
Methods for performance evaluation and
optimization on modern HPC systems

Felix Wolf
08-06-2011

Objectives

•  Learn about basic performance measurement and
analysis methods and techniques for HPC applications

•  Get to know Scalasca, a scalable and portable
performance analysis tool

Performance tuning: an old problem

“The most constant difficulty in
contriving the engine has arisen from
the desire to reduce the time in which
the calculations were executed to the
shortest which is possible.”

Charles Babbage
1791 - 1871

Outline

•  Principles of parallel performance
•  Performance analysis techniques
•  Practical performance analysis using Scalasca

Mo#va#on	

Source:	
 Wikipedia	

Why parallelism at all?
Moore's Law is still in charge…

Mo#va#on	
 Free lunch is over…

Parallelism

•  System/application level
–  Server throughput can be improved by spreading workload

across multiple processors or disks
–  Ability to add memory, processors, and disks is called scalability

•  Individual processor
–  Pipelining
–  Depends on the fact that many instructions do not depend on the

results of their immediate predecessors

•  Detailed digital design
–  Set-associative caches use multiple banks of memory
–  Carry-lookahead in modern ALUs

Amdahl’s Law for parallelism

•  Assumption – program can be parallelized on p
processors except for a sequential fraction f with

•  Speedup limited by sequential fraction

€

0 ≤ f ≤1

€

Speedup(p) =
1

f +
1− f
p

<
1
f

Available parallelism

•  Overall speedup of 80 on 100 processors

€

80 =
1

f +
1− f
p

Law of Gustafson

•  Amdahl’s Law ignores increasing problem size
–  Parallelism often applied to calculate bigger problems instead of

calculating a given problem faster

•  Fraction of sequential part may be function of problem
size

•  Assumption
–  Sequential part has constant runtime
–  Parallel part has runtime

•  Speedup

If	
 	
 parallel	
 part	
 can	
 be	

perfectly	
 parallelized	

Parallel efficiency

•  Metric for cost of parallelization (e.g., communication)
•  Without super-linear speedup

•  Super-linear speedup possible
–  Critical data structures may fit into the aggregate cache

Scalability

•  Weak scaling
–  Ability to solve a larger input problem by using more resources

(here: processors)
–  Example: larger domain, more particles, higher resolution

•  Strong scaling
–  Ability to solve the same input problem faster as more resources

are used
–  Usually more challenging
–  Limited by Amdahl’s Law and communication demand

Serial vs. parallel performance

•  Serial programs
–  Cache behavior and ILP

•  Parallel programs
–  Amount of parallelism
–  Granularity of parallel tasks
–  Frequency and nature of inter-task communication
–  Frequency and nature of synchronization

•  Number of tasks that synchronize much higher → contention

Goals of performance analysis

•  Compare alternatives
–  Which configurations are best under which conditions?

•  Determine the impact of a feature
–  Before-and-after comparison

•  System tuning
–  Find parameters that produce best overall performance

•  Identify relative performance
–  Which program / algorithm is faster?

•  Performance debugging
–  Search for bottlenecks

•  Set expectations
–  Provide information for users

Analysis techniques (1)

•  Analytical modeling
–  Mathematical description of the system
–  Quick change of parameters
–  Often requires restrictive assumptions rarely met in practice

•  Low accuracy
–  Rapid solution
–  Key insights

•  Validation of simulations / measurements

•  Example
–  Memory delay

–  Parameters obtained from manufacturer or measurement

Analysis techniques (2)

•  Simulation
–  Program written to model important features of the system being

analyzed
–  Can be easily modified to study the impact of changes
–  Cost

•  Writing the program
•  Running the program

–  Impossible to model every small detail
•  Simulation refers to “ideal” system
•  Sometimes low accuracy

•  Example
–  Cache simulator
–  Parameters: size, block size, associativity, relative cache and

memory delays

Analysis techniques (3)

