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•  Thank a number of people who have
 helped with this work 
  Emmanuel Agullo, George Bosilca, Aurelien

 Bouteiller, Anthony Danalis, Jim Demmel,
 Tingxing "Tim" Dong, Mathieu Faverge, Azzam
 Haidar, Thomas Herault, Mitch Horton, Jakub
 Kurzak, Julien Langou, Julie Langou, Pierre
 Lemarinier, Piotr Luszczek, Hatem Ltaief,
 Fengguang Song, Stanimire Tomov, Asim
 YarKhan, … 

•  Much of what I will describe has been
 done before, at least in theory. 
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15 Years of exponential growth ̃2x year has ended 
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Power is the root cause of all this 

A hardware issue just became a  
software problem 
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•  Power ∝ Voltage2 x Frequency    (V2F) 
•  Frequency ∝ Voltage 
•  Power ∝Frequency3 
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•  Power ∝ Voltage2 x Frequency    (V2F) 
•  Frequency ∝ Voltage 
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•  Number of cores per chip will double every 
two years 

•  Clock speed will not increase (possibly 
decrease) because of Power  

•  Need to deal with systems with millions of 
concurrent threads 

•  Need to deal with inter-chip parallelism as 
well as intra-chip parallelism 

� 

� 

Power ∝Voltage2 *Frequency
Voltage∝ Frequency
Power ∝ Frequency 3
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Rank     Site Computer Country Cores Rmax 
[Pflops] 

% of 
Peak 

Power 
[MW] 

Flops/
Watt 

1 Nat. SuperComputer 
Center in Tianjin 

Tianhe-1A, NUDT  
Intel + Nvidia GPU + custom China 186,368 2.57 55 4.04 636 

2 DOE / OS                 
Oak Ridge Nat Lab 

Jaguar,  Cray  
 AMD + custom USA 224,162 1.76 75 7.0 251 

3 Nat. Supercomputer 
Center in Shenzhen 

Nebulea, Dawning 
Intel +  Nvidia GPU + IB China 120,640 1.27 43 2.58 493 

4 GSIC Center, Tokyo 
Institute of Technology 

Tusbame 2.0, HP  
Intel + Nvidia GPU + IB Japan 73,278 1.19 52 1.40 850 

5 
DOE / OS  

Lawrence Berkeley Nat 
Lab 

Hopper, Cray 
AMD + custom USA 153,408 1.054 82 2.91 362 

6 
Commissariat a 

l'Energie Atomique 
(CEA) 

Tera-10,  Bull  
Intel + IB France 138,368 1.050 84 4.59 229 

7 DOE / NNSA 
Los Alamos Nat Lab 

Roadrunner, IBM  
AMD + Cell GPU + IB USA 122,400 1.04 76 2.35 446 

8 NSF / NICS            
U of Tennessee 

Kraken, Cray  
AMD + custom USA 98,928 .831 81 3.09 269 

9 Forschungszentrum 
Juelich (FZJ) 

Jugene, IBM 
Blue Gene + custom Germany 294,912 .825 82 2.26 365 

10 DOE / NNSA         
LANL & SNL 

Cielo, Cray  
AMD + custom USA 107,152 .817 79 2.95 277 



Rank     Site Computer Country Cores Rmax 
[Pflops] 

% of 
Peak 

Power 
[MW] 

GFlops/
Watt 

1 Nat. SuperComputer 
Center in Tianjin 

Tianhe-1A, NUDT  
Intel + Nvidia GPU + custom China 186,368 2.57 55 4.04 636 

2 DOE / OS                 
Oak Ridge Nat Lab 

Jaguar,  Cray  
 AMD + custom USA 224,162 1.76 75 7.0 251 

3 Nat. Supercomputer 
Center in Shenzhen 

Nebulea, Dawning 
Intel +  Nvidia GPU + IB China 120,640 1.27 43 2.58 493 

4 GSIC Center, Tokyo 
Institute of Technology 

Tusbame 2.0, HP  
Intel + Nvidia GPU + IB Japan 73,278 1.19 52 1.40 850 

5 
DOE / OS  

Lawrence Berkeley Nat 
Lab 

Hopper, Cray 
AMD + custom USA 153,408 1.054 82 2.91 362 

6 
Commissariat a 

l'Energie Atomique 
(CEA) 

