
Programming heterogeneous,
accelerator-based multicore

machines: a runtime system's
perspective

Raymond Namyst
University of Bordeaux

Head of RUNTIME group, INRIA

École CEA-EDF-INRIA 2011
Sophia-Antipolis, June 6-10

Understanding the evolution of parallel machines

}  The end of single thread performance increase
}  Clock rate is no longer increasing

}  Thermal dissipation

}  Processor architecture is already very
sophisticated
}  Prediction and Prefetching techniques achieve a very

high percentage of success

}  Actually, processor complexity is decreasing!

}  Question: What circuits should we better
add on a die?

The end of Moore’s law?

}  Answer: Multicore chips
}  Several cores instead of

one processor

}  Back to complex memory
hierarchies
}  Shared caches

¨  Organization is
vendor-dependent

}  NUMA penalties

}  Clusters can no longer be
considered as
“flat sets of processors”

Understanding the evolution of parallel machines
Welcome to the multicore era

}  More performance =
more cores
}  Toward embarrassingly

parallel machines?

}  Designing scalable
multicore architectures
}  3D stacked memory
}  Non-coherent cache

architectures
}  Intel SCC
}  IBM Cell/BE

Understanding the evolution of parallel machines
Multicore is a solid trend

Understanding the evolution of parallel machines
Average number of cores per top20 supercomputer

}  GPUs are the new kids
on the block
}  De facto adoption
}  Concrete success stories

}  “Speedups” > 50

}  Clusters featuring
accelerators are
already heading the
Top500 list
}  Tianhe-1A (#1)
}  Nebulae (#3)
}  Tsubame 2.0 (#4)
}  Roadrunner (#7)

Heterogeneous computing is here
And portable programming is getting harder…

}  Programming model
}  Specialized instruction

set
}  SIMD execution model

}  Nvidia Fermi GTX 480
¨  512 cores

}  Memory
}  Size limitations
}  No hardware consistency

}  Explicit data transfers

}  Using GPUs as “side
accelerators” is not
enough
}  GPU = first class citizens

Heterogeneous computing is here
And portable programming is getting harder…

}  “Future processors will be a
mix of general purpose and
specialized cores” (anonymous
source)
}  One interpretation of “Amdalh’s

law”
}  Need powerful, general purpose

cores to speed up sequential
code

}  Accelerators will be more
integrated
}  Intel Knights Corner (MIC),

SandyBridge
}  AMD Fusion
}  Nvidia Tegra-like

}  Are we happy with that?
}  No, but it’s probably

unavoidable!

Heterogeneous computing is here
And it seems to be a solid trend…

Mixed Large
and

Small Core

The Quest for programming models

What Programming Models for such machines?

}  MPI
}  Communication Interface
}  Scalable implementations exist already

}  Was actually designed with scalability in mind
}  Makes programmers “think” scalable algorithms

}  NUMA awareness?
}  Memory consumption

}  OpenMP
}  Directive-based, incremental parallelization
}  Shared-memory model

}  Well suited to symmetric machines
}  Portability wrt #cores
}  NUMA awareness?

Widely used, standard programming models

}  Extensions to existing
languages
}  C, C++, Fortran
}  Set of programming directives

}  Fork/join approach
}  Parallel sections

}  Well suited to data-parallel
programs
}  Parallel loops

}  OpenMP 3.0 introduced
tasks
}  Support for irregular

parallelism

OpenMP (1997)
A portable approach to shared-memory programming

int matrix[MAX][MAX]; !

 ... !

#pragma omp parallel for!

 for (int i; i < 400; i++)!

 {!

 matrix[i][0] += ...!

 } !

 !
0 (main)

1 2 3
fork

join

OpenMP (1997)
Multithreading over shared-memory machines

}  Several efforts aim at
making MPI and
OpenMP multicore-
ready
}  OpenMP

}  Scheduling in a NUMA
context (memory
affinity, work stealing)

}  Memory management
(page migration)

}  MPI
}  NUMA-aware buffer

management
}  Efficient collective

operations

The Quest for Programming Models
Dealing with multicore machines

M.

