve the same input problem faster as more resources
are used

— Usually more challenging
— Limited by Amdahl's Law and communication demand



Serial vs. parallel performance

« Serial programs
— Cache behavior and ILP

» Parallel programs
— Amount of parallelism
— Granularity of parallel tasks
— Frequency and nature of inter-task communication

— Frequency and nature of synchronization
« Number of tasks that synchronize much higher — contention



Goals of performance analysis

« Compare alternatives
— Which configurations are best under which conditions?

« Determine the impact of a feature
— Before-and-after comparison

« System tuning

— Find parameters that produce best overall performance
* |dentify relative performance

— Which program / algorithm is faster?

« Performance debugging
— Search for bottlenecks

» Set expectations
— Provide information for users



Analysis techniques (1)

* Analytical modeling
— Mathematical description of the system
— Quick change of parameters

— Often requires restrictive assumptions rarely met in practice
« Low accuracy

— Rapid solution
— Key insights
 Validation of simulations / measurements
 Example
_ Memory delay  flavg = ht, +(1-h),

— Parameters obtained from manufacturer or measurement



Analysis techniques (2)

 Simulation

— Program written to model important features of the system being
analyzed
— Can be easily modified to study the impact of changes
— Cost
» Writing the program
* Running the program
— Impossible to model every small detall
« Simulation refers to “ideal” system
« Sometimes low accuracy

 Example

— Cache simulator

— Parameters: size, block size, associativity, relative cache and
memory delays



Analysis techniques (3)

* Measurement
— No simplifying assumptions
— Highest credibility
— Information only on specific system being measured
— Harder to change system parameters in a real system
— Difficult and time consuming
— Need for software tools

* Should be used in conjunction with modeling
— Can aid the development of performance models

— Performance models set expectations against which
measurements can be compared



Metrics of performance

 What can be measured?
— A count of how many times an event occurs
« E.g., Number of input / output requests

— The duration of some time interval
« E.g., duration of these requests

— The size of some parameter
« Number of bytes transmitted or stored

 Derived metrics
— E.g., rates / throughput
— Needed for normalization



Primary performance metrics

Execution time, response time

— Time between start and completion of a program or event
— Only consistent and reliable measure of performance

— Wall-clock time vs. CPU time

Throughput

— Total amount of work done in a given time

1

Performance =
Execution time

Basic principle: reproducibility
Problem: execution time is slightly non-deterministic
— Use mean or minimum of several runs



Alternative performance metrics

o “‘Math” operations?
Clock rate HW operations?
 Instructions executed HW instructions®?
Single or double
per second

precision?

+ FLOPS , ©® @

— Floating-point operations per second
« Benchmarks

— Standard test program(s)

— Standardized methodology

— E.g., SPEC, Linpack
 QUIPS / HINT [Gustafson and Snell, 95]

— Quality improvements per second
— Quality of solution instead of effort to reach it




Comparison of analysis techniques

Analytical Simulation Measurement
modeling
Flexibility High High Low
Cost Low Medium High
Credibility Low Medium High

Accuracy Low Medium High



Peak performance

« Peak performance is the performance a computer is
guaranteed not to exceed

70% r
B Power4

60% - 58% Itanium 2
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Cray X1
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40% | 64 processors
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plasma physics materials science astrophysics magnetic fusion
£ 2007 Elsavier, Inc. All rights resarved.

Source: Hennessy, Patterson: Computer Architecture, 4th edition, Morgan Kaufmann



Performance tuning cycle

Instrumentation §

Measurement

Presentation

—
—
m
—
Optimization

Optimization



Performance measurement cycle (2)

* |nstrumentation
— Insertion of extra code (probes) into application

* Measurement

— Collection of data relevant to performance analysis
* Analysis

— Calculation of metrics

— ldentification of performance bottlenecks

 Presentation

— Transformation of the results into a representation that can be
easily understood by a human user

