Programming heterogeneous,
accelerator-based multicore
machines: a runtime system's

perspective

Raymond Namyst
University of Bordeaux
Head of RUNTIME group, INRIA

Ecole CEA-EDF-INRIA 2011
Sophia-Antipolis, June 6-10

Understanding the evolution of parallel machines
The end of Moore’s law?

» The end of single thread performance increase

Clock rate is no longer increasing
Thermal dissipation

Processor architecture is already very
sophisticated

Prediction and Prefetching techniques achieve a very
high percentage of success

Actually, processor complexity is decreasing!

» Question: What circuits should we better
add on a die?

Understanding the evolution of parallel machines
Welcome to the multicore era

» Answer: Multicore chips

Several cores instead of
one processor

IntegratediMembory Controller-#3:Ch DDR3:

Back to complex memory | Core 0. Core1 Core2 - Core3
hierarchies
Shared caches . i
Organization is Shared L3 Cache

vendor-dependent
NUMA penalties

Clusters can no longer be
considered as
“flat sets of processors”

Understanding the evolution of parallel machines
Multicore is a solid trend

photonic NoC

» More performance = —
More cores
Toward embarrassingly e

layers

parallel machines?

multi<core
processor lzr/er

» Designing scalable
multicore architectures
3D stacked memory

Non-coherent cache
architectures

Intel SCC

IBM Cell/BE

Understanding the evolution of parallel machines
Average number of cores per top20 supercomputer

100,000 Exponential growth in parallelism
90,000 for the foreseeable future
80,000
70,000
60,000
50,000
40,000
30,000
20,000
10,000 I I
0 - m e wm W
WQQQ ,‘9& ‘_\9@’ "90“’ '\9&‘ '1969 @Qb ’\9@ "9@: q{g@

Heterogeneous computing is here
And portable programming is getting harder...

» GPUs are the new kids
on the block

De facto adoption

Concrete success stories
“Speedups” > 50)

» Clusters featuring @nvioia. TESLA

accelerators are :

already heading the =

Top500 list)
Tianhe-1A (#1) |
Nebulae (#3)
Tsubame 2.0 (#4)
Roadrunner (#7)

Heterogeneous computing is here
And portable programming is getting harder...

» Programming model

Specialized instruction
set

SIMD execution model

Nvidia Fermi GTX 480
1 512 cores

» Memory
Size limitations

No hardware consistency
Explicit data transfers

» Using GPUs as “side
accelerators” is not
enough

GPU = first class citizens

Multiprocessor N

Multiprocessor 2

Multiprocessor 1

[W

XX S X X S X &

Heterogeneous computing is here
And it seems to be a solid trend...

» “Future processors will be a
mix of general purpose and
specialized cores” (anonymous

source)
One interpretation of "Amdalh’s _
law” Mixed Large
Need powerful, general pu_rplose and
ggaees to speed up sequentla Small Core

» Accelerators will be more
integrated

Intel Knights Corner (MIC),
SandyBridge

AMD Fusion

Nvidia Tegra-like

» Are we happy with that?

No, but it’s probably
unavoidable!

id

—
T
B

--i ™

I The Quest for programming models

What Programming Models for such machines?
Widely used, standard programming models

» MPI

Communication Interface

Scalable implementations exist already
Was actually designed with scalability in mind
Makes programmers “think” scalable algorithms
NUMA awareness?

Memory consumption

» OpenMP

Directive-based, incremental parallelization
Shared-memory model

Well suited to symmetric machines
Portability wrt #cores

NUMA awareness?