CPU

CPU

CPU

CPU

Multicore

OpenMP
TBB
MPI Cilk

}  MPI address spaces must fit
the underlying topology

}  Experimental platforms exit
to hybrid applications
}  Topology-aware process

allocation

}  Customizable core/process
ratio

}  # of OpenMP tasks
independent from # of cores

Mixing OpenMP with MPI
It makes sense even on shared-memory machines

0
10
20
30
40
50
60

BT-MZ.C.32 SP-MZ.C.32

Ex
ec

u
ti

on
 t

im
e

(s
ec

s)
 Impact of Thread distribution

Optimum
Worst
Default

0
20
40
60
80

64 32 16 8

Ex
ec

u
ti

on
 t

im
e

(s
ec

on
d

s)

Number of MPI processes

Impact of thread/process
ratio

}  Software Development
Kits and Hardware
Specific Languages
}  “Stay close to the

hardware and get good
performance”
}  Low-level abstractions

}  Compilers generate code
for accelerator device

}  Examples
}  Nvidia’s CUDA

}  Compute Unified Device
Architecture)

}  IBM Cell SDK

}  OpenCL

The Quest for Programming Models
Dealing with accelerators

M. *PU

M. *PU

Accelerators

Cell SDK
CUDA
OpenCL

Ct

The Quest for Programming Models
The hidden beauty of CUDA

__global__ void mykernel(float * A1, float * A2, float * R)

{

 int p = threadIdx.x;

 R[p] = A1[p] + A2[p];

}

int main()

{

 float A1[]={1,2,3,4,5,6,7,8,9}, A2[]={10,20,30,40,50,60,70,80,90}, R[9];

 int size=sizeof(float) * 9;

 float *a1_device, *a2_device, *r_device;

 cudaMalloc ((void**) &a1_device, size); cudaMalloc ((void**) &a2_device, size); cudaMalloc ((void**) &r_device, size);

 cudaMemcpy(a1_device,A1,size,cudaMemcpyHostToDevice); cudaMemcpy(a2_device,A2,size,cudaMemcpyHostToDevice);

 mykernel<<<1,9>>>(a1_device, a2_device, r_device);

 cudaMemcpy(R,r_device,taille_mem,cudaMemcpyDeviceToHost);!

}!

The Quest for Programming Models

}  Fortunately, well-known kernels are available
}  BLAS routines

}  e.g. CUBLAS
}  FFT kernels

}  Implementations are continuously enhanced
}  High Efficiency

}  Limitations
}  Data must usually fit accelerators memory
}  Multi-GPU configurations not well supported

}  Ongoing efforts
}  Using multi-GPU + multicore

}  MAGMA (Oak Ridge National Lab)

Are we forced to use such low-level tools?

Directive-based approaches

}  Idea: use simple directives… and better compilers
}  HMPP (Caps Enterprise)
}  GPU SuperScalar (Barcelona Supercomputing Center)

Offloading tasks to accelerators

#pragma omp task inout(C[BS][BS])!

void matmul(float ∗A, float ∗B, float ∗C) {!

// regular implementation!

}!

#pragma omp target device(cuda) implements(matmul)!

copy_in(A[BS][BS] , B[BS][BS] , C[BS][BS])!

copy_out(C[BS][BS])!

void matmul cuda (float ∗A, float ∗B, float ∗C) {!

// optimized kernel for cuda!

} !

}  The hard hybrid way
}  Combine different

paradigms by hand
}  MPI +

{OpenMP/TBB/???} +
{CUDA/OpenCL}

}  Portability is hard to achieve
}  Work distribution depends on

#GPU & #CPU per node…
}  Needs aggressive autotuning

}  Currently used for building
parallel numerical kernels
}  MAGMA, D-PLASMA, FFT

kernels

The Quest for Programming Models
How shall we program heterogeneous clusters?

