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Understanding the evolution of parallel machines 

}  The end of single thread performance increase 
}  Clock rate is no longer increasing 

}  Thermal dissipation 

}  Processor architecture is already very 
sophisticated 
}  Prediction and Prefetching techniques achieve a very 

high percentage of success 

}  Actually, processor complexity is decreasing! 

}  Question: What circuits should we better 
add on a die? 

The end of Moore’s law? 



}  Answer: Multicore chips 
}  Several cores instead of 

one processor 

}  Back to complex memory 
hierarchies 
}  Shared caches 

¨  Organization is 
vendor-dependent 

}  NUMA penalties 

}  Clusters can no longer be 
considered as  
“flat sets of processors” 

Understanding the evolution of parallel machines 
Welcome to the multicore era 



}  More performance = 
more cores 
}  Toward embarrassingly 

parallel machines? 

}  Designing scalable 
multicore architectures 
}  3D stacked memory 
}  Non-coherent cache 

architectures 
}  Intel SCC 
}  IBM Cell/BE 

Understanding the evolution of parallel machines 
Multicore is a solid trend 



Understanding the evolution of parallel machines 
Average number of cores per top20 supercomputer 



}  GPUs are the new kids 
on the block 
}  De facto adoption 
}  Concrete success stories 

}  “Speedups” > 50 

}  Clusters featuring 
accelerators are 
already heading the 
Top500 list 
}  Tianhe-1A (#1) 
}  Nebulae (#3) 
}  Tsubame 2.0 (#4) 
}  Roadrunner (#7) 

Heterogeneous computing is here 
And portable programming is getting harder… 



}  Programming model 
}  Specialized instruction 

set 
}  SIMD execution model 

}  Nvidia Fermi GTX 480 
¨  512 cores 

}  Memory 
}  Size limitations 
}  No hardware consistency 

}  Explicit data transfers 

}  Using GPUs as “side 
accelerators” is not 
enough 
}  GPU = first class citizens 

Heterogeneous computing is here 
And portable programming is getting harder… 



}  “Future processors will be a 
mix of general purpose and 
specialized cores” (anonymous 
source) 
}  One interpretation of “Amdalh’s 

law” 
}  Need powerful, general purpose 

cores to speed up sequential 
code 

}  Accelerators will be more 
integrated 
}  Intel Knights Corner (MIC), 

SandyBridge 
}  AMD Fusion 
}  Nvidia Tegra-like 

}  Are we happy with that? 
}  No, but it’s probably 

unavoidable! 

Heterogeneous computing is here 
And it seems to be a solid trend… 

Mixed Large 
and 

Small Core 



The Quest for programming models 



What Programming Models for such machines? 

}  MPI 
}  Communication Interface 
}  Scalable implementations exist already 

}  Was actually designed with scalability in mind 
}  Makes programmers “think” scalable algorithms 

}  NUMA awareness? 
}  Memory consumption 

}  OpenMP 
}  Directive-based, incremental parallelization 
}  Shared-memory model 

}  Well suited to symmetric machines 
}  Portability wrt #cores 
}  NUMA awareness? 

Widely used, standard programming models 



}  Extensions to existing 
languages 
}  C, C++, Fortran 
}  Set of programming directives 

}  Fork/join approach 
}  Parallel sections 

}  Well suited to data-parallel 
programs 
}  Parallel loops 

}  OpenMP 3.0 introduced 
tasks 
}  Support for irregular 

parallelism 

OpenMP (1997) 
A portable approach to shared-memory programming 

 

int matrix[MAX][MAX]; !

  ... !

#pragma omp parallel for!

  for (int i; i < 400; i++)!

  {!

     matrix[i][0] += ...!

  } !

