
Finite Element Multigrid Solvers for PDE
Problems on GPUs and GPU Clusters
Part 2: Applications on GPU Clusters

Dominik Göddeke and Robert Strzodka

Institut für Angewandte Mathe-
matik (LS3), TU Dortmund

Integrative Scientific Computing,
Max Planck Institut Informatik

INRIA summer school, June 8, 2011

Introduction

Key topic of Robert’s talk: Fine-grained parallelism within a single
GPU

Geometric multigrid solvers on GPUs

Precision vs. accuracy

Strong smoothers and preconditioners for ill-conditioned problems

This talk

Combining fine-grained GPU parallelism with ‘conventional’ MPI-like
parallelism

Porting complex applications to GPU clusters: Rewrite or accelerate

Case studies: Seismic wave propagation, solid mechanics and fluid
dynamics

Existing codes

Common situation: Existing legacy codes

Large existing code bases, often 100.000+ lines of code

Well validated and tested, (often) sufficiently tuned

Commonly not ready for hybrid architectures, often based on an
‘MPI-only’ approach

Applications vs. frameworks (toolboxes)

One application to solve one particular problem repeatedly, with
varying input data

Common framework that many applications are build upon

In our case, a Finite Element multigrid toolbox to numerically solve
a wide range of PDE problems

Two general options to include accelerators

Rewrite everything for a new architecture

Potentially best speedups

But: Re-testing, re-tuning, re-evaluating, over and over again for
each new architecture

Well worth the effort in many cases

First part of this talk: Case study in seismic wave propagation

Accelerate only crucial portions of a framework

Potentially reduced speedups

Changes under the hood and all applications automatically benefit

Careful balancing of amount of code changes and expected benefits:
Minimally invasive integration

Second part of this talk: Case study for large-scale FEM-multigrid
solvers at the core of PDE simulations

Case Study 1:

Seismic Wave Propagation on
GPU Clusters

Introduction and Motivation

Acknowledgements

Collaboration with

Dimitri Komatitsch: Université de Toulouse, Institut universitaire de
France, CNRS & INRIA Sued-Oest MAGIQUE-3D, France

Gordon Erlebacher: Florida State University, Tallahassee, USA

David Michéa: Bureau de Recherches Géologiques et Minières,
Orléans, France

Funding agencies

French ANR grants NUMASIS, support by CNRS, IUF, INRIA

German DFG and BMBF grants

Publications

High-order finite-element seismic wave propagation modeling with MPI on

a large GPU cluster, Journal of Computational Physics 229:7692-7714,
Oct. 2010

Modeling the propagation of elastic waves using spectral elements on a

cluster of 192 GPUs, Computer Science – Research and Development
25(1-2):75-82, Special Issue International Supercomputing Conference
(ISC’10), May/Jun. 2010

Seismic wave propagation

Application domains

Earthquakes in sedimentary basins and at the scale of a continent

Active acquisition experiments in the oil and gas industry

High practical relevance

L’Aquila, Italy

April 2009

5.8 Richter scale

260 dead

1.000 injured

26.000 homeless

Very efficient numerical and computational methods required!

Topography and sedimentary basins

Topography needs to be honoured

Densely populated areas are often located in sedimentary basins

Surrounding mountains reflect seismic energy back and amplify it
(think rigid Dirichlet boundary conditions)

Seismic shaking thus much more pronounced in basins

High resolution requirements

Spatially varying resolution

Local site effects and topography

Discontinuities between heterogeneous sedimentary layers and faults
in the Earth

High seismic frequencies need to be captured

High-order methods and finely-resolved discretisation in space and
time required

Timing constraints: Aftershocks

Main shock typically followed by aftershocks

Predict effect of aftershocks within a few hours after an earthquake

Predict impact on existing faults (from previous earthquakes) that
may break due to changed stress distribution in the area

Finish simulation ahead of time of follow-up shaking to issue
detailed warnings

L’Aquila earthquake aftershock predicion

Summary: Challenges

Conflicting numerical goals

High-order methods in space and time

But: High flexibility and versatility required

Must be efficiently parallelisable in a scalable way

Extremely high computational demands of typical runs

100s of processors and 1000s of GB worth of memory

Several hours to complete (100.000s of time steps)