M.

CPU

CPU

CPU

CPU M. *PU

M. *PU

Multicore

OpenMP
TBB

Accelerators

MPI Cilk ?

ALF
CUDA

OpenCL
Ct ?

}  The uniform way
}  Use a single (or a

combination of) high—level
programming language to
deal with network +
multicore + accelerators

}  Increasing number of
directive-based languages
}  Use simple directives… and

good compilers!
¨  XcalableMP

¨  PGAS approach
¨  HMPP, OpenMPC, OpenMP 4.0

¨  Generate CUDA from OpenMP
code

¨  StarSs

}  Much better potential for
composability…
}  If compiler is clever!

The Quest for Programming Models
How shall we program heterogeneous clusters?

M.

CPU

CPU

CPU

CPU M. *PU

M. *PU

Multicore

OpenMP

Accelerators

?

HMPP

StarSs
OpenMPC

XMP

All the things
runtime systems can do for you

Parallel
Compilers

HPC Applications

Runtime system

Operating System

CPU

Parallel
Libraries

}  Do dynamically what
can’t be done
statically
}  Load balance
}  React to hardware

feedback
}  Autotuning, self-

organization

}  We need to put more
intelligence into the
runtime!

The role of runtime systems
Toward “portability of performance”

GPU …

We need new runtime systems!

}  Computations need to exploit accelerators and
regular CPUs simultaneously

}  Data movements between memory banks
}  Should be minimized
}  Should not be triggered explicitly by application

}  Computations need to accommodate to a
variable number of processing units
}  Some computations do not scale over a large

#cores

Toward “portability of performance”

}  Rational
}  Dynamically schedule

tasks on all
processing units
}  See a pool of

heterogeneous
processing units

}  Avoid unnecessary
data transfers
between accelerators
}  Software VSM for

heterogeneous
machines

Overview of StarPU
A runtime system for heterogeneous architectures

A = A+B

M.

CPU

CPU

CPU

CPU M. GPU

M. GPU

CPU

CPU

CPU

CPU

M. A

B
B

M. GPU

M. GPU

}  Ideas
}  Accept tasks that may

have multiple
implementations
}  Together with potential

inter-dependencies
¨  Leads to a dynamic

acyclic graph of tasks
¨  Data-flow approach

}  Provide a high-level
data management layer
}  Application should only

describe
¨  which data may be

accessed by tasks
¨  How data may be divided

Overview of StarPU
Maximizing PU occupancy, minimizing data transfers

Parallel
Compilers

Applications

StarPU

Drivers (CUDA, OpenCL)

CPU

Parallel
Libraries

GPU …

CPU

Parallel
Compilers

HPC Applications

StarPU

Drivers (CUDA, OpenCL)

Parallel
Libraries

}  Tasks =
}  Data input & output
}  Dependencies with

other tasks
}  Multiple

implementations
}  E.g. CUDA + CPU

implementation
}  Scheduling hints

}  StarPU provides an
Open Scheduling
platform
}  Scheduling algorithm =

plug-ins

Overview of StarPU
Dealing with heterogeneous hardware accelerators

GPU … (ARW, BR, CR) f
cpu
gpu
spu

Overview of StarPU
Execution model

Scheduling engine

Application

GPU driver

Memory
Management

(DSM)

RAM GPU

CPU driver
#k

CPU#k
...

StarPU

A B

B A

Overview of StarPU
Execution model

Scheduling engine

Application

GPU driver

Memory
Management

(DSM)

RAM GPU

CPU driver
#k

CPU#k
...

StarPU

Submit task « A += B »

A+= B

A B

B A

Overview of StarPU
Execution model

Scheduling engine

Application

GPU driver

Memory
Management

(DSM)

RAM GPU

CPU driver
#k

CPU#k
...

StarPU

Schedule task

A+= B

A B

B A

Overview of StarPU
Execution model

Scheduling engine

Application

GPU driver

Memory
Management

(DSM)

RAM GPU

CPU driver
#k

CPU#k
...