  !
0 (main) 

1 2 3
fork 

join 



OpenMP (1997) 
Multithreading over shared-memory machines 



}  Several efforts aim at 
making MPI and 
OpenMP multicore-
ready 
}  OpenMP 

}  Scheduling in a NUMA 
context (memory 
affinity, work stealing) 

}  Memory management 
(page migration) 

}  MPI 
}  NUMA-aware buffer 

management 
}  Efficient collective 

operations 

The Quest for Programming Models 
Dealing with multicore machines 

M. 

CPU 

CPU 

CPU 

CPU 

 
 

Multicore 

OpenMP 
TBB 
MPI Cilk 



}  MPI address spaces must fit 
the underlying topology 

}  Experimental platforms exit 
to hybrid applications 
}  Topology-aware process 

allocation 

}  Customizable core/process 
ratio 

}  # of OpenMP tasks 
independent from # of cores 

Mixing OpenMP with MPI 
It makes sense even on shared-memory machines 
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}  Software Development 
Kits and Hardware 
Specific Languages 
}  “Stay close to the 

hardware and get good 
performance” 
}  Low-level abstractions 

}  Compilers generate code 
for accelerator device 

}  Examples 
}  Nvidia’s CUDA 

}  Compute Unified Device 
Architecture) 

}  IBM Cell SDK 

}  OpenCL 

The Quest for Programming Models 
Dealing with accelerators 

M. *PU 

M. *PU 

Accelerators 

 
 

Cell SDK 
CUDA 
OpenCL 

Ct 



The Quest for Programming Models 
The hidden beauty of CUDA 

 

__global__ void mykernel(float * A1, float * A2, float * R) 

{ 

        int p = threadIdx.x; 

        R[p] = A1[p] + A2[p]; 

} 

  

int main() 

{ 

        float A1[]={1,2,3,4,5,6,7,8,9},  A2[]={10,20,30,40,50,60,70,80,90},  R[9]; 

        int size=sizeof(float) * 9; 

        float *a1_device, *a2_device, *r_device; 

        cudaMalloc ( (void**) &a1_device, size); cudaMalloc ( (void**) &a2_device, size); cudaMalloc ( (void**) &r_device, size); 

        cudaMemcpy( a1_device,A1,size,cudaMemcpyHostToDevice); cudaMemcpy( a2_device,A2,size,cudaMemcpyHostToDevice); 

  

        mykernel<<<1,9>>>(a1_device, a2_device, r_device); 

  

        cudaMemcpy(R,r_device,taille_mem,cudaMemcpyDeviceToHost);!

}!



The Quest for Programming Models 

}  Fortunately, well-known kernels are available 
}  BLAS routines 

}  e.g. CUBLAS 
}  FFT kernels 

}  Implementations are continuously enhanced 
}  High Efficiency 

}  Limitations 
}  Data must usually fit accelerators memory 
}  Multi-GPU configurations not well supported 

}  Ongoing efforts 
}  Using multi-GPU + multicore 

}  MAGMA (Oak Ridge National Lab) 

Are we forced to use such low-level tools? 



Directive-based approaches 

}  Idea: use simple directives… and better compilers 
}  HMPP (Caps Enterprise) 
}  GPU SuperScalar (Barcelona Supercomputing Center) 

Offloading tasks to accelerators 

 

#pragma omp task inout(C[BS][BS])!

void matmul( float ∗A, float ∗B, float ∗C) {!

// regular implementation!

}!

#pragma omp target device(cuda) implements(matmul)!

copy_in(A[BS][BS] , B[BS][BS] , C[BS][BS])!

copy_out(C[BS][BS])!

void matmul cuda ( float ∗A, float ∗B, float ∗C) {!

// optimized kernel for cuda!

}  !