Tera-10,  Bull  
Intel + IB France 138,368 1.050 84 4.59 229 

7 DOE / NNSA 
Los Alamos Nat Lab 

Roadrunner, IBM  
AMD + Cell GPU + IB USA 122,400 1.04 76 2.35 446 

8 NSF / NICS            
U of Tennessee 

Kraken, Cray  
AMD + custom USA 98,928 .831 81 3.09 269 

9 Forschungszentrum 
Juelich (FZJ) 

Jugene, IBM 
Blue Gene + custom Germany 294,912 .825 82 2.26 365 

10 DOE / NNSA         
LANL & SNL 

Cielo, Cray  
AMD + custom USA 107,152 .817 79 2.95 277 

500    Computacenter LTD        HP Cluster, Intel + GigE            UK           5,856      .031        53                      
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Name Peak 
Pflop/s 

Country 

Tianhe-1A 4.70 China NUDT: Hybrid Intel/Nvidia/Self 
Nebulea 2.98 China  Dawning: Hybrid Intel/Nvidia/IB 
Jaguar 2.33 US Cray: AMD/Self 
Tsubame 2.0 2.29 Japan HP: Hybrid Intel/Nvidia/IB 
RoadRunner 1.38 US IBM: Hybrid AMD/Cell/IB 
Hopper 1.29 US Cray: AMD/Self 
Tera-100 1.25 France Bull: Intel/IB 
Mole-8.5  1.14 China CAS: Hybrid Intel/Nvidia/IB 
Kraken 1.02 US Cray: AMD/Self 
Cielo 1.02 US Cray: AMD/Self 
JuGene 1.00 Germany IBM: BG-P/Self 



0 

1 

10 

100 

1,000 

10,000 

100,000 

20
00

 

20
02

 

20
04

 

20
06

 

20
08

 

20
10

 

To
ta

l P
er

fo
rm

an
ce

  [
Tf

lo
p/

s]
 US 



0 

1 

10 

100 

1,000 

10,000 

100,000 

20
00

 

20
02

 

20
04

 

20
06

 

20
08

 

20
10

 

To
ta

l P
er

fo
rm

an
ce

  [
Tf

lo
p/

s]
 US 

EU 



0 

1 

10 

100 

1,000 

10,000 

100,000 

20
00

 

20
02

 

20
04

 

20
06

 

20
08

 

20
10

 

To
ta

l P
er

fo
rm

an
ce

  [
Tf

lo
p/

s]
 US 

EU 

Japan 



0 

1 

10 

100 

1,000 

10,000 

100,000 

20
00

 

20
02

 

20
04

 

20
06

 

20
08

 

20
10

 

To
ta

l P
er

fo
rm

an
ce

  [
Tf

lo
p/

s]
 US 

EU 

Japan 

China 

Over the last decade China has become very active in HPC 
A sign not a race.  
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Absolute Counts 
US:  274 
China:    41 
Germany:    26 
Japan:    26 
France:    26 
UK:    25 