SPECFEM3D software package
http://www.geodynamics.org

Open source and widely used

Accepts these challenges and
implements good compromises

Gordon Bell 2003, finalist 2008
(sustained 0.2 PFLOP/s)

http://www.geodynamics.org

Physical Model and

Numerical Solution Scheme

Physical model: Elastic waves

Model parameters

Linear anisotropic elastic rheology for a heterogeneous solid part of
the Earth mantle, full 3D simulation

Strong and weak form of the seismic wave equation

ρü = ∇ · σ + f σ = C : ε ε =
1

2

(

∇u + (∇u)T
)

∫

Ω

ρw · ü dΩ +

∫

Ω

∇w : C : ∇u dΩ =

∫

Ω

w · f dΩ

Displacement u, stress and strain tensors σ and ε

Stiffness tensor C and density ρ (given spatially heterogeneous
material parameters)

Time derivative ü (acceleration)

External forces f (i.e., the seismic source), test function w

Boundary integral in weak form vanishes due to free surface B.C.

Numerical methods overview

Finite Differences

Easy to implement, but difficult for boundary conditions, surface
waves, and to capture nontrivial topography

Boundary Elements, Boundary Integrals

Good for homogeneous layers, expensive in 3D

Spectral and pseudo-spectral methods

Optimal accuracy, but difficult for boundary conditions and complex
domains, difficult to parallelise

Finite Elements

Optimal flexibility and error analysis framework, but may lead to
huge sparse ill-conditioned linear systems

Spectral element method (SEM)

Designed as a compromise between conflicting goals

‘Hybrid’ approach: Combines accuracy of pseudo-spectral methods
with geometric flexibility of Finite Element methods

Parallelises moderately easy

Cover domain with large, curvilinear hexahedral ‘spectral’ elements

Edges honours topography and interior discontinuities (geological
layers and faults)

Mesh is unstructured in the Finite Element sense

Use high-order interpolation

To represent physical fields in each element

Sufficiently smooth transition between elements

SEM for the seismic wave equation

Represent fields in each element by Lagrange interpolation

Degree 4–10, 4 is a good compromise between accuracy and speed

Use Gauß-Lobotto-Legendre control points (rather than just Gauß or
Lagrange points)

Degree+1 GLL points per spatial dimension per element (so 125 for
degree 4 in 3D)

Physical fields represented as triple products of Lagrange basis
polynomials

SEM for the seismic wave equation

Clever trick: Use GLL points as cubature points as well

To evaluate integrals in the weak form

Lagrange polynomials combined with GLL quadrature yields strictly
diagonal mass matrix

Important consequence: Algorithm significantly simplified

Explicit time stepping schemes become feasible

In our case: Second order centred finite difference Newmark time
integration

Solving of linear systems becomes trivial

Meshing

Block-structured mesh

Blocks are called slices

Each slice is unstructured, but all are topologically identical

Work per timestep per slice is identical ⇒ load balancing

Meshing

Block-structured mesh

Blocks are called slices

Each slice is unstructured, but all are topologically identical

Work per timestep per slice is identical ⇒ load balancing

Solution algorithm

Problem to be solved in algebraic notation

Mü + Ku = f

Mass matrix M, stiffness matrix K

Displacement vector u, sources f , velocity v = u̇, acceleration a = ü

Three main steps in each iteration of the Newmark time loop

Step 1: Update global displacement vector and second half-step of
velocity vector using the acceleration vector from the last time step

u = u + ∆tv +
∆t

2
a

v = v +
∆t

2
a

Solution algorithm

Problem to be solved in algebraic notation

Mü + Ku = f

Three main steps in each iteration of the Newmark time loop

Step 2: Compute new Ku and M to obtain intermediate
acceleration vector (the tricky bit, called ‘SEM assembly’)