* Optimization
— Elimination of bottlenecks



Semantic gap

v09,S [a30,1],m00
a30 -26612:abcd
vlz2,S [a31,1],m00

a3o0 al2+a30
a3l -26616:abcd

a

v1l0,S [a30,1],m00

C=A4A+8B -22516:abcd
(cl, €2) = (al, a2) 6 (b1, b2) al2+a3l
al=1& a2=1e c1bb1& c2bb2 al5+al6
b1=1& b2=1e clbal & c2ba2 [a31,1],m00
fori=1:2, -32764:abcd
al=? e cib bi v10-v14,m00

bi=?ecibai

al=bi e cib ai
otherwise, error

 Programmer’s mental model of the program does not match the
executed version

— Performance tools needed to bridge this semantic gap



Semantic performance mapping

* |nstrumentation levels
— Source code
— Library
— Runtime system
— Object code
— Operating system
— Runtime image
— Virtual machine
* Problem
— Every level provides different information
— Often instrumentation on multiple levels required

» Challenge

— Mapping performance data onto application-level abstraction



Instrumentation techniques

« Static instrumentation
— Program is instrumented prior to execution

* Dynamic instrumentation
— Program is instrumented at runtime

e Codeisinserted

— Manually

— Automatically

By preprocessor

By compiler

By linking against preinstrumented (interposition) library
By binary-rewrite / dynamic instrumentation tool



Measurement

Typical performance data include

Counts
Durations

Communication cost
Synchronization cost
|O accesses

System calls
Hardware events

r

exclusive
duration

{

int foo()
{

int a;




Critical issues

* Accuracy

— Perturbation
* Measurement alters program behavior
« E.g., memory access pattern

— Intrusion overhead
* Measurement itself needs time and thus lowers performance

— Accuracy of timers, counters

« Granularity

— How many measurements
« Pitfall: short but frequently executed functions

— How much information / work during each measurement

 Tradeoff

— Accuracy < expressiveness of data



Single-node performance

* Huge gap between CPU and memory speed
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 Internal operation of a microprocessor potentially complex
— Pipelining
— Out-of-order instruction issuing
— Branch prediction
— Non-blocking caches



Hardware counters

« Small set of registers that count events

» Events are signals related to the processor’s internal
function

 Qriginal purpose: design verification and performance
debugging for microprocessors

 Idea: use this information to analyze the performance
behavior of an application as opposed to a CPU



Typical hardware counters

Cycle count

Instruction count

All instructions
Floating point
Integer

Load / store

Branches

Taken / not taken
Mispredictions

Pipeline stalls due to

Memory subsystem
Resource conflicts

Cache |/D cache misses for
different levels
Invalidations

TLB Misses

Invalidations




Profiling

« Mapping of aggregated information
— Time
— Counts
« Calls

« Hardware counters
* Onto program and system entities
— Functions, loops, call paths
— Processes, threads

* Methods to create a profile
— PC sampling (statistical approach)
— Interval timer / direct measurement (deterministic approach)



Profiling (2)

« Sampling
— Statistical measurement technique

« Based on the assumption that a subset of a population being
examined is representative for the whole population

* Requires long-running programs
— Periodic operating system signal interrupts the running program

— Interrupt service routine examines return-address stack to find
address of instruction being executed when interrupt occurred

— Using symbol-table information this address is mapped onto
specific subroutine

* Interval timing
— Time measurement at beginning and end of a code region
— Requires high-resolution / low-overhead clock



Call-path profiling

» Behavior of a function may depend "

on caller (i.e., parameters) 201,
 Flat function profile often not !

sufficient AC) B0
* How to determine call path at yo7 YO

runtime? }

— Runtime stack walk

— Maintain shadow stack
» Requires tracking of function calls




Event tracing

O00  VAMPIR - Timeline X
ctest-24x2x16,vpt (0,000s - 1:56,133 = 1:56,133)
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thread 256313 idle
thread 256314 idle
thread 256315 idle
process 272 5]
thread 272:1 idle
thread 272:2 idle
thread 272:3 idle
thread 272:4 idle
thread 272:5 idle
thread 272:6 idle
thread 272:7 idle

idle

Section on
display

Displayed 16 from 768 bars

« Typical events
— Entering and leaving a function
— Sending and receiving a message




Why tracing?