OpenMP (1997)

A portable approach to shared-memory programming

» Extensions to existing
Ianguages int matrix[MAX][MAX];
C, C++, Fortran
Set of programming directives ARG W D R I (SN e o
for (int i; i < 400; i++)
» Fork/join approach {
Parallel sections matrix[1][0] += ...
}

» Well suited to data-parallel _
programs 0 (main)
Parallel loops

» OpenMP 3.0 introduced F fork
tasks 1

Support for irregular

parallelism
} join

OpenMP (1997)

Multithreading over shared-memory machines

Architecture Share Over Time
1993-2010

500

400

300

Systems

200

100

N T N O N 0O 0T O v~ ONM T N O N0 O O
Y OY O O OY OY O O O O O O O O O O O «4
Oy O O O OY OO O O O O O O O O O O O
v v vl vl vl S ON NN ONYN NN ONYN NN ONYNOY
O WO WO WO O O WO O O O WO O O O O WO O O
(= = = =) =) =) = = =) =) = = =) =) = =) =) e

MPP
I Cluster
M sMmp
I Constellations

B Single Processor
B Others

The Quest for Programming Models
Dealing with multicore machines

» Several efforts aim at
making MPI and |
OpenMP multicore- Multicore
ready

OpenMP

Scheduling in a NUMA
context (memory
affinity, work stealing)

Memory management
(page migration)

MPI
managament e
Efficient collective
operations M.

Mixing OpenMP with MPI

It makes sense even on shared-memory machines

» MPI address spaces must fit
the underlying topology

~ Impact of Thread distribution

0
S
» Experimental platforms exit §6O
to hybrid applications 2 >0
Topology-aware process = 40 B Optimum
allocation g 30 I Worst
§ 20 - Default
Customizable core/process X 10
ratio 0 | 5
BT-MZ.C.32 SP-MZ.C.32
of OpenMP tasks Impact of thread/process

ratio

- 11
32 16 8

Number of MPI processes

independent from # of cores

Execution time
(seconds)
N D O
o O O O O

(o)}
N

The Quest for Programming Models
Dealing with accelerators

» Software Development
Kits and Hardware
Specific Languages Accelerators

“Stay close to the
Cell SDv

hardware and get good
performance”

Low-level abstractions

Compilers generate code
for accelerator device

» Examples
Nvidia’s CUDA n M.

Compute Unified Device
Architecture)
IBM Cell SDK M.

OpenCL

The Quest for Programming Models
The hidden beauty of CUDA

__global__ void mykernel(float * A1, float * A2, float * R)

{
int p = threadldx.x;
Rlp] = A1[p] + A2[p];
}
int main()
{

float A1[1={1,2,3,4,5,6,7,8,9}, A2[]={10,20,30,40,50,60,70,80,90}, R[9];

int size=sizeof(float) * 9;

float *a1_device, *a2_device, *r_device;

cudaMalloc ((void**) &a1_device, size); cudaMalloc ((void**) &a2_device, size); cudaMalloc ((void**) &r_device, size);

cudaMemcpy(a1_device,A1,size,cudaMemcpyHostToDevice); cudaMemcpy(a2_device,A2,size,cudaMemcpyHostToDevice);

mykernel<<<1,9>>>(a1_device, a2_device, r_device);

cudaMemcpy(R,r_device,taille_mem,cudaMemcpyDeviceToHost) ;

The Quest for Programming Models
Are we forced to use such low-level tools?

» Fortunately, well-known kernels are available
BLAS routines
e.g. CUBLAS
FFT kernels

» Implementations are continuously enhanced
High Efficiency
» Limitations

Data must usually fit accelerators memory
Multi-GPU configurations not well supported

» Ongoing efforts

Using multi-GPU + multicore
MAGMA (Oak Ridge National Lab)

Directive-based approaches
Offloading tasks to accelerators

» Idea: use simple directives... and better compilers
HMPP (Caps Enterprise)

GPU SuperScalar (Barcelona Supercomputing Center)

#pragma omp task inout(C[BS][BS])

void matmul(float *A, float *B, float *C) {

// regular implementation

}

#pragma omp target device(cuda) implements(matmul)
copy in(A[BS][BS] , B[BS][BS] , C[BS][BS])

copy out(C[BS][BS])

void matmul cuda (float %A, float *B, float *C) {

// optimized kernel for cuda

}

The Quest for Programming Models
How shall we program heterogeneous clusters?