Rank Site Manufacturer Computer Cores RMax 
6 CEA Bull SA Bull bullx super-node S6010/S6030 138368 1050000 
27 GENCI-CINES SGI SGI Altix ICE 8200EX, Xeon E5472 3.0/X5560 2.8 GHz 23040 237800 
36 Government HP Cluster Platform 3000 BL2x220, L54xx 2.5 Ghz, Infiniband 24704 179634 
37 EDF R&D IBM iDataPlex, Xeon X56xx 6C 2.93 GHz, Infiniband 16320 168800 
55 IDRIS IBM Blue Gene/P Solution 40960 119310 
61 CEA Bull SA BULL Novascale R422-E2 11520 108500 
65 Total Exploration  SGI SGI Altix ICE 8200EX, Xeon quad core 3.0 GHz 10240 106100 
76 EDF R&D IBM Blue Gene/P Solution 32768 95450 
83 Manufacturing  HP Cluster Platform 3000 BL460c G6, Xeon X5570 2.93 GHz, Infiniband 8576 88550 
85 Bull Bull SA Bull bullx super-node S6010/S6030 11520 87470 
86 CEA Bull SA Bullx S6010 Cluster,  Xeon 2.26 Ghz 8-core, QDR Infiniband 11520 87470 
142 CEA Bull SA NovaScale 5160, Itanium2 1.6 GHz, Quadrics 9968 52840 
143 IDRIS IBM Power 575, p6 4.7 GHz, Infiniband 3584 52810 
225 CEA Bull SA Novascale 3045, Itanium2 1.6 GHz, Infiniband 7680 42130 
233 Financial Institute HP Cluster Platform 3000 BL460c G1, Xeon L5410 2.33 GHz, GigE 8432 41347 
340 Food Industry HP Cluster Platform 3000 BL460c G1, Xeon 5430 2.66 GHz, GigE 6400 36105 
401 Financial Institution IBM iDataPlex, Xeon E55xx QC 2.26 GHz, GigEthernet 6528 33660 
402 Financial Institution  IBM iDataPlex, Xeon E55xx QC 2.26 GHz, GigEthernet 6528 33660 
416 Financial Institution HP Cluster Platform 3000 BL460c G1, Xeon E5450 3.0 GHz, GigE 5120 32733 
426 ONERA SGI SGI Altix ICE 8200EX, Xeon Nehalem quad core 2.8 GHz 3072 32570 
455 Financial Institution HP Cluster Platform 3000 BL260c G5, Xeon QC 2.66Ghz, GigE 5632 31864 
476 Financial Institution HP Cluster Platform 3000 BL460c G6, Xeon X5570 2.93 GHz, Infiniband 3200 31507 
492 Information Service IBM BladeCenter HS22 Cluster, Xeon QC X55xx 2.53 GHz, GigEthernet 5408 31217 
497 Communications IBM xSeries x3650M2 Cluster Xeon QC GT 2.66 GHz, GigEthernet 5392 31124 
498 Communications IBM xSeries x3650M2 Cluster Xeon QC GT 2.66 GHz, GigEthernet 5392 31124 
499 Communications IBM xSeries x3650M2 Cluster Xeon QC GT 2.66 GHz, GigEthernet 5392 31124 
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Intel 81% (406) 
AMD 11% (57) 
IBM 8%     (40) 
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¨  Has 3 Pflops systems 
  #1, NUDT, Tianhe-1A, located in Tianjin  

 Dual-Intel 6 core + Nvidia Fermi w/custom
 interconnect 
  Budget  600M RMB 

  MOST 200M RMB, Tianjin Government 400M
 RMB 

  #3, CIT, Dawning 6000, Nebulea, located
 in Shenzhen 

 Dual-Intel 6 core + Nvidia Fermi w/QDR
 Ifiniband 
  Budget 600M RMB 

  MOST 200M RMB, Shenzhen Government
 400M RMB 

  #28, CAS IPE, Mole-8.5 Cluster/320x2
 Intel QC Xeon E5520 2.26 Ghz + 320x6
 Nvidia Tesla C2050/QDR Infiniband 

  #35, Shanghai SCC, Dawning 5000A, QC
 Opteron 1.9 Ghz, Infiniband �

¨  Others planned for Shandong and NUDT 



¨  DOE SC, Titan at ORNL,   
  Based on Cray design with

 accelerators, 20 Pflop/s 
¨  DOE NNSA, Sequoia at

 Lawrence Livermore Nat. Lab,              
  Based on IBM’s BG/Q, 20 Pflop/s 

¨  DOE SC, BG/Q at Argonne
 National Lab,                            
  Based on IBM’s BG/Q, 10 Pflop/s 