}  The hard hybrid way 
}  Combine different 

paradigms by hand 
}  MPI + 

{OpenMP/TBB/???} + 
{CUDA/OpenCL} 

}  Portability is hard to achieve 
}  Work distribution depends on 

#GPU & #CPU per node… 
}  Needs aggressive autotuning 

}  Currently used for building 
parallel numerical kernels 
}  MAGMA, D-PLASMA, FFT 

kernels 

The Quest for Programming Models 
How shall we program heterogeneous clusters? 
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}  The uniform way 
}  Use a single (or a 

combination of) high—level 
programming language to 
deal with network + 
multicore + accelerators 

}  Increasing number of 
directive-based languages 
}  Use simple directives… and 

good compilers! 
¨  XcalableMP 

¨  PGAS approach 
¨  HMPP, OpenMPC, OpenMP 4.0 

¨  Generate CUDA from OpenMP 
code 

¨  StarSs 

}  Much better potential for 
composability… 
}  If compiler is clever! 

The Quest for Programming Models 
How shall we program heterogeneous clusters? 

M. 

CPU 

CPU 

CPU 

CPU M. *PU 

M. *PU 

 
 

Multicore 

OpenMP 

Accelerators 

? 
 
 

HMPP 

StarSs 
OpenMPC  

 
XMP 



All the things 
runtime systems can do for you 



Parallel 
Compilers 

HPC Applications 

Runtime system 

Operating System 

CPU 

Parallel 
Libraries 

}  Do dynamically what 
can’t be done 
statically 
}  Load balance 
}  React to hardware 

feedback 
}  Autotuning, self-

organization 

}  We need to put more 
intelligence into the 
runtime! 

The role of runtime systems 
Toward “portability of performance” 

GPU … 



We need new runtime systems! 

}  Computations need to exploit accelerators and 
regular CPUs simultaneously 

}  Data movements between memory banks 
}  Should be minimized 
}  Should not be triggered explicitly by application 

}  Computations need to accommodate to a 
variable number of processing units 
}  Some computations do not scale over a large 

#cores 

Toward “portability of performance” 



}  Rational 
}  Dynamically schedule 

tasks on all 
processing units 
}  See a pool of 

heterogeneous 
processing units 

}  Avoid unnecessary 
data transfers 
between accelerators 
}  Software VSM for 

heterogeneous 
machines 

Overview of StarPU 
A runtime system for heterogeneous architectures 
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}  Ideas 
}  Accept tasks that may 

have multiple 
implementations 
}  Together with potential 

inter-dependencies 
¨  Leads to a dynamic 

acyclic graph of tasks 
¨  Data-flow approach 

}  Provide a high-level 
data management layer  
}  Application should only 

describe 
¨  which data may be 

accessed by tasks 
¨  How data may be divided 

Overview of StarPU 
Maximizing PU occupancy, minimizing data transfers 
 

Parallel 
Compilers 

Applications 

StarPU 
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GPU … 



CPU 

Parallel 
Compilers 

HPC Applications 

StarPU 

Drivers (CUDA, OpenCL) 

Parallel 
Libraries 

}  Tasks = 
}  Data input & output 
}  Dependencies with 

other tasks 
}  Multiple 

implementations 
}  E.g. CUDA + CPU 

implementation 
}  Scheduling hints 

}  StarPU provides an 
Open Scheduling 
platform 
}  Scheduling algorithm = 

plug-ins 

Overview of StarPU 
Dealing with heterogeneous hardware accelerators 

GPU … (ARW, BR, CR) f 
cpu 
gpu 
spu 



Overview of StarPU 
Execution model 

Scheduling engine 

Application 

GPU driver 

Memory 
Management 
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CPU driver 
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Overview of StarPU 
Execution model 

Scheduling engine 

Application 

GPU driver 

Memory 
Management 

(DSM) 

RAM GPU 

CPU driver 
#k 

CPU#k 
... 