» The hard hybrid way
Combine different

paradigms by hand Multicore Accelerators
MPI +

iOpenMP/TBB/???} +
CUDA/OpenCL}

Portability is hard to achieve

Work distribution depends on
#GPU & #CPU per node...

Needs aggressive autotuning

Currently used for building
parallel numerical kernels

MAGMA, D-PLASMA, FFT
kernels

The Quest for Programming Models
How shall we program heterogeneous clusters?

» The uniform way

Use a single (or a
combination of) high—level
programming language to
deal with network +
multicore + accelerators

Increasing number of

directive-based languages
Use simple directives... and
good compilers!

XcalableMP
PGAS approach

HMPP, OpenMPC, OpenMP 4.0

Generate CUDA from OpenMP
code

StarSs

Much better potential for
composability...

If compiler is clever!

Multicore Accelerators

HMPP

StarSs

All the things
runtime systems can do for you

The role of runtime systems

Toward “portability of performance”

» Do dynamically what

HPC Applications

can’t be done
statically

Parallel
Compilers

Parallel
Libraries

Load balance

React to hardware
feedback

Autotuning, self-

A
99959995

organization

Runtime system

Operating System

» We need to put more

GPU

intelligence into the
runtime!

We need new runtime systems!
Toward “portability of performance”

» Computations need to exploit accelerators and
regular CPUs simultaneously

» Data movements between memory banks
Should be minimized
Should not be triggered explicitly by application

» Computations need to accommodate to a
variable number of processing units

Some computations do not scale over a large
#cores

Overview of StarPU
A runtime system for heterogeneous architectures

» Rational

Dynamically schedule
tasks on all

processing units

See a pool of
heterogeneous

processing units

Avoid unnecessary

data transfers
between accelerators

Software VSM for

heterogeneous
machines

Overview of StarPU

Maximizing PU occupancy, minimizing data transfers

» Ideas

Accept tasks that may

have multiple

implementations
Together with potential
inter-dependencies

Leads to a dynamic
acyclic graph of tasks

Data-flow approach

Provide a high-level
data management layer
Application should only

describe

which data may be
accessed by tasks

How data may be divided

Applications

Parallel
Compilers

Parallel
Libraries

StarPU

Drivers (CUDA, OpenCL)

CPU GPU

Overview of StarPU
Dealing with heterogeneous hardware accelerators

» Tasks = HPC Applications
Data Input & OUt.pUt Parallel Parallel
Dependencies with Compilers Libraries
other tasks

Multiple
implementations

E.g. CUDA + CPU
implementation

Scheduling hints

\StarPU

» StarPU provides an

Open Scheduling -~ \\JDA, OpenCL)

platform f 253 (Arw, B, CR)};pU

Scheduling algorithm =
plug-ins

Overview of StarPU
Execution model

Application

Memory Scheduling engine

lanagement
(DSM)

. CPU drivern
GPU driver £k

—J

RAM GPU CPU#k

NdIeIS

.IIIIIIIIIIIIIIII.

Overview of StarPU
Execution model

Application
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIl

[

Memory Scheduling engine
Management

.| (DSM)

. CPU drivern
. GPU driver 2l

RAM GPU CPU#k

"

Submit task « A+=B »

.IIIIIIIIIIIIIIII.

[1d1eIS

Overview of StarPU

Execution model

Application

FEEEEEEE N EEE N EE NN EEEEEEEEEEENETR EEEEEEEEEEEEEETSR
Memory Scheduling engine
=Managemen

. | (DSM)

. CPU drivern
: PU driver 1

GPU CPU#k

Schedule task

.IIIIIIIIIIIIIIII.

[1d1eIS

Overview of StarPU

Execution model

Application

FEEEEEEE N EEE N EE NN EEEEEEEEEEENETR EEEEEEEEEEEEEESRm
Memory Scheduling engine
=Managemen

- | (DSM)

CPU drivern
. #K

GPU CPU#k

Fetch data

.IIIIIIIIIIIIIIII.