StarPU

B B

B A

A

Fetch data

A+= B

Overview of StarPU
Execution model

Scheduling engine

Application

GPU driver

Memory
Management

(DSM)

RAM GPU

CPU driver
#k

CPU#k
...

StarPU

B B

B A

A A

Fetch data

A+= B

Overview of StarPU
Execution model

Scheduling engine

Application

GPU driver

Memory
Management

(DSM)

RAM GPU

CPU driver
#k

CPU#k
...

StarPU

B B

B A

A A

Fetch data

A+= B

Overview of StarPU
Execution model

Scheduling engine

Application

GPU driver

Memory
Management

(DSM)

RAM GPU

CPU driver
#k

CPU#k
...

StarPU

B B

B A

A A

Offload computation

A+= B

Overview of StarPU
Execution model

Scheduling engine

Application

GPU driver

Memory
Management

(DSM)

RAM GPU

CPU driver
#k

CPU#k
...

StarPU

B B

B A

A A

Notify termination

}  When a task is submitted,
it first goes into a pool of
“frozen tasks” until all
dependencies are met

}  Then, the task is “pushed”
to the scheduler

}  Idle processing units
actively poll for work
(“pop”)

}  What happens inside the
scheduler is… up to you!

Tasks scheduling
How does it work?

Scheduler

CPU
workers

GPU
workers

Push

Pop Pop

}  Queue based scheduler
}  Each worker « pops »

task in a specific queue

}  Implementing a strategy
}  Easy!
}  Select queue topology
}  Implement « pop » and

« push »
}  Priority tasks
}  Work stealing
}  Performance models, …

}  Scheduling algorithms
testbed

Tasks scheduling
Developing your own scheduler

CPU
workers

GPU
workers

Push

Pop

}  Queue based scheduler
}  Each worker « pops »

task in a specific queue

}  Implementing a strategy
}  Easy!
}  Select queue topology
}  Implement « pop » and

« push »
}  Priority tasks
}  Work stealing
}  Performance models, …

}  Scheduling algorithms
testbed

Tasks scheduling
Developing your own scheduler

CPU
workers

GPU
workers

?
Push

Pop

}  Task completion time
estimation
}  History-based
}  User-defined cost

function
}  Parametric cost model

}  Can be used to
improve scheduling
}  E.g. Heterogeneous

Earliest Finish Time

Dealing with heterogeneous architectures
Performance prediction

time

cpu #3

gpu #1

cpu #2

cpu #1

gpu #2

}  Data transfer time
estimation
}  Sampling based on

off-line calibration

}  Can be used to
}  Better estimate

overall exec time
}  Minimize data

movements

Dealing with heterogeneous architectures
Performance prediction

time

cpu #3

gpu #1

cpu #2

cpu #1

gpu #2

StarPU’s Programming Interface

Scaling vector example

•  Register a piece of data to StarPU
float array[NX];
for (unsigned i = 0; i < NX; i++)

array[i] = 1.0f;

starpu_data_handle vector_handle;
starpu_vector_data_register(&vector_handle, 0,

array, NX, sizeof(vector[0]));

•  Unregister data

starpu_data_unregister(vector_handle);

Scaling a vector
Data registration

•  CPU kernel

Scaling a vector
Defining a codelet

void scal_cpu_func(void *buffers[], void *cl_arg)
{
 struct starpu_vector_interface_s *vector = buffers[0];

 unsigned n = STARPU_VECTOR_GET_NX(vector);
 float *val = (float *)STARPU_VECTOR_GET_PTR(vector);

 float *factor = cl_arg;

 for (int i = 0; i < n; i++)
 val[i] *= *factor;
}

•  CUDA kernel (compiled with nvcc, in a separate .cu file)

Scaling a vector
Defining a codelet (2)