StarPU
 

Submit task « A += B » 

A+= B 

A B 

B A 



Overview of StarPU 
Execution model 

Scheduling engine 

Application 

GPU driver 

Memory 
Management 

(DSM) 

RAM GPU 

CPU driver 
#k 

CPU#k 
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StarPU
 

Schedule task 

A+= B 

A B 

B A 



Overview of StarPU 
Execution model 

Scheduling engine 

Application 

GPU driver 
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Overview of StarPU 
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Overview of StarPU 
Execution model 
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B B 

B A 

A A 

Offload computation 

A+= B 



Overview of StarPU 
Execution model 

Scheduling engine 

Application 

GPU driver 
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}  When a task is submitted, 
it first goes into a pool of 
“frozen tasks” until all 
dependencies are met 

}  Then, the task is “pushed” 
to the scheduler 

}  Idle processing units 
actively poll for work 
(“pop”) 

}  What happens inside the 
scheduler is… up to you! 

Tasks scheduling 
How does it work? 

Scheduler 

CPU 
workers 

GPU 
workers 

Push 

Pop Pop 



}   Queue based scheduler 
}  Each worker « pops » 

task in a specific queue 

}   Implementing a strategy 
}  Easy! 
}  Select queue topology 
}  Implement « pop » and 

« push » 
}  Priority tasks 
}  Work stealing 
}  Performance models, … 

}   Scheduling algorithms 
testbed 

Tasks scheduling 
Developing your own scheduler 

CPU 
workers 

GPU 
workers 

Push 

Pop 



}   Queue based scheduler 
}  Each worker « pops » 

task in a specific queue 

}   Implementing a strategy 
}  Easy! 
}  Select queue topology 
}  Implement « pop » and 

« push » 
}  Priority tasks 
}  Work stealing 
}  Performance models, … 

}   Scheduling algorithms 
testbed 

Tasks scheduling 
Developing your own scheduler 

CPU 
workers 

GPU 
workers 

? 
Push 

Pop 



}  Task completion time 
estimation 
}  History-based 
}  User-defined cost 

function 
}  Parametric cost model 

}  Can be used to 
improve scheduling 
}  E.g. Heterogeneous 

Earliest Finish Time 

Dealing with heterogeneous architectures 
Performance prediction 

time 

cpu #3 

gpu #1 

cpu #2 

cpu #1 

gpu #2 



}  Data transfer time 
estimation 
}  Sampling based on 

off-line calibration  

}  Can be used to 
}  Better estimate 

overall exec time 
}  Minimize data 

movements 

Dealing with heterogeneous architectures 
Performance prediction 

time 

cpu #3 

gpu #1 

cpu #2 

cpu #1 

gpu #2 



StarPU’s Programming Interface  

Scaling vector example 



•  Register a piece of data to StarPU 
float array[NX]; 
for (unsigned i = 0; i < NX; i++) 

array[i] = 1.0f; 
 
starpu_data_handle vector_handle; 
starpu_vector_data_register(&vector_handle, 0, 

array, NX, sizeof(vector[0])); 
 
•  Unregister data 

starpu_data_unregister(vector_handle); 

Scaling a vector 
Data registration 



•  CPU kernel 

Scaling a vector 
Defining a codelet 

void scal_cpu_func(void *buffers[], void *cl_arg) 
{ 
    struct starpu_vector_interface_s *vector = buffers[0]; 
 
    unsigned n = STARPU_VECTOR_GET_NX(vector); 
    float *val = (float *)STARPU_VECTOR_GET_PTR(vector); 
 
    float *factor = cl_arg; 
 
    for (int i = 0; i < n; i++) 
        val[i] *= *factor; 
} 



•  CUDA kernel (compiled with nvcc, in a separate .cu file) 

Scaling a vector 
Defining a codelet (2) 

__global__ void vector_mult_cuda(float *val, unsigned n, float factor) 
{ 
        for(unsigned i = 0 ; i < n ; i++) val[i] *= factor; 
} 
 
extern "C" void scal_cuda_func(void *buffers[], void *cl_arg) 
{ 
        struct starpu_vector_interface_s *vector = buffers[0]; 
        unsigned n = STARPU_VECTOR_GET_NX(vector); 
        float *val = (float *)STARPU_VECTOR_GET_PTR(vector); 
        float *factor = (float *)cl_arg; 
 
        vector_mult_cuda<<<1,1>>>(val, n, *factor); 
        cudaThreadSynchronize(); 
} 



•  OpenCL kernel 

Scaling a vector 
Defining a codelet (3) 