•  Measurement
–  No simplifying assumptions
–  Highest credibility
–  Information only on specific system being measured
–  Harder to change system parameters in a real system
–  Difficult and time consuming
–  Need for software tools

•  Should be used in conjunction with modeling
–  Can aid the development of performance models
–  Performance models set expectations against which

measurements can be compared

Metrics of performance

•  What can be measured?
–  A count of how many times an event occurs

•  E.g., Number of input / output requests
–  The duration of some time interval

•  E.g., duration of these requests
–  The size of some parameter

•  Number of bytes transmitted or stored

•  Derived metrics
–  E.g., rates / throughput
–  Needed for normalization

Primary performance metrics

•  Execution time, response time
–  Time between start and completion of a program or event
–  Only consistent and reliable measure of performance
–  Wall-clock time vs. CPU time

•  Throughput
–  Total amount of work done in a given time

•  Performance =

•  Basic principle: reproducibility
•  Problem: execution time is slightly non-deterministic

–  Use mean or minimum of several runs

1	

Execu:on	
 :me	

Alternative performance metrics

•  Clock rate
•  Instructions executed

per second
•  FLOPS

–  Floating-point operations per second

•  Benchmarks
–  Standard test program(s)
–  Standardized methodology
–  E.g., SPEC, Linpack

•  QUIPS / HINT [Gustafson and Snell, 95]
–  Quality improvements per second
–  Quality of solution instead of effort to reach it

“Math” operations?
 HW operations?

 HW instructions?
 Single or double

precision?

Comparison of analysis techniques

Analytical
modeling

Simulation Measurement

Flexibility High High Low

Cost Low Medium High

Credibility Low Medium High

Accuracy Low Medium High

Peak performance

•  Peak performance is the performance a computer is
guaranteed not to exceed

Source:	
 Hennessy,	
 Pa@erson:	
 Computer	
 Architecture,	
 4th	
 edi:on,	
 Morgan	
 Kaufmann	

64	
 processors	

Performance tuning cycle

Instrumenta:on	

Measurement	

Analysis	

Presenta:on	

Op:miza:on	

Performance measurement cycle (2)

•  Instrumentation
–  Insertion of extra code (probes) into application

•  Measurement
–  Collection of data relevant to performance analysis

•  Analysis
–  Calculation of metrics
–  Identification of performance bottlenecks

•  Presentation
–  Transformation of the results into a representation that can be

easily understood by a human user

•  Optimization
–  Elimination of bottlenecks

Semantic gap

•  Programmer’s mental model of the program does not match the
executed version
–  Performance tools needed to bridge this semantic gap

C = A + B
(c1, c2) = (a1, a2) 6 (b1, b2)

a1=1& a2=1e c1bb1& c2bb2
b1=1& b2=1e c1ba1& c2ba2

for i = 1 : 2,
ai=? e ci b bi
bi=? e ci b ai

ai= bi e ci b ai
otherwise, error

...
v09,S [a30,1],m00
a30 -26612:abcd
v12,S [a31,1],m00
a30 a12+a30
a31 -26616:abcd
v10,S [a30,1],m00
a16 -22516:abcd
a31 a12+a31
a30 a15+a16
v14,S [a31,1],m00
a16 -32764:abcd
v11,S v10-v14,m00
...

Semantic performance mapping

•  Instrumentation levels
–  Source code
–  Library
–  Runtime system
–  Object code
–  Operating system
–  Runtime image
–  Virtual machine

•  Problem
–  Every level provides different information
–  Often instrumentation on multiple levels required

•  Challenge
–  Mapping performance data onto application-level abstraction

Instrumentation techniques

•  Static instrumentation
–  Program is instrumented prior to execution

•  Dynamic instrumentation
–  Program is instrumented at runtime

•  Code is inserted
–  Manually
–  Automatically

•  By preprocessor
•  By compiler
•  By linking against preinstrumented (interposition) library
•  By binary-rewrite / dynamic instrumentation tool