[1d1eIS

Overview of StarPU

Execution model

Application

FEEEEEEE N EEE N EE NN EEEEEEEEEEENETR EEEEEEEEEEEEEESRm
Memory Scheduling engine
=Managemen

- | (DSM)

. CPU drivern
: PU driver 1

CPU#k

Fetch data

.IIIIIIIIIIIIIIII.

(1d1eIS

Overview of StarPU

Execution model

Application

FEEEEEEE N EEE N EE NN EEEEEEEEEEENETR EEEEEEEEEEEEEESRm
Memory Scheduling engine
=Managemen

- | (DSM)

. CPU drivern
: PU driver 1

CPU#k

Fetch data

.IIIIIIIIIIIIIIII.

[1d1eIS

Overview of StarPU

Execution model

Application

FEEEEEEE N EEE N EE NN EEEEEEEEEEENETR EEEEEEEEEEEEEESRm

Memory Scheduling engine

=Managemen

- | (DSM)

. CPU drivern

: PU drive 1
CPU#k

Offload computation

.IIIIIIIIIIIIIIII.

[1d1eIS

Overview of StarPU
Execution model

Application

Scheduling eng ne

Memory
lanagement
(DSM)

—_

drivern
#Kk

PU drivej

CPU#k

Notify termination

.IIIIIIIIIIIIIIII.

[1d1eIS

Tasks scheduling
How does it work?

» When a task is submitted,
it first goes into a pool of
“frozen tasks” until all
dependencies are met

» Then, the task is “"pushed”
to the scheduler

» Idle processing units
actively poll for work

(“pop”)

» What happens inside the
scheduler is... up to you!

l Push

Scheduler

Popl Popl
§28S =S

CPU GPU
workers workers

Tasks scheduling
Developing your own scheduler

» Queue based scheduler

Each worker « pops »

task in a specific queue Push

» Implementing a strategy
Easy!
Select queue topology

Implement « pop » and
« push » Pop
Priority tasks

CIE OO < tm—

Work stealing
Performance models, ...

_ _ CPU GPU
» Scheduling algorithms workers workers

testbed

Tasks scheduling
Developing your own scheduler

» Queue based scheduler

Each worker « pops »
task in a specific queue

» Implementing a strategy
Easy!
Select queue topology

Implement « pop » and
« push »
Priority tasks
Work stealing
Performance models, ...

» Scheduling algorithms
testbed

CE 00

CPU
workers

GPU
workers

Dealing with heterogeneous architectures
Performance prediction

» Task completion time

. . [
estimation i
History-based cpu #1 | |; |
User-defined cost I
function Cpu #2 | I I
Parametric cost model '
cpu #3 | |
» Can be used to gpu #1LLL L | I
improve scheduling
gpu #2L 1 [| :I
E.g. Heterogeneous :

Earliest Finish Time
time

Dealing with heterogeneous architectures

Performance prediction

» Data transfer time
estimation

Sampling based on cpu #1 |
off-line calibration
cpu #2 |

» Can be used to cpu #3 |
Better estimate
overall exec time gpu #1111
Minimize data
movements gpu #2

4 N :_l I I S ..

time

v

StarPU’s Programming Interface

Scaling vector example

Scaling a vector

Data registration

- Register a piece of data to StarPU
float array[NX];
for (unsigned i = 0; i < NX; i++)
array[i] = 1.0f;

starpu_data_handle vector_handle;
starpu_vector_data_register(&vector_handle, O,
array, NX, sizeof(vector[0]));

- Unregister data
starpu_data_unregister(vector_handle);