__kernel void vector_mult_opencl(__global float *val, unsigned n, float 
factor) { 
        for(unsigned i = 0 ; i < n ; i++) val[i] *= factor; 
} 
 
extern "C" void scal_opencl_func(void *buffers[], void *cl_arg) { 
        struct starpu_vector_interface_s *vector = buffers[0]; 
        unsigned n = STARPU_VECTOR_GET_NX(vector); 
        float *val = (float *)STARPU_VECTOR_GET_PTR(vector); 
        float *factor = (float *)cl_arg; 
        ... 
        clSetKernelArg(kernel, 0, sizeof(val), &val); 
        ... 
        clEnqueueNDRangeKernel(queue, kernel, 1, NULL, …) ; 
} 



Scaling a vector 
}  Defining a codelet (4) 

•  Codelet = multi-versioned kernel 
Function pointers to the different kernels 
Number of data parameters managed by StarPU 
 
starpu_codelet scal_cl = { 
    .where = STARPU_CPU 
                 | STARPU_CUDA 
                 | STARPU_OPENCL, 
    .cpu_func = scal_cpu_func, 
    .cuda_func = scal_cuda_func, 
    .opencl_func = scal_opencl_func, 
    .nbuffers = 1 
}; 



•  Define a task that scales the vector by a constant 
 

struct starpu_task *task = starpu_task_create(); 
task->cl = &scal_cl; 
 
task->buffers[0].handle = vector_handle; 
task->buffers[0].mode = STARPU_RW; 
 
float factor = 3.14; 
task->cl_arg = &factor; 
task->cl_arg_size = sizeof(factor); 
 
starpu_task_submit(task); 
starpu_task_wait(task); 

Scaling a vector 
Defining a task 



•  Define a task that scales the vector by a constant 

float factor = 3.14; 

starpu_insert_task( 
&scal_cl, 
STARPU_RW, vector_handle, 
STARPU_VALUE, &factor, sizeof(factor), 
0); 
 
 
 
 

Scaling a vector 
Defining a task, starpu_insert_task helper 



}  Run legacy OpenCL codes 
on top of StarPU 
}  OpenCL sees a number of 

starPU  devices 

}  Performance limitations 
}  Data transfers performed 

just-in-time 
}  Data replication not 

managed by StarPU 

}  Ongoing work 
}  We propose light extensions 

to OpenCL 
}  Greatly improves flexibility 

when used 
}  Regular OpenCL behavior if 

not extension is used  

Using StarPU through a standard API 
A StarPU driver for OpenCL 

OpenCL 

StarPU 

CPU GPU … 

Legacy OpenCL Application 



Parallel Dense Linear Algebra 
over StarPU  
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}  On the influence of 
the scheduling policy 
}  LU decomposition  

}  8 CPUs (Nehalem) + 3 
GPUs (FX5800) 

}  80% of work goes on 
GPUs, 20% on CPUs 

}  StarPU exhibits good 
scalability wrt: 
}  Problem size 
}  Number of GPUs 

Dealing with heterogeneous architectures 
Performance 



}  Cholesky decomposition  
}  5 CPUs (Nehalem) + 

3 GPUs (FX5800) 
}  Efficiency > 100% 

Mixing PLASMA and MAGMA with StarPU 
With University of Tennessee & INRIA HiePACS 
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Mixing PLASMA and MAGMA with StarPU 

}  QR decomposition  
}  16 CPUs (AMD) + 4 GPUs (C1060) 