__global__ void vector_mult_cuda(float *val, unsigned n, float factor)
{
 for(unsigned i = 0 ; i < n ; i++) val[i] *= factor;
}

extern "C" void scal_cuda_func(void *buffers[], void *cl_arg)
{
 struct starpu_vector_interface_s *vector = buffers[0];
 unsigned n = STARPU_VECTOR_GET_NX(vector);
 float *val = (float *)STARPU_VECTOR_GET_PTR(vector);
 float *factor = (float *)cl_arg;

 vector_mult_cuda<<<1,1>>>(val, n, *factor);
 cudaThreadSynchronize();
}

•  OpenCL kernel

Scaling a vector
Defining a codelet (3)

__kernel void vector_mult_opencl(__global float *val, unsigned n, float
factor) {
 for(unsigned i = 0 ; i < n ; i++) val[i] *= factor;
}

extern "C" void scal_opencl_func(void *buffers[], void *cl_arg) {
 struct starpu_vector_interface_s *vector = buffers[0];
 unsigned n = STARPU_VECTOR_GET_NX(vector);
 float *val = (float *)STARPU_VECTOR_GET_PTR(vector);
 float *factor = (float *)cl_arg;
 ...
 clSetKernelArg(kernel, 0, sizeof(val), &val);
 ...
 clEnqueueNDRangeKernel(queue, kernel, 1, NULL, …) ;
}

Scaling a vector
}  Defining a codelet (4)

•  Codelet = multi-versioned kernel
Function pointers to the different kernels
Number of data parameters managed by StarPU

starpu_codelet scal_cl = {
 .where = STARPU_CPU
 | STARPU_CUDA
 | STARPU_OPENCL,
 .cpu_func = scal_cpu_func,
 .cuda_func = scal_cuda_func,
 .opencl_func = scal_opencl_func,
 .nbuffers = 1
};

•  Define a task that scales the vector by a constant

struct starpu_task *task = starpu_task_create();
task->cl = &scal_cl;

task->buffers[0].handle = vector_handle;
task->buffers[0].mode = STARPU_RW;

float factor = 3.14;
task->cl_arg = &factor;
task->cl_arg_size = sizeof(factor);

starpu_task_submit(task);
starpu_task_wait(task);

Scaling a vector
Defining a task

•  Define a task that scales the vector by a constant

float factor = 3.14;

starpu_insert_task(
&scal_cl,
STARPU_RW, vector_handle,
STARPU_VALUE, &factor, sizeof(factor),
0);

Scaling a vector
Defining a task, starpu_insert_task helper

}  Run legacy OpenCL codes
on top of StarPU
}  OpenCL sees a number of

starPU devices

}  Performance limitations
}  Data transfers performed

just-in-time
}  Data replication not

managed by StarPU

}  Ongoing work
}  We propose light extensions

to OpenCL
}  Greatly improves flexibility

when used
}  Regular OpenCL behavior if

not extension is used

Using StarPU through a standard API
A StarPU driver for OpenCL

OpenCL

StarPU

CPU GPU …

Legacy OpenCL Application

Parallel Dense Linear Algebra
over StarPU

S peed	
 (G F lops)
0

100
200
300
400
500
600
700
800

G reedy
task	

model
prefetch
data	

model

}  On the influence of
the scheduling policy
}  LU decomposition

}  8 CPUs (Nehalem) + 3
GPUs (FX5800)

}  80% of work goes on
GPUs, 20% on CPUs

}  StarPU exhibits good
scalability wrt:
}  Problem size
}  Number of GPUs

Dealing with heterogeneous architectures
Performance

}  Cholesky decomposition
}  5 CPUs (Nehalem) +

3 GPUs (FX5800)
}  Efficiency > 100%

Mixing PLASMA and MAGMA with StarPU
With University of Tennessee & INRIA HiePACS

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 5120 15360 25600 35840 46080

Pe
rfo

rm
an

ce
 (G

flo
p/

s)

Matrix order

4 G
B

3 GPUs + 5 CPUs
3 GPUs
2 GPUs
1 GPU

Mixing PLASMA and MAGMA with StarPU

}  QR decomposition
}  16 CPUs (AMD) + 4 GPUs (C1060)