Step 3: Finish computation of acceleration vector and compute new
velocity vector for half the timestep (cannot be merged into steps 2
and 1 because of data dependencies)

a = M−1a

v = v +
∆t

2
a

SEM assembly

Most demanding step in the algorithm

Measurements indicate up to 88% of the total runtime

Employ ‘assembly by elements’ technique

For each element, assembly process comprises two stages

First stage: All local computations

Gather values corresponding to element GLL points from global
displacement vector using global-to-local mapping

Multiply with derivative matrix of Lagrange polynomials

Perform numerical integration with discrete Jacobian to obtain local
gradient of displacement

Compute local components of stress tensor, multiply with Jacobian
and dot with test function

Combine everything into local acceleration vector

SEM assembly

First stage continued

Lots and lots of computations

Essentially straightforward computations, involves mostly many
small matrix products for the three x, y, z-cutplanes

Benefit of only doing per-element work: Cache-friendly, high data
reuse, high arithmetic intensity, manual unrolling of matrix products
possible, etc.

Second stage: Perform actual assembly

Accumulate (scatter out) per-element contributions of shared GLL
points on vertices, edges, faces into global acceleration vector

Note: structurally identical to FEM assembly, ‘just’ different
cubature points

GPU Implementation

and MPI Parallelisation

GPU implementation issues

Steps 1 and 3 are essentially trivial

One kernel each

Only involve uniquely numbered global data, axpy-type
computations

Block/thread decomposition in CUDA can be optimised as usual

More importantly: Memory access automatically fully coalesced into
minimal amount of transactions

Optimal bandwidth utilisation

Step 2 is tricky

Lots of optimisations, resulting in only one kernel

Looking at the two stages separately (separated by
syncthreads())

One CUDA thread for each of the 125 cubature points, waste three
threads to end up with one thread block of 128 threads per element

GPU implementation issues

First stage: Local computations in each element

Use shared memory for all computations

Data layout is bank-conflict free

Mesh is unstructured, thus indirect addressing in reading (and
writing) global acceleration vector

Cannot be fully coalesced, so use texture cache (work done on
pre-Fermi hardware)

Lots of computations inbetween global memory accesses

Manually (and painfully) tune register and shared memory pressure
so that two blocks (=elements) are concurrently active

Together: unstructured memory accesses not too much of an issue

Store small 5x5 derivative matrices in constant memory so that each
half-warp can access the same constant in one cycle

GPU implementation issues

Second stage: Assemble of local contributions into global
acceleration vector

Shared grid points ⇒ summation must be atomic

2D and 3D examples below

Note that generally, cubature points are not evenly spaced
(curvilinear mesh)

1
Ω Ω

Ω Ω

2

3 4

GPU implementation issues

Atomics are bad, solution: Multicolouring

Colour elements so that elements with the same colour have no
common grid points and can be computed in parallel

Sequential sweep over all colours

Not to be confused with Gauß-Seidel multicolouring in Robert’s talk:
No loss of numerical functionality except FP noise

Colouring is static (because mesh is static) and can be precomputed
during mesh generation on the CPU

Simple greedy algorithm to determine colouring, gives reasonably
balanced results

GPU implementation issues

Coloured elements in one mesh slice

Summary of assembly process

Mapping to MPI clusters

Mapping and partitioning

One mesh slice (100K–500K elements) associated with one MPI rank

Slice size always chosen to fill up available memory per CPU/GPU

Relevant scenario: weak scaling

Overlap computation with communication (non-blocking MPI)

Separate outer (shared) from inner elements

Compute outer elements, send asyncroneously

Compute inner elements, receive asyncroneously, MPI Wait()

Classical surface-to-volume issue: Balanced ratio (full overlap) of
outer and inner elements if slice is large enough

Mapping to MPI clusters

Overlap computation with communication (non-blocking MPI)

GPU cluster challenges

Problem: PCIe bottleneck

MPI buffers and communication remain on CPU (story may be
slightly different with new CUDA 4.x features on Fermi)

PCIe adds extra latency and bandwidth bottleneck

Four approaches to alleviate bottleneck

Transfer data for each cut plane separately from GPU into MPI
buffer and vice versa

Asynchroneous copy (cudaMemcpyAsync(), since kernel launches
are async. anyway)

Memory mapping (CUDA zero copy)

Merge all cut planes on GPU, transfer in bulk to CPU, extract on
CPU and send over interconnect to neighbours (so basically, online
compression)

Observation: Ordered by increasing performance!