With University of Tennessee & INRIA HiePACS 
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Mixing PLASMA and MAGMA with StarPU 

}  Kernel efficiency 
}  sgeqrt 

}  CPU: 9 Gflops   GPU: 30 Gflops  Ratio: x3 
}  stsqrt 

}  CPU: 12 Gflops  GPU: 37 Gflops  Ratio: x3 
}  somqr 

}  CPU: 8.5 Gflops  GPU: 227 Gflops  Ratio: x27 
}  Sssmqr 

}  CPU: 10 Gflops  GPU: 285 Gflops  Ratio: x28 

}  Task distribution observed on StarPU 
}  sgeqrt: 20% of tasks on GPUs  
}  Sssmqr: 92.5% of tasks on GPUs 

}  Heterogeneous architectures are cool! J 

« Super-Linear » efficiency in QR? 
 



Using MPI and StarPU 

}  Keep an MPI-looking code 
}  Work on StarPU data instead of plain data buffers. 

}  Data transfers can be partially/totally 
automated 
}  starpu_mpi_send/recv, isend/irecv, ... 

}  Equivalents of MPI_Send/Recv, Isend/Irecv,... but 
working on StarPU data 

}  Handles all needed CPU/GPU transfers 
}  Handles task/communications dependencies 
}  Overlaps MPI communications, CPU/GPU 

communications, and CPU/GPU computations 



MPI version of starpu_insert_task 

}  Data distribution over MPI nodes decided by 
application 

}  Data consistency enforced at the cluster level 
}  Automatic starpu_mpi_send/recv calls for each 

task 
}  ≈ DSM with task-based granularity 

}  All nodes execute the same algorithm 
}  Actual task distribution according to data being 

written to 
}  Owner compute rule 

}  Sequential-looking code ! 



MPI version of starpu_insert_task  

for (k = 0; k < nblocks; k++) {!
    starpu_mpi_insert_task(MPI_COMM_WORLD, &cl11,!
               STARPU_RW, data_handles[k][k], 0);!
    for (j = k+1; j<nblocks; j++) {!
      starpu_mpi_insert_task(MPI_COMM_WORLD, &cl21,!
                 STARPU_R, data_handles[k][k],!
                 STARPU_RW, data_handles[k][j], 0);!
      for (i = k+1; i<nblocks; i++)!
        if (i <= j)!
          starpu_mpi_insert_task(MPI_COMM_WORLD, &cl22,!
                     STARPU_R, data_handles[k][i],!
                     STARPU_R, data_handles[k][j],!
                     STARPU_RW, data_handles[i][j], 0);!
    }!
  }!
starpu_task_wait_for_all();!

cholesky decomposition 



Cholesky Using MPI+StarPU + Magma kernels 
Early results 
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Integrating multithreading and 
StarPU 



}  Wave propagation 
}  Prefetching 
}  Asynchronism 

Static vs Dynamic scheduling 
Stencil computation 



Static vs Dynamic scheduling 

}  Load balancing vs data stability 
}  We estimate the task cost as 
   α compute + β transfer 
}  Problem size: 256 x 4096 x 4096, divided into 64 

blocks 
}  Task distribution (1 color per GPU) 
}  Dynamic scheduling can lead to stable configurations 

Can a dynamic scheduler compete with a static approach? 

Tim
e  

β = 0	

 β = 6	

β = 0.5	

 β = 3	





Static vs Dynamic scheduling 

}   Impact of scheduling policy 
}  3 GPUs (FX5800) – no CPU used 
}  256 x 4096 x 4096 : 64 blocks 
}  Speed up = 2.7 (2 PCI 16x + 1 PCI 8x config) 

Performance 



}  MPI + StarPU + OpenMP 
}  Many algorithms can take 

advantage of shared 
memory 

}  We can’t seriously 
“taskify” the world! 