With University of Tennessee & INRIA HiePACS

 0

 200

 400

 600

 800

 1000

 0 5000 10000 15000 20000 25000 30000 35000 40000

G
flo

p
/s

Matrix order

4 GPUs + 16 CPUs
4 GPUs + 4 CPUs
3 GPUs + 3 CPUs
2 GPUs + 2 CPUs
1 GPUs + 1 CPUs

MAGMA

+12 CPUs
~200 GFlops

(although
12 CPUs

~150 Gflops)

Mixing PLASMA and MAGMA with StarPU

}  Kernel efficiency
}  sgeqrt

}  CPU: 9 Gflops GPU: 30 Gflops Ratio: x3
}  stsqrt

}  CPU: 12 Gflops GPU: 37 Gflops Ratio: x3
}  somqr

}  CPU: 8.5 Gflops GPU: 227 Gflops Ratio: x27
}  Sssmqr

}  CPU: 10 Gflops GPU: 285 Gflops Ratio: x28

}  Task distribution observed on StarPU
}  sgeqrt: 20% of tasks on GPUs
}  Sssmqr: 92.5% of tasks on GPUs

}  Heterogeneous architectures are cool! J

« Super-Linear » efficiency in QR?

Using MPI and StarPU

}  Keep an MPI-looking code
}  Work on StarPU data instead of plain data buffers.

}  Data transfers can be partially/totally
automated
}  starpu_mpi_send/recv, isend/irecv, ...

}  Equivalents of MPI_Send/Recv, Isend/Irecv,... but
working on StarPU data

}  Handles all needed CPU/GPU transfers
}  Handles task/communications dependencies
}  Overlaps MPI communications, CPU/GPU

communications, and CPU/GPU computations

MPI version of starpu_insert_task

}  Data distribution over MPI nodes decided by
application

}  Data consistency enforced at the cluster level
}  Automatic starpu_mpi_send/recv calls for each

task
}  ≈ DSM with task-based granularity

}  All nodes execute the same algorithm
}  Actual task distribution according to data being

written to
}  Owner compute rule

}  Sequential-looking code !

MPI version of starpu_insert_task

for (k = 0; k < nblocks; k++) {!
 starpu_mpi_insert_task(MPI_COMM_WORLD, &cl11,!
 STARPU_RW, data_handles[k][k], 0);!
 for (j = k+1; j<nblocks; j++) {!
 starpu_mpi_insert_task(MPI_COMM_WORLD, &cl21,!
 STARPU_R, data_handles[k][k],!
 STARPU_RW, data_handles[k][j], 0);!
 for (i = k+1; i<nblocks; i++)!
 if (i <= j)!
 starpu_mpi_insert_task(MPI_COMM_WORLD, &cl22,!
 STARPU_R, data_handles[k][i],!
 STARPU_R, data_handles[k][j],!
 STARPU_RW, data_handles[i][j], 0);!
 }!
 }!
starpu_task_wait_for_all();!

cholesky decomposition

Cholesky Using MPI+StarPU + Magma kernels
Early results

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000 110000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

4	
 MP I	
 Nodes
2	
 MP I	
 Nodes
1	
 MP I	
 Node

Matrix	
 order

S
pe

ed
	
 (G

flo
ps

/s
)

Integrating multithreading and
StarPU

}  Wave propagation
}  Prefetching
}  Asynchronism

Static vs Dynamic scheduling
Stencil computation

Static vs Dynamic scheduling

}  Load balancing vs data stability
}  We estimate the task cost as
   α compute + β transfer
}  Problem size: 256 x 4096 x 4096, divided into 64

blocks
}  Task distribution (1 color per GPU)
}  Dynamic scheduling can lead to stable configurations

Can a dynamic scheduler compete with a static approach?