Summary GPU+MPI implementation

GPU cluster challenges

‘Problem’: GPUs are too fast

GPUs need higher ratio of inner to outer elements to achieve
effective overlap of communication and computation

Consequently, only GPUs with a sufficient amount of memory make
sense for us

Speedup is higher than amount of CPU cores in each node

Hybrid CPU/GPU computations give low return on invested
additional programming effort

Hybrid OpenMP/CUDA implementation tricky to balance

Ideal cluster for this kind of application: One GPU per CPU core

Anyway, MPI implementations do a good job at shared memory
communication (if local problems are large enough, cf. Mike
Heroux’s talk yesterday)

In the following

Only CPU-only or GPU-only computations

Some Results

Testbed

Titane: Bull Novascale R422 E1 GPU cluster

Installed at CCRT/CEA/GENCI, Bruyères-le-Châtel, France

48 nodes

24 GBytes

quad-core quad-core

GPU
4GB

GPU
4GB

GPU
4GB

GPU
4GB

GPU
4GB

GPU
4GB

GPU
4GB

GPU
4GB

24 GBytes

quad-core quad-core

Infiniband

Shared PCIe2

Two 4-core Nehalems Two 4-core Nehalems

Tesla S1070 Tesla S1070

Shared PCIe2 Shared PCIe2 Shared PCIe2

CPU reference code is heavily optimised

Cooperation with Barcelona Supercomputing Center

Extensive cache optimisation using ParaVer

Numerical validation

Single vs. double precision

Single precision is sufficient for this problem class

So use single precision on CPU and GPU for a fair comparison

Same results between single and double except minimal floating
point noise

Application to a real earthquake

Bolivia 1994, Mw = 8.2

Lead to a static offset (permanent
displacement) several 100 km wide

Reference data from BANJO sensor
array and quasi-analytical solution
computed via summation of normal
modes from sensor data

Numerical validation

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 0 100 200 300 400 500 600 700

D
is

pl
ac

em
en

t (
cm

)

Time (s)

P

S

SEM vertical
Normal modes

-0.015

-0.01

-0.005

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 800 1000 1200 1400 1600 1800 2000

D
is

pl
ac

em
en

t (
m

)

Time (s)

Uz GPU
Uz CPU

Residual (x3000)

Pressure and shear waves are accurately computed

Static offsets are reproduced

No difference between CPU and GPU solution

Amplification shows that only differences are floating point noise

CPU weak and strong scaling

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 32 64 96 128 160 192 224 256 288 320 352 384

A
ve

ra
ge

 e
la

ps
ed

 ti
m

e
pe

r
tim

e
st

ep
 (

s)

Number of CPU cores

Run 1, 4 cores
Run 2, 4 cores
Run 3, 4 cores
Run 1, 8 cores
Run 2, 8 cores
Run 3, 8 cores

Constant problem size per node (4x3.6 or 8x1.8 GB)

Weak scaling excellent up to full machine (17 billion unknowns)

4-core version actually uses 2+2 cores per node (process pinning)

Strong scaling only 60% due to memory bus and network contention

GPU weak scaling

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 16 32 48 64 80 96 112 128 144 160 176 192

A
ve

ra
ge

 e
la

ps
ed

 ti
m

e
pe

r
tim

e
st

ep
 (

s)

Number of GPUs

Run 1, non blocking MPI
Run 2, non blocking MPI
Run 3, non blocking MPI

Run 1, blocking MPI
Run 2, blocking MPI
Run 3, blocking MPI

Constant problem size per node (4x3.6 GB)

Weak scaling excellent up to full machine (17 billion unknowns)