}  The Stencil case 
}  When neighbor tasks can 

be scheduled on a single 
node 
}  Just use shared memory! 
}  Hence an OpenMP stencil 

kernel 

Towards parallel tasks on CPUs 
Going further 



}  Mixing StarPU with 
}  OpenMP 
}  Intel TBB 
}  Pthreads 
}  Etc. 

}  Raises the 
Composability issue 
}  Challenge = 

autotuning the 
number of threads per 
parallel region 

Integrating StarPU and Multithreading 
How to deal with parallel tasks on multicore? 

void work() 
{ 
  ... 
 
#pragma omp parallel for   
  for (int i=0; i<MAX; i++) 

 {  
   ...  

#pragma omp parallel for 
num_threads (2) 
      for (int k=0; k<MAX; k++) 
        ... 
    } 
} 



}  First approach 
}  Use an OpenMP main 

stream 
}  Suggested (?) by 

recent parallel 
language extension 
proposals 
¨  E.g. Star SuperScalar 

(UPC Barcelona) 
¨  HMPP (CAPS 

Enterprise) 
}  Implementing 

scheduling is difficult 
¨  Much more than a 

simple offloading 
approach… 

Integrating StarPU and Multithreading 
Integrating tasks and threads 

CPU CPU CPU CPU 

Mem Mem 

GPU GPU 



}  Alternate approach 
}  Let StarPU spawn 

OpenMP tasks 
}  Performance modeling 

would still be valid 

}  Would also work with other 
tools 
¨  E.g. Intel TBB 

}  How to find the appropriate 
granularity? 
¨  May depend on the 

concurrent tasks! 

}  StarPU tasks = first class 
citizen 
¨  Need to bridge the gap with 

existing parallel languages 

Integrating StarPU and Multithreading 
Integrating tasks and threads 

CPU 
workers 

GPU 
workers 



Context B 

StarPU’s Scheduling Contexts 
Toward code  Push 

Context A 
}  Similar to OpenCL 

contexts 
}  Except that each 

context features its own 
scheduler 

}  Multiple parallel 
libraries can run 
simultaneously 
}  Virtualization of 

resources 
}  At minimal overhead 

}  Scheduling overhead 
reduced 

}  Scalability workaround 
CPU 

workers 
GPU 

workers 



Context B 

StarPU’s Scheduling Contexts 
Toward code  Push 

Context A 
}  Contexts may share 

processing units 
}  Avoid underutilized 

resources 
}  Schedulers are aware 

of each other 
}  Contexts may 

expand and shrink 
}  Maximize overall 

throughput 
}  Use dynamic feedback 

both from application 
and runtime 

CPU 
workers 

GPU 
workers 



Integrating StarPU and Multithreading 

}  Real-time performance feedback 

Adapting granularity 
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What’s next? 



Future parallel machines 

}  The biggest change comes from node 
architecture 

}  Hybrid systems will be commonplace 
}  Multicore chips + accelerators (GPUs?) 
}  More integrated design 

}  Extreme parallelism 
}  Total system concurrency ~ O(109)! 

}  Including O(10) to O(100) to hide latency 
= x 10 000 increase  

Exascale (1018 flop/s) systems, by 2018? 



How will we program these machines? 

}  Billions of threads will be necessary to occupy exascale 
machines 
}  Exploit every source of (fine-grain) parallelism 

}  Not every algorithm can scale that far L 

}  Multi-scale, Multi-physics applications are welcome! 
}  Great opportunity to exploit multiple levels of parallelism 

}  Is SIMD the only reasonable approach? 
}  Are CUDA & OpenCL our future? 