Tim
e

β = 0	

 β = 6	

β = 0.5	

 β = 3	

Static vs Dynamic scheduling

}  Impact of scheduling policy
}  3 GPUs (FX5800) – no CPU used
}  256 x 4096 x 4096 : 64 blocks
}  Speed up = 2.7 (2 PCI 16x + 1 PCI 8x config)

Performance

}  MPI + StarPU + OpenMP
}  Many algorithms can take

advantage of shared
memory

}  We can’t seriously
“taskify” the world!

}  The Stencil case
}  When neighbor tasks can

be scheduled on a single
node
}  Just use shared memory!
}  Hence an OpenMP stencil

kernel

Towards parallel tasks on CPUs
Going further

}  Mixing StarPU with
}  OpenMP
}  Intel TBB
}  Pthreads
}  Etc.

}  Raises the
Composability issue
}  Challenge =

autotuning the
number of threads per
parallel region

Integrating StarPU and Multithreading
How to deal with parallel tasks on multicore?

void work()
{
 ...

#pragma omp parallel for
 for (int i=0; i<MAX; i++)

 {
 ...

#pragma omp parallel for
num_threads (2)
 for (int k=0; k<MAX; k++)
 ...
 }
}

}  First approach
}  Use an OpenMP main

stream
}  Suggested (?) by

recent parallel
language extension
proposals
¨  E.g. Star SuperScalar

(UPC Barcelona)
¨  HMPP (CAPS

Enterprise)
}  Implementing

scheduling is difficult
¨  Much more than a

simple offloading
approach…

Integrating StarPU and Multithreading
Integrating tasks and threads

CPU CPU CPU CPU

Mem Mem

GPU GPU

}  Alternate approach
}  Let StarPU spawn

OpenMP tasks
}  Performance modeling

would still be valid

}  Would also work with other
tools
¨  E.g. Intel TBB

}  How to find the appropriate
granularity?
¨  May depend on the

concurrent tasks!

}  StarPU tasks = first class
citizen
¨  Need to bridge the gap with

existing parallel languages

Integrating StarPU and Multithreading
Integrating tasks and threads

CPU
workers

GPU
workers

Context B

StarPU’s Scheduling Contexts
Toward code Push

Context A
}  Similar to OpenCL

contexts
}  Except that each

context features its own
scheduler

}  Multiple parallel
libraries can run
simultaneously
}  Virtualization of

resources
}  At minimal overhead

}  Scheduling overhead
reduced

}  Scalability workaround
CPU

workers
GPU

workers

Context B

StarPU’s Scheduling Contexts
Toward code Push

Context A
}  Contexts may share

processing units
}  Avoid underutilized

resources
}  Schedulers are aware

of each other
}  Contexts may

expand and shrink
}  Maximize overall

throughput
}  Use dynamic feedback

both from application
and runtime

CPU
workers

GPU
workers

Integrating StarPU and Multithreading

}  Real-time performance feedback

Adapting granularity

 1

 10

 100

 1000

 10000

 22 24 26 28 30 32 34 36 38

submitted
ready

 0

 20

 40

 60

 80

 100

 22 24 26 28 30 32 34 36 38

cp
u

 0

 0

 20

 40

 60

 80

 100

 22 24 26 28 30 32 34 36 38

cu
d

a
 0

What’s next?

Future parallel machines

}  The biggest change comes from node
architecture

}  Hybrid systems will be commonplace
}  Multicore chips + accelerators (GPUs?)
}  More integrated design

}  Extreme parallelism
}  Total system concurrency ~ O(109)!

}  Including O(10) to O(100) to hide latency
= x 10 000 increase

Exascale (1018 flop/s) systems, by 2018?

How will we program these machines?

}  Billions of threads will be necessary to occupy exascale
machines
}  Exploit every source of (fine-grain) parallelism

}  Not every algorithm can scale that far L

}  Multi-scale, Multi-physics applications are welcome!
}  Great opportunity to exploit multiple levels of parallelism

}  Is SIMD the only reasonable approach?
}  Are CUDA & OpenCL our future?