¨  NSF, Blue Waters at University
 of Illinois UC,        
  Based on IBM’s Power 7 Proc,    

 10 Pflop/s 
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Japanese 10 PF Facility @ Kobe, Japan 

Computer
	
 Wing	
 Research	
 Wing	
 

Computer Wing 
Total Floor Area:17,500m2 
2 Computer rooms: 12,600m2 
4 Floors (1 underground floor) 

Construction: started in March, 2008 and complete in May, 2010,
 Machine operation ̃ early 2012 

Other Facilities 
Co-generation System 
Water chiller system 
Electric Subsystem 

Initially 30MW
 capability@2011	




  The first eight racks of the K computer were delivered to Kobe from Fujitsu on
 September 28, 2010. More than 800 racks are required for a 10 Pflop/s Performance.  

  A computer rack weighs about 1,300 kg in average. The rack contains 96 water
-cooled Fujitsu SPARC64 VIIIfx CPU chips, each of which performs 128 Gflop/s,
 interconnected with the 3D Torus network that Fujitsu named Tofu. 

Photo of First delivery, Sep 28, 2010 

15-17MW 	




45 nm 



¨  First PRACE System: 
 JUGENE, IBM BlueGene/P, Gauss Center for

 Supercomputing hosted at Forschungzentrum
 Jülich (FZJ), Jülich, Germany, peak 1 Pflop/s 

¨  Second PRACE System 
 CURIE funded by GENCI and hosted at CEA,

 France, is designed and built by BULL. CURIE
 is based on x86 architecture CPUs with a mix of
 thin and fat nodes interconnected through a QDR
 Infiniband interconnect. Available now and the total
 peak performance will be 1.6 Pflop/s. 

¨  Third PRACE System 
 HLRS based on Cray XE6, > 5 Pflop/s Mid 2012 





  T-Platforms will supply Moscow State university with a 1.3 Pflop/s
 system 

  Roughly $25M 

  First stage in place, 510 Tflop/s system and second stage adds 800
 Tflop/s = 1.31 Pflop/s 

  TB2-TLTM hybrid blade system from T-Platforms equipped with
 NVIDIA's TeslaTM X2070 GPUs. 

  32 - Intel Westmere processor 2.13 GHz, 4 core 

  32 Nvidia Fermi GPUs 

  Infiniband interconnect 

  32*4*4*2.13 + 32*515 = 17.571 Tflop/s per blade 

  6 blades per rack = 105.4 Tflop/rack 

  12 racks system = 1.265 Pflop/s 

  QDR Infiniband 

  14 PB memory 

Russia 



¨  1 GFlop/s; 1988; Cray Y-MP; 8 Processors 
 Static finite element analysis 

¨  1 TFlop/s; 1998; Cray T3E; 1024
 Processors 
 Modeling of metallic magnet atoms, using a                  

 variation of the locally self-consistent multiple            
 scattering method. 

¨  1 PFlop/s; 2008; Cray XT5; 1.5x105

 Processors 
 Superconductive materials 

¨  1 EFlop/s; ~2018;   ?; 1x107 Processors
 (109 threads)   



0.1 

1 

10 

100 

1000 

10000 

100000 

1000000 

10000000 

100000000 

1E+09 

1E+10 

1E+11 

19
96

 

20
02

 

20
08

 

20
14

 

20
20

 

1 Eflop/s 

   1 Gflop/s 

   1 Tflop/s 

 100 Mflop/s 

100 Gflop/s 

100 Tflop/s 

  10 Gflop/s 

  10 Tflop/s 

    1 Pflop/s 

100 Pflop/s 

  10 Pflop/s 

N=1	
  

N=500	
  

Gordon 
Bell 

Winners 



•  Town Hall Meetings April-June 2007 
•  Scientific Grand Challenges Workshops  

 November 2008 – October 2009 
  Climate Science (11/08),  
  High Energy Physics (12/08),  
  Nuclear Physics (1/09),  
  Fusion Energy (3/09),  
  Nuclear Energy (5/09), 
  Biology (8/09),  
  Material Science and Chemistry (8/09),  
  National Security (10/09) (with NNSA) 