}  No global, consistent view of node’s state 
}  Local algorithms 
}  Hierarchical coordination/load balance 

}  Maybe, this time, we should seriously consider enabling 
(parallel) code reuse… 

Let’s prepare for serious changes 



Parallel code reuse 

}  Can we really use several hybrid parallel kernels 
simultaneously? 
}  Ever tried to mix OpenMP and Intel MKL? 
}  Could be helpful in order to exploit millions of cores 

}  It’s all about composability 
}  Probably the biggest challenge for runtime systems 

}  Hybridization will mostly be indirect (linking libraries) 

}  And with composability come a lot of related 
issues 
}  Need for autotuning / scheduling hints 

Mixing different paradigms leads to several issues 



International Exascale Software Project (IESP) 

}  Build an international plan  
for coordinating research 
for the next generation 
open source software 
for scientific high-performance 
computing 
}  Hardware is evolving more rapidly than software 

}  New hardware trends not handled by existing software 

}  Emerging software technologies not yet integrated 
into a common software stack 
 

}  No global evaluation of key missing components 

“A call to action” 



European Exascale Software Initiative (EESI) 

}  WP4: Enabling technologies for Exascale 
computing 
}  Assess novel HW and SW technologies for 

Exascale challenges 
}  Build a European vision and a roadmap 

}  WG 4.2: Software eco-systems 
}  Subtopic: Runtime systems (Raymond Namyst, 

Jesús Labarta) 

Position of Europe in the international HPC landscape 



European Exascale Software Initiative (EESI) 

}  Mastering	
  heterogeneity	
  
}  Unified/transparent	
  accelerator	
  models	
  
}  Providing	
  support	
  for	
  adap:ve	
  granularity	
  
}  Fine	
  grain	
  parallelism	
  
}  Scheduling	
  for	
  latency/bandwidth	
  
}  (NC)-­‐NUMA	
  

}  Suppor:ng	
  mul:ple	
  programming	
  models	
  
}  Hybrid	
  run:mes	
  
}  MPI	
  +	
  threading	
  model	
  +	
  accelerator	
  model	
  
}  Matching	
  hybrid	
  parallelism	
  on	
  heterogeneous	
  architectures	
  
}  Tuning	
  the	
  number	
  of	
  (processes/threads)	
  per	
  level	
  

Runtime systems: Scien:fic	
  and	
  Technical	
  Hurdles 



European Exascale Software Initiative (EESI) 

}  Dealing	
  with	
  millions	
  of	
  cores/nodes	
  
}  Scheduling	
  

}  Hierarchical	
  scheduling	
  
}  Data-­‐flow	
  task	
  bases	
  approaches	
  

¨  Non-­‐coherent	
  architectures	
  
¨  SoLware	
  data	
  prefetching	
  

}  Imbalance	
  detec:on,	
  predic:on	
  and	
  (local)	
  correc:on	
  
¨  Avoid	
  global	
  balancing	
  strategies	
  
¨  Work	
  stealing	
  

}  Communica:on	
  
}  Scalable	
  implementa:ons	
  of	
  MPI/PGAS	
  
}  Minimize	
  memory	
  consump:on	
  (per	
  connec:on)	
  
}  Redesign	
  of	
  collec:ve	
  opera:ons	
  

¨  Asynchrony,	
  ovelap	
  
}  Discourage	
  use	
  of	
  global	
  synchroniza:on	
  primi:ves?	
  

Runtime systems: Scien:fic	
  and	
  Technical	
  Hurdles 



Toward a common runtime system? 

}  There is currently no consensus on a common 
runtime system 
}  One objective of the Exascale Software Center 

}  “Coordinated exascale software stack”   
}  Technically feasible… 

I.e. Unified Software Stack 

Unified Multicore Runtime System 

Topology-aware 
Scheduling 

Memory 
Management Synchronization 

Task Management 
(Threads/Tasklets/Codelets) 

Data distribution 
facilities I/O services  

OpenMP Intel TBB CUDA 

MKL PLAGMA 

MPI OpenCL PGAS 

FFTW 



Major Challenges are ahead 

Thank you! 
 

Questions? 
 

}  NB: more information at 
http://runtime.bordeaux.inria.fr 

We are living in exciting times! (let’s stay positive J) 