}  No global, consistent view of node’s state
}  Local algorithms
}  Hierarchical coordination/load balance

}  Maybe, this time, we should seriously consider enabling
(parallel) code reuse…

Let’s prepare for serious changes

Parallel code reuse

}  Can we really use several hybrid parallel kernels
simultaneously?
}  Ever tried to mix OpenMP and Intel MKL?
}  Could be helpful in order to exploit millions of cores

}  It’s all about composability
}  Probably the biggest challenge for runtime systems

}  Hybridization will mostly be indirect (linking libraries)

}  And with composability come a lot of related
issues
}  Need for autotuning / scheduling hints

Mixing different paradigms leads to several issues

International Exascale Software Project (IESP)

}  Build an international plan
for coordinating research
for the next generation
open source software
for scientific high-performance
computing
}  Hardware is evolving more rapidly than software

}  New hardware trends not handled by existing software

}  Emerging software technologies not yet integrated
into a common software stack

}  No global evaluation of key missing components

“A call to action”

European Exascale Software Initiative (EESI)

}  WP4: Enabling technologies for Exascale
computing
}  Assess novel HW and SW technologies for

Exascale challenges
}  Build a European vision and a roadmap

}  WG 4.2: Software eco-systems
}  Subtopic: Runtime systems (Raymond Namyst,

Jesús Labarta)

Position of Europe in the international HPC landscape

European Exascale Software Initiative (EESI)

}  Mastering	
 heterogeneity	

}  Unified/transparent	
 accelerator	
 models	

}  Providing	
 support	
 for	
 adap:ve	
 granularity	

}  Fine	
 grain	
 parallelism	

}  Scheduling	
 for	
 latency/bandwidth	

}  (NC)-­‐NUMA	

}  Suppor:ng	
 mul:ple	
 programming	
 models	

}  Hybrid	
 run:mes	

}  MPI	
 +	
 threading	
 model	
 +	
 accelerator	
 model	

}  Matching	
 hybrid	
 parallelism	
 on	
 heterogeneous	
 architectures	

}  Tuning	
 the	
 number	
 of	
 (processes/threads)	
 per	
 level	

Runtime systems: Scien:fic	
 and	
 Technical	
 Hurdles

European Exascale Software Initiative (EESI)

}  Dealing	
 with	
 millions	
 of	
 cores/nodes	

}  Scheduling	

}  Hierarchical	
 scheduling	

}  Data-­‐flow	
 task	
 bases	
 approaches	

¨  Non-­‐coherent	
 architectures	

¨  SoLware	
 data	
 prefetching	

}  Imbalance	
 detec:on,	
 predic:on	
 and	
 (local)	
 correc:on	

¨  Avoid	
 global	
 balancing	
 strategies	

¨  Work	
 stealing	

}  Communica:on	

}  Scalable	
 implementa:ons	
 of	
 MPI/PGAS	

}  Minimize	
 memory	
 consump:on	
 (per	
 connec:on)	

}  Redesign	
 of	
 collec:ve	
 opera:ons	

¨  Asynchrony,	
 ovelap	

}  Discourage	
 use	
 of	
 global	
 synchroniza:on	
 primi:ves?	

Runtime systems: Scien:fic	
 and	
 Technical	
 Hurdles

Toward a common runtime system?

}  There is currently no consensus on a common
runtime system
}  One objective of the Exascale Software Center

}  “Coordinated exascale software stack”
}  Technically feasible…

I.e. Unified Software Stack

Unified Multicore Runtime System

Topology-aware
Scheduling

Memory
Management Synchronization

Task Management
(Threads/Tasklets/Codelets)

Data distribution
facilities I/O services

OpenMP Intel TBB CUDA

MKL PLAGMA

MPI OpenCL PGAS

FFTW

Major Challenges are ahead

Thank you!

Questions?

}  NB: more information at
http://runtime.bordeaux.inria.fr

We are living in exciting times! (let’s stay positive J)