•  Cross-cutting workshops 
  Architecture and Technology (12/09) 
  Architecture, Applied Math and CS (2/10) 

•  Meetings with industry (8/09, 11/09) 
•  External Panels 

  ASCAC Exascale Charge (FACA) 
  Trivelpiece Panel  

41 

MISSION IMPERATIVES 

“The key finding of the Panel is that there are compelling needs for
 exascale computing capability to support the DOE’s missions in energy,
 national security, fundamental sciences, and the environment.  The
 DOE has the necessary assets to initiate a program that would
 accelerate the development of such capability to meet its own needs
 and by so doing benefit other national interests.  Failure to initiate an
 exascale program could lead to a loss of U. S. competitiveness in
 several critical technologies.” 

  Trivelpiece Panel Report,  January, 2010 



Systems 2011 2018  Difference 
Today & 2018 

System peak 2 Pflop/s 1 Eflop/s O(1000) 

Power 7 MW ~20 MW 

System memory 0.3 PB 32 - 64 PB O(100) 

Node performance 125 GF 1,2  or 15TF O(10) – O(100) 

Node memory BW 25 GB/s 2 - 4TB/s O(100) 

Node concurrency 12 O(1k) or 10k O(100) – O(1000) 

Total Node Interconnect BW 3.5 GB/s 200-400GB/s O(100) 

System size (nodes) 18,700 O(100,000) or O(1M) O(10) – O(100) 

Total concurrency 225,000 O(billion) O(10,000) 

Storage 15 PB 500-1000 PB (>10x system 
memory is min) 

O(10) – O(100) 

IO 0.2 TB 60 TB/s (how long to drain the 
machine) 

O(100) 

MTTI days O(1 day) - O(10) 
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•  Light weight processors (think BG/P) 
  ~1 GHz processor (109) 
  ~1 Kilo cores/socket (103) 
  ~1 Mega sockets/system (106) 

•  Hybrid system (think GPU based) 
  ~1 GHz processor (109) 
  ~10 Kilo FPUs/socket (104)    
  ~100 Kilo sockets/system (105)  

Socket Level 
Cores scale-out for planar geometry 

Node Level 
3D packaging 
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Intel Xeon 
8 cores 
3 GHz 

8*4 ops/cycle 
96 Gflop/s (DP) 

Nvidia C2050 “Fermi” 
448 “Cuda cores” 
1.15 GHz 
448 ops/cycle 
515 Gflop/s (DP) 

Commodity Accelerator (GPU) 

Interconnect 
PCI-X 16 lane 
64 Gb/s 
1 GW/s 



•  Floating Point Systems FPS-164
 Scientific Computer (1976) 

•  Intel Math Co-processor (1980) 
•  Weitek Math Co-processor (1981) 

1980 



•  FPS-164 and VAX (1976) 
  11 Mflop/s; transfer rate 44 MB/s 
  Ratio of flops to bytes of data movement:

 1 flop per 4 bytes transferred 

•  Nvidia Fermi and PCI-X to host 
  500 Gflop/s; transfer rate 8 GB/s 
  Ratio of flops to bytes of data movement:

 62 flops per 1 byte transferred 

•  Flop/s are cheap, so are provisioned in
 excess  47 
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"   High levels of parallelism 
Many GPU cores, serial kernel execution  
[ e.g. 240 in the Nvidia Tesla; up to 512 in Fermi – to have concurrent kernel
 execution ] 

"   Hybrid/heterogeneous architectures 
Match algorithmic requirements to architectural
 strengths 
[ e.g. small, non-parallelizable tasks to run on CPU, large and parallelizable on
 GPU ] 

"   Compute vs communication gap 
Exponentially growing gap; persistent challenge 
[ Processor speed improves 59%, memory bandwidth 23%, latency 5.5% ] 
[ on all levels, e.g. a GPU Tesla C1070 (4 x C1060) has compute power of 
O(1,000) Gflop/s but GPUs communicate through the CPU using O(1) GB/s
 connection ]  



•  CPU Conventional Core   Quad
 Core 

49 



•  SIMD Processing 
•  Amortize cost

/complexity   of
 managing an
 instruction stream
 across many ALUs.  