« High level of detail

« Allows in-depth post-mortem analysis of program behavior
— Time-line visualization
— Automatic pattern search

* |dentification of wait states
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Obstacle: trace size

Number of processes

A

Width

* Problem: width and length of event trace



Tracing vs. profiling

« Advantages of tracing

— Event traces preserve the temporal and spatial relationships
among individual events

— Allows reconstruction of dynamic behavior of application
on any required abstraction level

— Most general measurement technique
* Profile data can be constructed from event traces

* Disadvantages
— Traces can become very large

— Writing events to a file at runtime can cause perturbation

— Writing tracing software is complicated
« Event buffering, clock synchronization, ...



scalasca (¥

Scalable performance-analysis toolset for parallel codes
— Focus on communication & synchronization

Integrated performance analysis process
— Performance overview on call-path level via call-path profiling
— In-depth study of application behavior via event tracing

Supported programming models
— MPI-1, MPI-2 one-sided communication
— OpenMP (basic features)

Available for all major HPC platforms
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The team
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scalasca 3

www.scalasca.org

Scalasca

Scalasca is a software tool that supports the performance
optimization of parallel programs by measuring and analyzing
their runtime behavior. The analysis identifies potential
performance bottlenecks - in particular those concerning
communication and synchronization - and offers guidance in
exploring their causes.

Home | Imprint

7th VI-HPS Tuning Workshop

HLRS, Stuttgart/Germany, March
28-30, 2011 Three-day hands-
on workshop covering the...
more...

Scalasca at SC'10

November 13-19, 2010: Join us
at SC'10 in New Orleans, LA,
USA. Scalasca team... more...
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Installations and users

Companies

Bull (France)

Dassault Aviation (France)
Efield Solutions (Sweden)
GNS (Germany)

INTES (Germany)
MAGMA (Germany)
RECOM (Germany)
SciLab (France)

Shell (Netherlands)

Sun Microsystems (USA, Singapore, India)
Qontix (UK)

Research/supercomputing centers

ANL (USA)BSC (Spain)
CASPUR (ltaly)
CEA (France)
CERFACS (France)
CINECA (ltaly)

CSC (Finland)
CSCS (Switzerland)
DLR (Germany)
DKRZ (Germany)
EPCC (UK)

FZJ (Germany)
HLRN (Germany)
HLRS (Germany)
ICHEC (Ireland)
IDRIS (France)

KIT (Germany)
LLNL (USA)

Research/supercomputing centers (cont.)
— LRZ (Germany)
—  MCH (Switzerland)
— NCAR (USA)
— NCSA (USA)
— ORNL (USA)
—  PIK (Germany)
- PSC (USA)
— RZG (Germany)
—  SARA (Netherlands)
—  SAITC (Bulgaria)
— TACC (USA)
Universities
—  Lund University (Sweden)
—  MSU (Russia)
- RPI (USA)
—  RWTH (Germany)
—  TUD (Germany)
—  UOregon (USA)
- UTK(USA)
DoD/MoD computing centers
— AFRLDSRC (USA)
— ARLDSRC (USA)
— ARSC DSRC (USA)
— AWE (UK)
— ERDC DSRC (USA)
— Navy DSRC (USA)
— MHPCC DSRC (USA)
—  SSC-Pacific (USA)
—  MetOffice (UK)
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Wait-state analysis

process
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XNS CFD simulation application

« Computational fluid dynamics code

Developed by Chair for Computational Analysis of Technical
Systems, RWTH Aachen University

Finite-element method on unstructured 3D meshes
Parallel implementation based on message passing
>40,000 lines of Fortran & C

DeBakey blood pump test case
 Scalability of original version limited <1024 CPUs

Partitioned finite-element mesh




Call-path profile: Computation
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Call-path profile: P2P messaging
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Call-path profile: P2P sync. ops.

Point-to-

point msgs
w/o data

Masses of
P2P sync.

operationsf
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Trace analysis: Late sender
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XNS scalability remediation

* Review of original XNS
— Computation is well balanced
— Real communication is very imbalanced

— Huge amounts of P2P synchronisations
« Grow exponentially with number of processes

« Elimination of redundant messages
— Relevant neighbor partitions known in advance from static mesh
partitioning
— Most transfers still required at small scale
while connectivity is relatively dense

— Growing benefits at larger scales (>512)



After removal of redundant messages

XNS simulation of DeBakey blood pump haemodynamics on JUBL
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XNS wait-state analysis of tuned version

(tuned version, simulation timé-step-loop)
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MAGMAYfill by MAGMASOFT® GmbH