Scaling a vector
Defining a codelet

- CPU kernel

void scal cpu func(void *buffers[], void *cl arg)

d

struct starpu_vector_interface s *vector = buftfers[0];

unsigned n = STARPU VECTOR GET NX(vector);
float *val = (float *)STARPU VECTOR GET PTR(vector);

float *factor = cl arg;

for (int 1= 0; 1 <n; 1++)
val[1] *= *factor;

Scaling a vector
Defining a codelet (2)

- CUDA kernel (compiled with nvcc, in a separate .cu file)

__global void vector mult cuda(float *val, unsigned n, float factor)

{
h

for(unsigned 1 =0 ; 1 <n ; 1*++) val[1] *= factor;

extern "C" void scal cuda func(void *buffers[], void *cl arg)

d

struct starpu_vector_interface_s *vector = butfers[0];
unsigned n = STARPU VECTOR GET NX(vector);
float *val = (float *)STARPU VECTOR GET PTR(vector);

float *factor = (float *)cl arg;

vector mult cuda<<<l,1>>>(val, n, *factor);
cudaThreadSynchronize();

Scaling a vector
Defining a codelet (3)

- OpenCL kernel

__kernel void vector mult opencl(global float *val, unsigned n, float
factor) {
for(unsigned 1 =0 ; 1 <n ; 1++) val[1] *= factor;

h

extern "C" void scal opencl func(void *buffers[], void *cl arg) {
struct starpu_vector_interface_s *vector = buffers[0];
unsigned n = STARPU VECTOR_GET NX(vector);

float *val = (float *)STARPU_ VECTOR_GET _ PTR(vector);
float *factor = (float *)cl arg;

clSetKernelArg(kernel, 0, sizeof(val), &val);

clEnqueueNDRangeKernel(queue, kernel, 1, NULL, ...) ;

Scaling a vector
» Defining a codelet (4)

» Codelet = multi-versioned kernel
Function pointers to the different kernels
Number of data parameters managed by StarPU

starpu_codelet scal cl = {

.where = STARPU CPU

| STARPU CUDA

| STARPU OPENCL,
.cpu_func = scal cpu func,
.cuda func = scal cuda func,
.opencl func =scal opencl func,
nbuffers = 1

Scaling a vector
Defining a task

- Define a task that scales the vector by a constant

struct starpu_task *task = starpu_task_create();
task->cl = &scal_cl;

task->buffers[0].handle = vector_handle;
task->buffers[0].mode = STARPU_RW;

float factor = 3.14;
task->cl_arg = &factor;
task->cl_arg_size = sizeof(factor);

starpu_task_submit(task);
starpu_task_wait(task);

Scaling a vector

Defining a task, starpu_insert_task helper

- Define a task that scales the vector by a constant
float factor = 3.14;

starpu_insert_task(
&scal_dl,
STARPU_RW, vector__handle,
STARPU_VALUE, &factor, sizeof(factor),
0);

Using StarPU through a standard API

A StarPU driver for OpenCL

» Run legacy OpenCL codes
on top of StarPU

OpenCL sees a number of
starPU devices

» Performance limitations
Data transfers performed
just-in-time
Data replication not
managed by StarPU

» Ongoing work
We propose light extensions
to OpenCL

Greatly improves flexibility
when used

Regular OpenCL behavior if
not extension is used

Legacy OpenCL Application

OpenCL

StarPU

CPU GPU

Parallel Dense Linear Algebra
over StarPU

Dealing with heterogeneous architectures

Performance

» On the influence of
the scheduling policy

LU decomposition

8 CPUs (Nehalem) + 3
GPUs (FX5800)

80% of work goes on
GPUs, 20% on CPUs

» StarPU exhibits good
scalability wrt:

Problem size
Number of GPUs

GFlop/s

800
700
600]
Greedy
oo M task
400 model
M prefetch
oo [data
200 model
100
0
S peed (GFlops)
350 | | |
MAGMA ——
300 StarPU ------- .
- T 1ES
" 36aB 16GB |