•  NVIDIA refers to these
 ALUs as “CUDA
 Cores” (also streaming
 processors)  50 
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(CUDA Cores) 16 cores each with 8 ALUs (CUDA Cores) 
Total of 16 simultaneous instruction streams with  
  128 ALUs (CUDA Cores) 



•  240 streaming processors (CUDA Cores) (ALUs) 
•  Equivalent to 30 processing cores, each with 8

 “CUDA cores” 
52 



•  NVIDIA-Speak 
  240 CUDA cores (ALUs) 

•  Generic speak 
  30 processing cores 

•  8 CUDA Cores (SIMD functional units) per core 

  1 mul-add (2 flops) + 1 mul per functional unit (3 flops/cycle) 
  Best case theoretically: 240 mul-adds + 240 muls per cycle 

•  1.3 GHz clock  
•  30 * 8 * (2 + 1) * 1.33 = 933 Gflop/s peak 

  Best case reality: 240 mul-adds per clock 
•  Just able to do the mul-add so 2/3 or 624 Gflop/s 

  All this is single precision 
•  Double precision is 78 Gflop/s peak (Factor of 8 from SP; exploit mixed prec) 

  141 GB/s bus, 1 GB memory  
  4 GB/s via PCIe (we see: T = 11 us + Bytes/3.3 GB/s) 
  In SP SGEMM performance 375 Gflop/s 

Processing Core 



•  NVIDIA-Speak 
  448  CUDA cores (ALUs) 

•  Generic speak 
  14  processing cores 

•  32 CUDA Cores (SIMD functional units) per core 

  1 mul-add (2 flops) per ALU (2 flops/cycle) 
  Best case theoretically: 448 mul-adds 

•  1.15 GHz clock  
•  14 * 32 * 2 * 1.15 = 1.03 Tflop/s peak 

  All this is single precision 
•  Double precision is half this rate, 515 Gflop/s 

  In SP SGEMM performance 580 Gflop/s 
  In DP DGEMM performance 300 Gflop/s 
  Interface PCI-x16 

Processing Core 



•  Most likely be a hybrid design 
  Think standard multicore chips and accelerator

 (GPUs) 
•  Today accelerators are attached 
•  Next generation more integrated 
•  Intel’s MIC architecture “Knights Ferry” and

 “Knights Corner” to come. 
  48 x86 cores 

•  AMD’s Fusion in 2012 - 2013 
  Multicore with embedded graphics ATI 

•  Nvidia’s Project Denver plans to develop              
 an integrated chip using ARM                     
 architecture in 2013. 

55 



Many Floating- 
Point Cores 

Different Classes of
 Chips 
     Home 
     Games / Graphics 
     Business  
     Scientific 

+ 3D Stacked  
Memory 



2011 2018 

DP FMADD flop   100 pJ     10 pJ 

DP DRAM read 4800 pJ 1920 pJ 

Local Interconnect 7500 pJ 2500 pJ 

Cross System 9000 pJ 3500 pJ 
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Source: John Shalf, LBNL 



•  Number of cores per chip doubles
 every 2 year, while clock speed
 decreases (not increases). 
  Need to deal with systems with millions

 of concurrent threads 
• Future generation will have billions of

 threads! 