Blocking MPI results in 20% slowdown

Detailed experiments

quad-core

GPU
4GB

GPU
4GB

GPU
4GB

GPU
4GB

Infiniband

Shared PCIe2

Two 4-core Nehalems

quad-core

Create MPI buffers

quad-core

GPU
4GB

GPU
4GB

GPU
4GB

GPU
4GB

Infiniband

Two 4-core Nehalems

quad-core

X

X

X

X

Create MPI buffers

quad-core

GPU
4GB

GPU
4GB

GPU
4GB

GPU
4GB

Infiniband

Two 4-core Nehalems

quad-core

X
XCreate MPI buffers

quad-core

GPU
4GB

GPU
4GB

GPU
4GB

GPU
4GB

Infiniband

Two 4-core Nehalems

quad-core

X
Create MPI buffers

(a)

(c)

(b)

(d)

Shared PCIe2

Shared PCIe2Shared PCIe2 X X X X

Effect of bus sharing

 0.28

 0.29

 0.3

 0.31

 0.32

 0.33

 0.34

 0.35

 0.36

 0 16 32 48 64 80 96 112 128 144 160 176 192

A
ve

ra
ge

 e
la

ps
ed

 ti
m

e
pe

r
tim

e
st

ep
 (

s)

Number of GPUs

Run 1 shared PCIe
Run 2 shared PCIe
Run 3 shared PCIe

Run 1 non-shared PCIe

Two GPUs share one PCIe bus in the Tesla S1070 architecture

Potentially huge bottleneck?

Results show that this is not the case (for this application)

Introduces fluctuations and average slowdown of 3%

GPU performance breakdown

 0.28

 0.29

 0.3

 0.31

 0.32

 0.33

 0.34

 0.35

 0.36

 0 16 32 48 64 80 96 112 128 144 160 176 192

A
ve

ra
ge

 e
la

ps
ed

 ti
m

e
pe

r
tim

e
st

ep
 (

s)

Number of GPUs

MPI and shared PCIe
MPI and non-shared PCIe

No MPI, but buffers built, and shared PCIe
No MPI, no buffers

Effect of overlapping (no MPI = replace send-receive by memset())

Red vs. blue curve: Difference ≤ 2.8%, so excellent overlap

Green vs. magenta: Total overhead of running this problem on a
cluster is ≤ 12% for building, processing and transmitting buffers

Summary

Summary

Excellent agreement with analytical and sensor data

Double precision not necessary

Excellent weak scalability for full machine

Up to 386 CPU cores and 192 GPUs

Full CPU nodes suffer from memory bus and interconnect contention

GPUs suffer minimally from PCIe bis sharing

Very good overlap between computation and communication

GPU Speedup

25x serial

20.6x vs. half the cores, 12.9x vs. full nodes

Common practice in geophysics is to load up the machine as much
as possible

GPUs are a good way to scale in the strong sense

Case Study 2:

FEAST - Finite Element
Analysis and Solution Tools

Introduction and Motivation

Acknowledgements

Collaboration with

Robert Strzodka

FEAST group at TU Dortmund: S. Buijssen, H. Wobker, Ch.
Becker, S. Turek, M. Geveler, P. Zajac, D. Ribbrock, Th.
Rohkämper

Funding agencies

German DFG and BMBF grants

Max Planck Center for Visual Computing and Communication

Publications

http://www.mathematik.tu-dortmund.de/~goeddeke

http://www.mathematik.tu-dortmund.de/~goeddeke

Introduction and motivation

What happens if porting effort is too high?

Code written in some obscure language

Code simply too large

Several application folks depending on one common framework
(don’t want to break their code and force fellow PhD students to
start over)

High-level software design questions of interest

Feasibility of partial acceleration?

Interface design (smallest common denominator)?

Return on investment (speedup, # of applications, coding effort)?

GPU clusters as easy to use as conventional ones?

Future-proof acceleration?

Introduction and motivation

Enter numerics (the more fun part)

Existing methods often no longer hardware-compatible

Neither want less numerical efficiency, nor less hardware efficiency

Numerics is orthogonal dimension to pure performance and software
design

Hardware-oriented numerics

Balance these conflicting goals (want ‘numerical scalability’)

Our niche: Finite Element based simulation of PDE problems

Our prototypical implementation: FEAST

Consider short-term hardware details in actual implementations,
but long-term hardware trends in the design of numerical schemes!