200

150

soj

o kL

100 [/

0

1 1 1 1 1
8192 16384 24576 32768 40960 49152

Matrix size

Mixing PLASMA and MAGMA with StarPU
With University of Tennessee & INRIA HiePACS

1000

» Cholesky decomposition oo |- 1 §GpUs + OPLs

5 CPUs (Nehalem) + ool
3 GPUs (FX5800)

Efficiency > 100%

500
400
300
200 _ - geEeEE
100

0 | | |
5120 15360 25600 35840 46080

Matrix order

Performance (Gflop/s)

T
Q11 A
- I

W

Mixing PLASMA and MAGMA with StarPU
With University of Tennessee & INRIA HiePACS

» QR decomposition
16 CPUs (AMD) + 4 GPUs (C1060)

4 GPUs + 16 CPUs -+~ §
P AL B U I S E— P
OO GRS aGRus AT s +12 CPUs
1GPUs?+1 CPUs i + : NZOO GFlOpS
800 [A o ;}*””} """"""""""""" §”:j;;j::t§&>“““ """" j """""""""""" i

SO L | I (although

600 I~ '/,’//X"‘—“"‘ """""""""" _ ____-"’%--“-“--* """""""""" """""""""""" _ 12 CPUS

% “ L ; ;
5 s ~150 Gflops)
& X7 i i i i
: : Y . » : E’ E io|
: e i } ST SRR e : :
400 /'x* """"""" EE """"" S S -
| et - ; | |
A . 3 3
A= ‘ %
w0l W I e R — . |
.
0 | | | | i | |
0 5000 10000 15000 20000 25000 30000 35000 40000

Matrix order

Mixing PLASMA and MAGMA with StarPU

« Super-Linear » efficiency in QR?
» Kernel efficiency

sgeqrt

CPU: 9 Gflops GPU: 30 Gflops
stsqgrt

CPU: 12 Gflops GPU: 37 Gflops
somgqr

CPU: 8.5 Gflops GPU: 227 Gflops
Sssmqr

CPU: 10 Gflops GPU: 285 Gflops

» Task distribution observed on StarPU
sgeqrt: of tasks on GPUs
Sssmqr: 92.5% of tasks on GPUs

Ratio:

Ratio:

Ratio:

Ratio:

» Heterogeneous architectures are cool! ©

X3

X3

xX27

X28

Using MPI and StarPU

» Keep an MPI-looking code
Work on StarPU data instead of plain data buffers.

» Data transfers can be partially/totally
automated
starpu_mpi_send/recv, isend/irecy, ...
Equivalents of MPI_Send/Recv, Isend/Irecy,... but
working on StarPU data
Handles all needed CPU/GPU transfers
Handles task/communications dependencies

Overlaps MPI communications, CPU/GPU
communications, and CPU/GPU computations

MPI version of starpu_insert_task

» Data distribution over MPI nodes decided by
application
» Data consistency enforced at the cluster level

Automatic starpu_mpi_send/recv calls for each
task

~ DSM with task-based granularity

» All nodes execute the same algorithm

Actual task distribution according to data being
written to
Owner compute rule

» Sequential-looking code !

MPI version of starpu_insert_task
cholesky decomposition

for (k = 0; k < nblocks; k++) {
starpu mpi insert task(MPI COMM WORLD, &clll,
STARPU RW, data handles[k][k], 0);
for (j = k+1; j<nblocks; j++) {
starpu mpi insert task(MPI COMM WORLD, &cl2l,
STARPU R, data handles[k][k],
STARPU RW, data handles[k]1[]J], 0);
for (i = k+1; i<nblocks; i++)
if (1 <= j)
starpu mpi insert task(MPI COMM WORLD, &cl22,
STARPU R, data handles[k][1],
STARPU R, data handles[k][]],
STARPU RW, data handles[i1][]J], 0);

} :

}

starpu task wait for all(); :

Cholesky Using MPI+StarPU + Magma kernels
Early results

5000
4500
4000
3500

3000

4 MPI| Nodes
2500 =-2 MPI Nodes
1 MPI Node

2000

Speed (Gflops /)

1500

1000

500

0
10000 20000 30000 40000 50000 60000 70000 80000 90000 100000 110000

Matrix order

Integrating multithreading and
StarPU

Static vs Dynamic scheduling
Stencil computation

» Wave propagation
Prefetching
Asynchronism

B e o |
1

awil|

Static vs Dynamic scheduling

Can a dynamic scheduler compete with a static approach?