  Need to be able to easily replace inter
-chip parallelism with intro-chip
 parallelism 

•  Number of threads of execution
 doubles every 2 year 



•  Steepness of the ascent from terascale
 to petascale to exascale 

•  Extreme parallelism and hybrid design 
•  Preparing for million/billion way

 parallelism 

•  Tightening memory/bandwidth
 bottleneck 
•  Limits on power/clock speed

 implication on multicore 
•  Reducing communication will become

 much more intense  
•  Memory per core changes, byte-to-flop

 ratio will change 

•  Necessary Fault Tolerance 
•  MTTF will drop 
•  Checkpoint/restart has limitations 
•  shared responsibility 

Software infrastructure does not exist today  
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• Must rethink the design of our
 software 
  Another disruptive technology 

• Similar to what happened with cluster
 computing and message passing 

  Rethink and rewrite the applications,
 algorithms, and software 



•  Are needed by applications 

•  Applications are given (as function of time) 
•  Architectures are given (as function of time) 

•  Algorithms and software must be adapted or
 created to bridge to (hostile) architectures for
 the sake of the complex applications 
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•  70's - LINPACK, vector operations: 
  Vector architectures 
  Level-1 BLAS operation 

•  Vector operations 
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•  70's - LINPACK, vector operations: 
  Vector architectures 
  Level-1 BLAS operation 

•  Vector operations 

•  80's - LAPACK, block operations 
  SMP architectures 
  Cache based 

•  Matrix operations 
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•  70's - LINPACK, vector operations: 
  Vector architectures 
  Level-1 BLAS operation 

•  Vector operations 

•  80's - LAPACK, block operations 
  SMP architectures 
  Cache based 

•  Matrix operations 

•  90's - ScaLAPACK, dist. Memory 
  Message passing 
  Data decomposition  
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•  Today – Multicore Heterogeneous
 Architectures 
  PLASMA, many-cores friendly: 

• Tile based - DAG scheduled algorithms,
 block data layout 

 MAGMA, GPU: 
• GPU BLAS 
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•  Synchronization-reducing algorithms 
  Break Fork-Join model 

•  Communication-reducing algorithms 
  Use methods which have lower bound on

 communication 

•  Fault resilient algorithms 
  Implement algorithms that can recover from

 failures 

•  Mixed precision methods 
  2x speed of ops and 2x speed for data movement 

•  Reproducibility of results 
  Today we can’t guarantee this 66 



Fork-­‐Join	
  ParallelizaHon	
  of	
  LU	
  and	
  QR.	
  

Parallelize	
  the	
  update:	
  
• 	
  Easy	
  and	
  done	
  in	
  any	
  reasonable	
  so<ware.	
  
• 	
  This	
  is	
  the	
  2/3n3	
  term	
  in	
  the	
  FLOPs	
  count.	
  
• 	
  Can	
  be	
  done	
  efficiently	
  with	
  LAPACK+mulLthreaded	
  BLAS	
  

- 

dgemm 

- 

lu( ) 

dgetf2 

dtrsm (+ dswp) 

dgemm 

\ 

L 

U 

A(1) 

A(2) 
L 

U 



•  Break into smaller tasks and remove
 dependencies 



•  Tile data layout where each data tile
 is contiguous in memory 

•  Decomposed into several fine-grained
 tasks, which better fit the memory
 of the small core caches 69 



• Objectives 
  High utilization of each core 
  Scaling to large number of cores 
  Shared or distributed memory 

• Methodology 
  Dynamic DAG scheduling (QUARK) 
  Explicit parallelism 
  Implicit communication 
  Fine granularity / block data layout 

• Arbitrary DAG with dynamic scheduling 

70 

Fork-join 
parallelism 

DAG scheduled 
parallelism 

Time 



Tile LU factorization; Matrix size 4000x4000, Tile size 200 
8-socket, 6-core (48 cores total) AMD Istanbul 2.8 GHz 

  Regular trace 
  Factorization steps pipelined 
  Stalling only due to natural
 load imbalance 

  Dynamic 
  Out of order execution 
  Fine grain tasks 
  Independent block operations 

The colored area over the
 rectangle is the efficiency 
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POTRF+TRTRI+LAUUM: 25 (7t-3) 
Cholesky Factorization alone: 3t-2 

48 cores 
POTRF, TRTRI and LAUUM. 
The matrix is 4000 x 4000,tile size is 200 x 200, 

Pipelined: 18 (3t+6) 



•  DAG scheduling of critical
 path tasks 

•  Allows taking advantage of
 asynchronicity between
 major steps and adaptive
 load balancing for
 noncritical tasks 
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•  We would generate the DAG,
 find the critical path and
 execute it. 