Grid and Matrix Structures

Flexibility ↔ Performance

Grid and matrix structures

General sparse matrices (from unstructured grids)

CSR (and variants): general data structure for arbitrary grids

Maximum flexibility, but during SpMV

Indirect, irregular memory accesses
Index overhead reduces already low arithm. intensity further

Performance depends on nonzero pattern (numbering of the grid
points)

Structured matrices

Example: structured grids, suitable numbering ⇒ band matrices

Important: no stencils, fully variable coefficients

Direct regular memory accesses (fast), mesh-independent
performance

Structure exploitation in the design of MG components (Robert)

Approach in FEAST

Combination of respective advantages

Global macro-mesh: unstructured, flexible

local micro-meshes: structured (logical TP-structure), fast

Important: structured 6= cartesian meshes!

Batch several of these into one MPI rank

Reduce numerical linear algebra to sequences of operations on
structured, local data (maximise locality intra- and inter-node)

UU

“window” for
matrix-vector
multiplication,
per macro

hierarchically
refined subdomain
(= “macro”),
rowwise numbered

unstructured mesh

UD
UL

DU
DDDL

LU
LDLL

I-1

I

I+1

I-M-1
I-M

I-M+1
I+M-1

I+M

I+M+1

Ω
i

Scalable Multigrid Solvers

on GPU-enhanced Clusters

Coarse-grained parallel multigrid

Goals

Parallel efficiency: strong and weak scalability

Numerical scalability: convergence rates independent of problem size
and partitioning (multigrid!)

Robustness: anisotropies in mesh and differential operator (strong
smoothers!)

Most important challenges

Minimising communication between cluster nodes

Concepts for strong ‘shared memory’ smoothers (see Robert’s talk)
not applicable due to high communication cost and synchronisation
overhead

Insufficient parallel work on coarse levels

Our approach: Scalable Recursive Clustering (ScaRC)

Under development at TU Dortmund

ScaRC: Concepts

ScaRC for scalar systems

Hybrid multilevel domain decomposition method

Minimal overlap by extended Dirichlet BCs

Inspired by parallel MG (‘best of both worlds’)

Multiplicative between levels, global coarse grid problem (MG-like)
Additive horizontally: block-Jacobi / Schwarz smoother (DD-like)

Schwarz smoother encapsulates local irregularities

Robust and fast multigrid (‘gain a digit’), strong smoothers
Maximum exploitation of local structure

UU

“window” for
matrix-vector
multiplication,
per macro

hierarchically
refined subdomain
(= “macro”),
rowwise numbered

unstructured mesh

UD
UL

DU
DDDL

LU
LDLL

I-1

I

I+1

I-M-1
I-M

I-M+1
I+M-1

I+M

I+M+1

Ω
i

global BiCGStab

preconditioned by

global multilevel (V 1+1)

additively smoothed by

for all Ωi: local multigrid

coarse grid solver: UMFPACK

ScaRC for multivariate problems

Block-structured systems

Guiding idea: tune scalar case once per architecture instead of over
and over again per application

Blocks correspond to scalar subequations, coupling via special
preconditioners

Block-wise treatment enables multivariate ScaRC solvers

(

A11 A12

A21 A22

)(

u1

u2

)

= f ,





A11 0 B1

0 A22 B2

BT
1 BT

2 0









v1

v2

p



 = f ,





A11 A12 B1

A21 A22 B2

BT
1 BT

2 CC









v1

v2

p



 = f

A11 and A22 correspond to scalar (elliptic) operators
⇒ Tuned linear algebra and tuned solvers

Minimally Invasive Integration

Minimal invasive integration

Bandwidth distribution in a hybrid CPU/GPU node

Minimally invasive integration

Guiding concept: locality

Accelerators: most time-consuming inner component

CPUs: outer MLDD solver (only hardware capable of MPI anyway)

Employ mixed precision approach

global BiCGStab

preconditioned by

global multilevel (V 1+1)

additively smoothed by

for all Ωi: local multigrid

coarse grid solver: UMFPACK

Minimally invasive integration

General approach

Balance acceleration potential and integration effort

Accelerate many different applications built on top of one central FE
and solver toolkit

Diverge code paths as late as possible

Develop on a single GPU and scale out later

No changes to application code!