» Load balancing vs data stability
We estimate the task cost as
o compute + transfer

Problem size: 256 x 4096 x 4096, divided into 64
blocks

Task distribution (1 color per GPU)

Dynamic scheduling can lead to stable configurations

B=0 B=0.5 B =3 B=6

\4

Static vs Dynamic scheduling
Performance

» Impact of scheduling policy

iterations per second

3 GPUs (FX5800) - no CPU used
256 x 4096 x 4096 : 64 blocks
Speed up = 2.7 (2 PCI 16x + 1 PCI 8x config)

_ without prefetch ———31
with prefetch

%
Y.
v

N /
A\

PN

..)2 — P ERREREEEe <)

__ e IR I 1 IR (g |

%] ><].

__ e TR I S U | o

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV SRS B 1 % TSSO I 1 SR B 120 W

........ |0) Ai 2 IR B X 0
h h h h Stay;
SMetm Mty etmey, ~Ctmgy ~in;? e

Towards parallel tasks on CPUs

Going further

» MPI + StarPU + OpenMP

Many algorithms can take
advantage of shared
memory

We can’t seriously
“taskify” the world!

» The Stencil case

When neighbor tasks can
be scheduled on a single
node

Just use shared memory!

Hence an OpenMP stencil
kernel

——

Integrating StarPU and Multithreading

How to deal with parallel tasks on multicore?

» Mixing StarPU with
OpenMP
Intel TBB
Pthreads
Etc.

» Raises the
Composability issue

Challenge =
autotuning the
number of threads per
parallel region

void work ()

{

#fpragma omp parallel for
for (int 1i=0; i<MAX; i++)
{

#fpragma omp parallel for
num threads (2)

for (int k=0; k<MAX; k++)

}

}
|

l

P7acN
55555555

Integrating StarPU and Multithreading

Integrating tasks and threads

» First approach

Use an OpenMP main
stream

Suggested (?) by

recent parallel
language extension

proposals

E.g. Star SuperScalar
(UPC Barcelona) s ss 55 ss
HMPP (CAPS

[

[]

Enterprise)

Implementing

[]

[]

[]

[]
scheduling is difficult T T

Much more than a

simple offloading GPU GPU cPu | | cpu cru | | cpu

approach... i E

Integrating StarPU and Multithreading

Integrating tasks and threads

» Alternate approach

Let StarPU spawn
OpenMP tasks

Performance modeling
would still be valid

Would also work with other
tools

E.g. Intel TBB

How to find the appropriate
granularity?

May depend on the
concurrent tasks!

StarPU tasks = first class
citizen
Need to bridge the gap with
existing parallel languages

| || [
[] O &) (&) (8
[] | (]
O &) (B 8| (& (2
CPU GPU
workers workers

StarPU’s Scheduling Contexts

Toward code Push

» Similar to OpenCL
contexts Context A

Except that each
context features its own
scheduler

» Multiple parallel
libraries can run

simultaneously d
Virtualization of
resources
At minimal overhead j j 1

Scheduling overhead
reduced S S S S S S

Scalability workaround
CPU GPU

workers workers

StarPU’s Scheduling Contexts

Toward code Push

» Contexts may share
processing units Context A

Avoid underutilized
resources

Schedulers are aware
of each other

» Contexts may

expand and shrink ~
Maximize overall
throughput
Use dynamic feedback
both from application S S S S S S
and runtime

CPU GPU
workers workers

cuda 0

cpu 0

Integrating StarPU and Multithreading
Adapting granularity

» Real-time performance feedback

100
80
60
40
20

0

100
80
60
40

20

22 24 26 28 30 32 34 36 38

10000

I submitted —I

ready mw———
1000

100

10

22 24 26 28 30 32 34 36 38

What's next?