Measurement

Typical performance data include
•  Counts
•  Durations

•  Communication cost
•  Synchronization cost
•  IO accesses
•  System calls
•  Hardware events

inclusive	

dura:on	

exclusive	

dura:on	

int foo()
{
 int a;

 a = a + 1;

 bar();

 a = a + 1;
}

Critical issues

•  Accuracy
–  Perturbation

•  Measurement alters program behavior
•  E.g., memory access pattern

–  Intrusion overhead
•  Measurement itself needs time and thus lowers performance

–  Accuracy of timers, counters

•  Granularity
–  How many measurements

•  Pitfall: short but frequently executed functions
–  How much information / work during each measurement

•  Tradeoff
–  Accuracy ⇔ expressiveness of data

Single-node performance

•  Huge gap between CPU and memory speed

•  Internal operation of a microprocessor potentially complex
–  Pipelining
–  Out-of-order instruction issuing
–  Branch prediction
–  Non-blocking caches

Source:	
 Hennessy,	
 Pa@erson:	
 Computer	

Architecture,	
 4th	
 edi:on,	
 Morgan	

Kaufmann	

Hardware counters

•  Small set of registers that count events
•  Events are signals related to the processor’s internal

function
•  Original purpose: design verification and performance

debugging for microprocessors
•  Idea: use this information to analyze the performance

behavior of an application as opposed to a CPU

Typical hardware counters

Cycle	
 count
Instruc:on	
 count All	
 instruc:ons	

Floa:ng	
 point	

Integer	

Load	
 /	
 store
Branches Taken	
 /	
 not	
 taken	

Mispredic:ons
Pipeline	
 stalls	
 due	
 to Memory	
 subsystem	

Resource	
 conflicts
Cache I/D	
 cache	
 misses	
 for	

different	
 levels	

Invalida:ons
TLB Misses	

Invalida:ons

Profiling

•  Mapping of aggregated information
–  Time
–  Counts

•  Calls
•  Hardware counters

•  Onto program and system entities
–  Functions, loops, call paths
–  Processes, threads

•  Methods to create a profile
–  PC sampling (statistical approach)
–  Interval timer / direct measurement (deterministic approach)

Profiling (2)

•  Sampling
–  Statistical measurement technique

•  Based on the assumption that a subset of a population being
examined is representative for the whole population

•  Requires long-running programs
–  Periodic operating system signal interrupts the running program
–  Interrupt service routine examines return-address stack to find

address of instruction being executed when interrupt occurred
–  Using symbol-table information this address is mapped onto

specific subroutine

•  Interval timing
–  Time measurement at beginning and end of a code region
–  Requires high-resolution / low-overhead clock

Call-path profiling

•  Behavior of a function may depend
on caller (i.e., parameters)

•  Flat function profile often not
sufficient

•  How to determine call path at
runtime?
–  Runtime stack walk
–  Maintain shadow stack

•  Requires tracking of function calls

main()
{
 A();
 B();
}

A() B()
{ {
 X(); Y();
 Y(); }
}

main	

A	

B	

X	

Y	

Y	

Event tracing

Section on
display

•  Typical events
–  Entering and leaving a function
–  Sending and receiving a message

Why tracing?

•  High level of detail
•  Allows in-depth post-mortem analysis of program behavior

–  Time-line visualization
–  Automatic pattern search

•  Identification of wait states
Discovery of
wait states

 zoom in

Obstacle: trace size

•  Problem: width and length of event trace

Number of processes

t

W
id

th

Execution time

t

t

long

short

Event frequency

t

t

high

low

Tracing vs. profiling

•  Advantages of tracing
–  Event traces preserve the temporal and spatial relationships

among individual events
–  Allows reconstruction of dynamic behavior of application

on any required abstraction level
–  Most general measurement technique

•  Profile data can be constructed from event traces

•  Disadvantages
–  Traces can become very large
–  Writing events to a file at runtime can cause perturbation
–  Writing tracing software is complicated