Retain all functionality

Do not sacrifice accuracy

Challenges

Heterogeneous task assignment to maximise throughput

Overlapping CPU and GPU computations, and transfers

Example: Linearised Elasticity

Example: Linearised elasticity

„

A11 A12

A21 A22

«„

u1

u2

«

= f

(2µ + λ)∂xx + µ∂yy (µ + λ)∂xy

(µ + λ)∂yx µ∂xx + (2µ + λ)∂yy

!

global multivariate BiCGStab
block-preconditioned by

Global multivariate multilevel (V 1+1)
additively smoothed (block GS) by

for all Ωi: solve A11c1 = d1

by
local scalar multigrid

update RHS: d2 = d2 − A21c1

for all Ωi: solve A22c2 = d2

by
local scalar multigrid

coarse grid solver: UMFPACK

Accuracy

1e-8

1e-7

1e-6

1e-5

1e-4

16 64 256

<
--

--
 s

m
al

le
r

is
 b

et
te

r
<

--
--

 L
2

er
ro

r

number of subdomains

L7(CPU)
L7(GPU)
L8(CPU)
L8(GPU)
L9(CPU)
L9(GPU)

L10(CPU)
L10(GPU)

Same results for CPU and GPU

L2 error against analytically prescribed displacements

Tests on 32 nodes, 512 M DOF

Accuracy

Cantilever beam, aniso 1:1, 1:4, 1:16
Hard, ill-conditioned CSM test
CG solver: no doubling of iterations
GPU-ScaRC solver: same results as CPU

 128

 256

 512

 1024

 2048

 4096

 8192

 16384

 32768

 65536

2.1Ki 8.4Ki 33.2Ki 132Ki 528Ki 2.1Mi 8.4Mi

<
--

--
 s

m
al

le
r

is
 b

et
te

r
<

--
--

nu
m

be
r

of
 it

er
at

io
ns

number of DOF

aniso01
aniso04
aniso16

aniso04 Iterations Volume y-Displacement
refinement L CPU GPU CPU GPU CPU GPU

8 4 4 1.6087641E-3 1.6087641E-3 -2.8083499E-3 -2.8083499E-3
9 4 4 1.6087641E-3 1.6087641E-3 -2.8083628E-3 -2.8083628E-3
10 4.5 4.5 1.6087641E-3 1.6087641E-3 -2.8083667E-3 -2.8083667E-3

aniso16

8 6 6 6.7176398E-3 6.7176398E-3 -6.6216232E-2 -6.6216232E-2
9 6 5.5 6.7176427E-3 6.7176427E-3 -6.6216551E-2 -6.6216552E-2
10 5.5 5.5 6.7176516E-3 6.7176516E-3 -6.6217501E-2 -6.6217502E-2

Speedup

 0

 50

 100

 150

 200

 250

 300

BLOCK PIPE CRACK FRAME

<
--

--
 s

m
al

le
r

is
 b

et
te

r
<

--
--

lin
ea

r
so

lv
er

 (
se

c)

Singlecore
Dualcore

GPU

USC cluster in Los Alamos, 16 dualcore nodes (Opteron Santa Rosa,
Quadro FX5600)

Problem size 128 M DOF

Dualcore 1.6x faster than singlecore (memory wall)

GPU 2.6x faster than singlecore, 1.6x than dualcore

Speedup analysis

Theoretical model of expected speedup

Integration of GPUs increases resources

Correct model: strong scaling within each node

Acceleration potential of the elasticity solver: Racc = 2/3
(remaining time in MPI and the outer solver)

Smax = 1
1−Racc

Smodel = 1
(1−Racc)+(Racc/Slocal)

This example

Accelerable fraction Racc 66%
Local speedup Slocal 9x
Modeled speedup Smodel 2.5x
Measured speedup Stotal 2.6x
Upper bound Smax 3x