Future parallel machines
Exascale (1018 flop/s) systems, by 20187

» The biggest change comes from node
architecture

» Hybrid systems will be commonplace
Multicore chips + accelerators (GPUs?)
More integrated design

» Extreme parallelism

Total system concurrency ~ O(102)!
Including O(10) to O(100) to hide latency

= X 10 000 increase

How will we program these machines?
Let’s prepare for serious changes

» Billions of threads will be necessary to occupy exascale
machines

Exploit every source of (fine-grain) parallelism
Not every algorithm can scale that far ®

Multi-scale, Multi-physics applications are welcome!
Great opportunity to exploit multiple levels of parallelism

Is SIMD the only reasonable approach?
Are CUDA & OpenCL our future?

» No global, consistent view of node’s state
Local algorithms
Hierarchical coordination/load balance

» Maybe, this time, we should seriously consider enabling
(parallel) code reuse...

Parallel code reuse
Mixing different paradigms leads to several issues

» Can we really use several hybrid parallel kernels
simultaneously?

Ever tried to mix OpenMP and Intel MKL?
Could be helpful in order to exploit millions of cores

» It's all about composability

Probably the biggest challenge for runtime systems
Hybridization will mostly be indirect (linking libraries)

» And with composability come a lot of related
issues

Need for autotuning / scheduling hints

International Exascale Software Project (IESP)
“A call to action”

» Build an international plan EXASCALE ROADMAP1(
for coordinating research | .
for the next generation
open source software
for scientific high-performance
computing
Hardware is evolving more rapidly than software
New hardware trends not handled by existing software

Emerging software technologies not yet integrated
into a common software stack

No global evaluation of key missing components

European Exascale Software Initiative (EESI)
Position of Europe in the international HPC landscape

» WP4: Enabling technologies for Exascale
computing
Assess novel HW and SW technologies for
Exascale challenges
Build a European vision and a roadmap

» WG 4.2: Software eco-systems
Subtopic: Runtime systems

European Exascale Software Initiative (EESI)
Runtime systems: Scientific and Technical Hurdles

» Mastering heterogeneity
Unified/transparent accelerator models
Providing support for adaptive granularity
Fine grain parallelism
Scheduling for latency/bandwidth
(NC)-NUMA

» Supporting multiple programming models
Hybrid runtimes
MPI + threading model + accelerator model
Matching hybrid parallelism on heterogeneous architectures
Tuning the number of (processes/threads) per level

European Exascale Software Initiative (EESI)
Runtime systems: Scientific and Technical Hurdles

» Dealing with millions of cores/nodes
Scheduling
Hierarchical scheduling

Data-flow task bases approaches
Non-coherent architectures
Software data prefetching

Imbalance detection, prediction and (local) correction
Avoid global balancing strategies
Work stealing

Communication
Scalable implementations of MPI/PGAS

Minimize memory consumption (per connection)
Redesign of collective operations
Asynchrony, ovelap

Discourage use of global synchronization primitives?

Toward a common runtime system?
I[.e. Unified Software Stack

» There is currently no consensus on a common
runtime system

One objective of the Exascale Software Center
“"Coordinated exascale software stack”

Technically feasible...

MKL PLAGMA FFTW

OpenMP Intel TBB CUDA OpenCL MPI PGAS

Unified Multicore Runtime System

Task Management Data distribution 1/O services
(Threads/Tasklets/Codelets) facilities
Topology-aware Memory

Synchronization

Scheduling Management

Major Challenges are ahead
We are living in exciting times! (let’s stay positive ©)

Thank you!

Questions?

» NB: more information at
http://runtime.bordeaux.inria.fr