•  Event buffering, clock synchronization, …

•  Scalable performance-analysis toolset for parallel codes
–  Focus on communication & synchronization

•  Integrated performance analysis process
–  Performance overview on call-path level via call-path profiling
–  In-depth study of application behavior via event tracing

•  Supported programming models
–  MPI-1, MPI-2 one-sided communication
–  OpenMP (basic features)

•  Available for all major HPC platforms

Joint project of

The team

www.scalasca.org

Installations and users
•  Companies

–  Bull (France)
–  Dassault Aviation (France)
–  Efield Solutions (Sweden)
–  GNS (Germany)
–  INTES (Germany)
–  MAGMA (Germany)
–  RECOM (Germany)
–  SciLab (France)
–  Shell (Netherlands)
–  Sun Microsystems (USA, Singapore, India)
–  Qontix (UK)

•  Research/supercomputing centers
–  ANL (USA)BSC (Spain)
–  CASPUR (Italy)
–  CEA (France)
–  CERFACS (France)
–  CINECA (Italy)
–  CSC (Finland)
–  CSCS (Switzerland)
–  DLR (Germany)
–  DKRZ (Germany)
–  EPCC (UK)
–  FZJ (Germany)
–  HLRN (Germany)
–  HLRS (Germany)
–  ICHEC (Ireland)
–  IDRIS (France)
–  KIT (Germany)
–  LLNL (USA)

•  Research/supercomputing centers (cont.)
–  LRZ (Germany)
–  MCH (Switzerland)
–  NCAR (USA)
–  NCSA (USA)
–  ORNL (USA)
–  PIK (Germany)
–  PSC (USA)
–  RZG (Germany)
–  SARA (Netherlands)
–  SAITC (Bulgaria)
–  TACC (USA)

•  Universities
–  Lund University (Sweden)
–  MSU (Russia)
–  RPI (USA)
–  RWTH (Germany)
–  TUD (Germany)
–  UOregon (USA)
–  UTK (USA)

•  DoD/MoD computing centers
–  AFRL DSRC (USA)
–  ARL DSRC (USA)
–  ARSC DSRC (USA)
–  AWE (UK)
–  ERDC DSRC (USA)
–  Navy DSRC (USA)
–  MHPCC DSRC (USA)
–  SSC-Pacific (USA)
–  MetOffice (UK)

Which	
 problem?	

Where	
 in	
 the	

program?	

Which	

process?	

Parallel	
 wait-­‐
state	
 search	

Summary	

report	

Wait-­‐state	

report	

Instr.	

target	

applica:on	
 	

Measurement	

library	

HWC	
 Local	
 event	

traces	

Op:mized	
 measurement	
 configura:on	

Instrumenter	

compiler	
 /	
 linker	

Instrumented	

executable	

Source	

modules	

Re
po

rt
	
 	

m
an
ip
ul
a:

on
	

Wait-state analysis

•  Classification
•  Quantification

:me	

pr
oc
es
s	

(a)	
 Late	
 Sender	

:me	

pr
oc
es
s	

(c)	
 Late	
 Receiver	

:me	

pr
oc
es
s	

(b)	
 Late	
 Sender	
 /	
 Wrong	
 Order	

XNS CFD simulation application

•  Computational fluid dynamics code
–  Developed by Chair for Computational Analysis of Technical

Systems, RWTH Aachen University
–  Finite-element method on unstructured 3D meshes
–  Parallel implementation based on message passing
–  >40,000 lines of Fortran & C
–  DeBakey blood pump test case

•  Scalability of original version limited <1024 CPUs

Par::oned	
 finite-­‐element	
 mesh	

Call-path profile: Computation

Execu:on	

:me	
 excl.	

MPI	
 comm	

Just	
 30%	
 of	

simula:on	

Widely	

spread	

in	
 code	

Widely	

spread	

in	
 code	

Widely	

spread	

in	
 code	

Call-path profile: P2P messaging

P2P	
 comm	

66%	
 of	

simula:on	
 Primarily	

in	
 sca@er	

&	
 gather	

Primarily	

in	
 sca@er	

&	
 gather	

MPI	
 point-­‐	

to-­‐point	
 	

communic-­‐	

a:on	
 :me	

Call-path profile: P2P sync. ops.