« Simulates mold-filling in
casting processes

 Scalasca used

— To identify communication
bottleneck

— To compare alternatives using
performance algebra utility e | [corvee | rivw
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INDEED by GNS® mbh

a0 SerA76 Lo

Finite-element code for the simulation of

material-forming processes

— Focus on creation of element-stiffness matrix
Tool workflow

— Scalasca identified serialization in critical

section as bottleneck

— In-depth analysis using Vampir

Speedup of 30-40% after optimization
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Scalability in terms of the number of cores

Jaguar, MK = 10 (default)

»  Application study of ASCI 73
Sweep3D benchmark
 |dentified MPI waiting time

correlating with computational
iImbalance

 Measurements & analyses
demonstrated On 1,024 2,048‘114,096 8,192 P:Q%:::esszms 65,636 131,072 262,144

100

Time [s]

10

-

— Jaguar with up to 192k cores F‘L -
— Jugene with up to 288k cores = e

Brian J.N. Wylie et al.: Large-scale

performance analysis of Sweep3D with

@ the Scalasca toolset. Parallel Processing - =
Letters, 20(4):397-414, December
2010.

Computation



Performance dynamics

* Most simulation codes work iteratively

« Growing complexity of codes makes performance
behavior more dynamic — even in the absence of failures
— Periodic extra activities
— Adaptation to changing state of computation

« External influence (e.g., dynamic reconfiguration)
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Scalasca’s approach to performance dynamics

» Capture overview of performance dynamics via
time-series profiling
— Time and count-based metrics

* Identify pivotal iterations
— If reproducible

* In-depth analysis of these iterations via tracing

— Analysis of wait-state formation
including root cause analysis

— Tracing restricted to iterations of interest

A 4



Scalable time-series call-path profiling

* |nstrumentation of the main loop
to distinguish individual
iterations

« Complete call-tree recorded for
each iteration
With multiple metrics collected
for every call-path
 Low-overhead online
compression of iteration profiles

— Reduces memory requirements

Zoltan Szebenyi et al.: Space-Efficient
Time-Series  Call-Path  Profiling of
Parallel Applications. In Proc. of the
SC09 Conference, Portland, Oregon,
ACM, November 2009.

File View Help
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Pretty Efficient Parallel Coulomb-solver (PEPC)

« Multi-purpose parallel tree code
— Molecular dynamics
— Laser-plasma interactions

 Developed at JSC
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Reconciling sampling and direct instrumentation

« Semantic compression needs direct instrumentation to capture
communication metrics and to track the call path

* Direct instrumentation may result in excessive overhead
* New hybrid approach

— Applies low-overhead sampling to user code

— Intercepts MPI calls via direct instrumentation

— Relies on efficient stack unwinding

— Integrates measurements in statistically sound manner

. . ‘ !l Lawrence Livermore
Joint work with National Laboratory

Zoltan Szebenyi et al.: Reconciling sampling and direct instrumentation for
@ unintrusive call-path profiling of MPI programs. In Proc. of IPDPS, Anchorage, AK,

USA. IEEE Computer Society, May 2011. (to appear)



Delay analysis

=\ N

| ] David Béhme et al.: Identifying
(— \ the root causes of wait states in

A

process

Direct waiting time large-scale parallel applications.
In Proc. of ICPP, San Diego, CA,
IEEE Computer Society,

— September 2010.

Indirect waiting time

Best Paper Award

v

time

» Classification of waiting times into
— Direct vs. indirect
— Propagating vs. terminal

 Attributes costs of wait states to delay intervals
— Scalable through parallel forward and backward replay of traces



Delay analysis of code lllumination

« Particle physics code (laser-plasma interaction)

« Delay analysis identified inefficient communication
behavior as cause of wait states

Computation Propagating wait states: Costs of direct delay
Original vs. optimized code in optimized code



Score-P measurement system

Periscope

Interactive Performance Performance Automatic
trace dynamics & data base & online
exploration wait states data mining classification

Score-P measurement infrastructure
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Future work

* Further scalability improvements

* Emerging architectures and programming models
— PGAS languages
— Accelerator architectures

« Interoperability with 3-party tools
— Common measurement library for several performance tools



Virtual Institute —

High Productivity Supercomputing

The virtual institute in a... .

Partnership to develop advanced
programming tools for complex
simulation codes

Goals

* Improve code quality

« Speed up development
Activities

* Tool development and

Integration

« Training

« Support

« Academic workshops
www.Vi-hps.org
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