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

1 5 10 15 20 25 30 35

--
--

>
 la

rg
er

 is
 b

et
te

r
--

--
>

S
m

od
el

Slocal

B=0.900
B=0.750
B=0.666

Weak scalability

Simultaneous doubling of problem size and resources

Left: Poisson, 160 dual Xeon / FX1400 nodes, max. 1.3 B DOF

Right: Linearised elasticity, 64 nodes, max. 0.5 B DOF

 10

 20

 30

 40

 50

 60

 70

 80

64
M

N
=

8

12
8M

N
=

16

25
6M

N
=

32

51
2M

N
=

64

10
24

M
N

=
12

8

<
--

--
 s

m
al

le
r

is
 b

et
te

r
<

--
--

lin
ea

r
so

lv
er

 (
se

c)

2 CPUs
GPU

 80

 90

 100

 110

 120

 130

 140

 150

 160

32
M

N
=

4

64
M

N
=

8

12
8M

N
=

16

25
6M

N
=

32

51
2M

N
=

64

<
--

--
 s

m
al

le
r

is
 b

et
te

r
<

--
--

lin
ea

r
so

lv
er

(s
ec

)

2 CPUs
GPU

Results

No loss of weak scalability despite local acceleration

1.3 billion unknowns (no stencil!) on 160 GPUs in less than 50 s

Example:

Stationary Laminar Flow

(Navier-Stokes)

Stationary laminar flow (Navier-Stokes)

0

@

A11 A12 B1

A21 A22 B2

BT
1

BT
2

C

1

A

0

@

u1

u2

p

1

A =

0

@

f1
f2
g

1

A

fixed point iteration
assemble linearised subproblems and solve with

global BiCGStab (reduce initial residual by 1 digit)
Block-Schurcomplement preconditioner
1) approx. solve for velocities with

global MG (V 1+0), additively smoothed by

for all Ωi: solve for u1 with
local MG

for all Ωi: solve for u2 with
local MG

2) update RHS: d3 = −d3 + B
T(c1, c2)

T

3) scale c3 = (ML
p)−1

d3

Stationary laminar flow (Navier-Stokes)

Solver configuration

Driven cavity: Jacobi smoother sufficient

Channel flow: ADI-TRIDI smoother required

Speedup analysis

Racc Slocal Stotal

L9 L10 L9 L10 L9 L10
DC Re250 52% 62% 9.1x 24.5x 1.63x 2.71x
Channel flow 48% – 12.5x – 1.76x –

Shift away from domination by linear solver (fraction of FE
assembly and linear solver of total time, max. problem size)

DC Re250 Channel
CPU GPU CPU GPU
12:88 31:67 38:59 68:28

Summary

Summary

ScaRC solver scheme

Beneficial on CPUs and GPUs

Numerically and computationally future-proof (some odd ends still
to be resolved)

Large-scale FEM solvers

Finite Element PDE solvers

Solid mechanics and fluid dynamics

Partial acceleration

Very beneficial in the short term

Amdahl’s law limits achievable speedup

Risk of losing long-term scalability?

Last slide

Bottom lines of the last 180 minutes

Exploiting all four levels of parallelism (SIMD/SIMT → MPI)

Parallelising seemingly sequential operations

Optimisation for memory traffic and locality among levels

Redesign of algorithms, balancing numerics and hardware

Software engineering for new and legacy codes

Scalability (weak, strong, numerical, future-proof)

More information

www.mpi-inf.mpg.de/~strzodka

www.mathematik.tu-dortmund.de/~goeddeke

www.mpi-inf.mpg.de/~strzodka
www.mathematik.tu-dortmund.de/~goeddeke

	Introduction
	Seismic wave propagation
	Introduction and Motivation
	Physical Model and Numerical Solution Scheme
	GPU Implementation and MPI Parallelisation
	Some Results
	Summary

	FEAST - Finite Element Analysis and Solution Tools
	Introduction and Motivation
	Grid and Matrix Structures
	Scalable Multigrid Solvers on GPU-enhanced Clusters
	Minimally Invasive Integration
	Example: Linearised Elasticity
	Example: Stationary Laminar Flow (Navier-Stokes)
	Summary

	Last Slide