Masses	
 of	

P2P	
 sync.	

opera:ons	

Processes	

all	
 equally	

responsible	

Point-­‐to-­‐	

point	
 msgs	

w/o	
 data	

Trace analysis: Late sender

Half	
 of	
 the	

send	
 :me	
 	
 	

is	
 wai:ng	

Significant	

process	

imbalance	

Wait	
 :me	

of	
 receivers	

blocked	
 for	

late	
 sender	

XNS scalability remediation

•  Review of original XNS
–  Computation is well balanced
–  Real communication is very imbalanced
–  Huge amounts of P2P synchronisations

•  Grow exponentially with number of processes

•  Elimination of redundant messages
–  Relevant neighbor partitions known in advance from static mesh

partitioning
–  Most transfers still required at small scale

while connectivity is relatively dense
–  Growing benefits at larger scales (>512)

After removal of redundant messages

Original	

performance	

peaked	
 at	
 	

132	
 ts/hr	

Revised	

version	

con:nues	

to	
 scale	

XNS wait-state analysis of tuned version

MAGMAfill by MAGMASOFT® GmbH

•  Simulates mold-filling in
casting processes

•  Scalasca used
–  To identify communication

bottleneck
–  To compare alternatives using

performance algebra utility

•  23% overall runtime
improvement

INDEED by GNS® mbh

•  Finite-element code for the simulation of
material-forming processes

–  Focus on creation of element-stiffness matrix

•  Tool workflow
–  Scalasca identified serialization in critical

section as bottleneck
–  In-depth analysis using Vampir

•  Speedup of 30-40% after optimization

Scalability in terms of the number of cores

•  Application study of ASCI
Sweep3D benchmark

•  Identified MPI waiting time
correlating with computational
imbalance

•  Measurements & analyses
demonstrated on
–  Jaguar with up to 192k cores
–  Jugene with up to 288k cores

1,024 2,048 4,096 8,192 16,384 32,768 65,636 131,072 262,144
Processes

1

10

100

1000

Ti
m

e
[s

]

Measured execution
 - Computation
 - MPI processing
 - MPI waiting

Brian	
 J.N.	
 Wylie	
 et	
 al.:	
 Large-­‐scale	

performance	
 analysis	
 of	
 Sweep3D	
 with	

the	
 Scalasca	
 toolset.	
 Parallel	
 Processing	

Le@ers,	
 20(4):397-­‐414,	
 December	

2010.	

Jaguar,	
 MK	
 =	
 10	
 (default)	

Computa:on	

Performance dynamics

•  Most simulation codes work iteratively
•  Growing complexity of codes makes performance

behavior more dynamic – even in the absence of failures
–  Periodic extra activities
–  Adaptation to changing state of computation

•  External influence (e.g., dynamic reconfiguration)

129.tera_i	

MPI	
 point-­‐to-­‐point	
 MPI	
 point-­‐to-­‐point	
 Execu:on	

 P2P communication in SPEC MPI 2007 suite

107.leslie3d	
 113.GemsFDTD	
 115.fds4	
 121.pop2	

126.leslie3d	
 128.GAPgeofem	
 129.tera_i	
 127.wrf2	

130.socorro	
 132.zeusmp2	
 137.lu	

Scalasca’s approach to performance dynamics

•  Capture overview of performance dynamics via
time-series profiling
–  Time and count-based metrics

•  Identify pivotal iterations
–  If reproducible

•  In-depth analysis of these iterations via tracing
–  Analysis of wait-state formation

including root cause analysis
–  Tracing restricted to iterations of interest

New	

Scalable time-series call-path profiling

•  Instrumentation of the main loop
to distinguish individual
iterations

•  Complete call-tree recorded for
each iteration
–  With multiple metrics collected

for every call-path
•  Low-overhead online

compression of iteration profiles
–  Reduces memory requirements

Zoltán	
 Szebenyi	
 et	
 al.:	
 Space-­‐Efficient	

Time-­‐Series	
 Call-­‐Path	
 Profiling	
 of	

Parallel	
 Applica:ons.	
 In	
 Proc.	
 of	
 the	

SC09	
 Conference,	
 Portland,	
 Oregon,	

ACM,	
 November	
 2009.	

Pretty Efficient Parallel Coulomb-solver (PEPC)‏

•  Multi-purpose parallel tree code
–  Molecular dynamics
–  Laser-plasma interactions

•  Developed at JSC

Late	
 Sender	
 #	
 par:cles	
 owned	
 by	
 a	
 process	

Reconciling sampling and direct instrumentation

•  Semantic compression needs direct instrumentation to capture
communication metrics and to track the call path

•  Direct instrumentation may result in excessive overhead
•  New hybrid approach

–  Applies low-overhead sampling to user code
–  Intercepts MPI calls via direct instrumentation
–  Relies on efficient stack unwinding
–  Integrates measurements in statistically sound manner

Zoltan	
 Szebenyi	
 et	
 al.:	
 Reconciling	
 sampling	
 and	
 direct	
 instrumenta:on	
 for	

unintrusive	
 call-­‐path	
 profiling	
 of	
 MPI	
 programs.	
 In	
 Proc.	
 of	
 IPDPS,	
 Anchorage,	
 AK,	

USA.	
 IEEE	
 Computer	
 Society,	
 May	
 2011.	
 (to	
 appear)	
 	

Joint	
 work	
 with	

Delay analysis

•  Classification of waiting times into
–  Direct vs. indirect
–  Propagating vs. terminal

•  Attributes costs of wait states to delay intervals
–  Scalable through parallel forward and backward replay of traces

:me	

pr
oc
es
s	

Delay	

Direct	
 wai:ng	
 :me	

	
 	
 Indirect	
 wai:ng	
 :me	
 	

David	
 Böhme	
 et	
 al.:	
 Iden:fying	

the	
 root	
 causes	
 of	
 wait	
 states	
 in	

large-­‐scale	
 parallel	
 applica:ons.	

In	
 Proc.	
 of	
 ICPP,	
 San	
 Diego,	
 CA,	

IEEE	
 Computer	
 Society,	

September	
 2010.	
 	

Best	
 Paper	
 Award	

Delay analysis of code Illumination

•  Particle physics code (laser-plasma interaction)
•  Delay analysis identified inefficient communication

behavior as cause of wait states

Computa:on	
 	
 Propaga:ng	
 wait	
 states:	

Original	
 vs.	
 op:mized	
 code	

Costs	
 of	
 direct	
 delay	

in	
 op:mized	
 code	

Score-P measurement system

Applica:on	
 (MPI,	
 OpenMP,	
 accelerator,	
 PGAS,	
 hybrid)	

Score-­‐P	
 measurement	
 infrastructure	

Online	
 interface	
 Profiling	
 Tracing	

Interac:ve	

trace	

explora:on	

Vampir	

Performance	

dynamics	
 &	

wait	
 states	

Scalasca	

Automa:c	

online	

classifica:on	

Periscope	

Performance	

data	
 base	
 &	

data	
 mining	

TAU	

Future work

•  Further scalability improvements
•  Emerging architectures and programming models

–  PGAS languages
–  Accelerator architectures

•  Interoperability with 3rd-party tools
–  Common measurement library for several performance tools

Virtual Institute –
High Productivity Supercomputing

The virtual institute in a… •  Partnership to develop advanced
programming tools for complex
simulation codes

•  Goals
•  Improve code quality
•  Speed up development

•  Activities
•  Tool development and

integration
•  Training
•  Support
•  Academic workshops

•  www.vi-hps.org

Thank you!