•  DAG too large to generate ahead
 of time 
  Not explicitly generate 
  Dynamically generate  the DAG as

 we go 

•  Machines will have large
 number of cores in a
 distributed fashion 
  Will have to engage in message

 passing 
  Distributed management 
  Locally have a run time system 
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•  DAGs get very big, very fast 
•  So windows of active tasks are used; this means no

 global critical path  
•  Matrix of NBxNB tiles; NB3 operation 

•  NB=100 gives 1 million tasks  



  Tile LU factorization 
  10 x 10 tiles 
  300 tasks 
  100 task window 
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  Tile LU factorization 
  10 x 10 tiles 
  300 tasks 
  100 task window 



•  What’s the best way to represent the DAG? 
•  What’s the best approach to dynamically generating

 the DAG? 
•  What run time system should we use? 

  We will probably build something that we would target to the
 underlying system’s RTS. 

•  What about work stealing? 
  Can we do better than nearest neighbor work stealing? 

•  What does the program look like? 
  Experimenting with Cilk, Charm++, UPC, Intel Threads 
  I would like to reuse as much of the existing software as

 possible 
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•  Sequential algorithm definition 
•  Side-effect-free tasks 
•  Directions of arguments (IN, OUT, INOUT) 
•  Runtime resolution of data hazards (RaW, WaR, WaW) 
•  Implicit construction of the DAG 
•  Processing of the tasks by a sliding window 

 Old concept 
  Jade (Stanford University) 
 SMP Superscalar (Barcelona Supercomputer Center) 
 StarPU (INRIA) 



QUARK	
   DAGuE	
  

execution window 

tasks 

inputs 

outputs 

Number of tasks in DAG: 

 O(n3) 

Cholesky: 1/3 n3 
LU: 2/3 n3  
QR: 4/3 n3  

Number of tasks in parameterized DAG: 

 O(1) 

Cholesky: 4 (POTRF, SYRK, GEMM, TRSM) 
LU: 4 (GETRF, GESSM, TSTRF, SSSSM) 
QR: 4 (GEQRT, LARFB, TSQRT, SSRFB) 

DAG: Conceptualized & Parameterized  

PLASMA 
(On Node) 

DPLASMA 
(Distributed System) 

small enough to
 store on each
 core in every 
node = Scalable 



for	
  i,j	
  =	
  0..N	
  

	
  	
  	
  QUARK_Insert(	
  GEMM,	
  	
  A[i,	
  j],INPUT,	
  	
  	
  B[j,	
  i],INPUT,	
  	
  C[i,i],INOUT	
  )	
  

	
  	
  	
  QUARK_Insert(	
  TRSM,	
  	
  A[i,	
  j],INPUT,	
  	
  	
  B[j,	
  i],INOUT	
  )	
  

Start	
  with	
  PLASMA	
  

Analyze	
  	
  dependencies	
  with	
  Omega	
  Test	
  
{	
  1	
  <	
  i	
  <	
  N	
  :	
  GEMM(i,	
  j)	
  =>	
  TRSM(j)	
  }	
  

Generate	
  Code	
  which	
  has	
  the	
  Parameterized	
  DAG	
  

GEMM(i,	
  j)	
   TRSM(j)	
  

Parse	
  the	
  C	
  source	
  code	
  to	
  Abstract	
  Syntax	
  Tree	
  
QUARK_Insert	
  

GEMM	
   A	
  

i	
   j	
  

B	
  

i	
   j	
   i	
   j	
  

B	
  

Loops	
  &	
  array
	
  references
	
  have	
  to	
  be
	
  affine	
  



"   RT is using the symbolic
 information from the
 compiler to make
 scheduling, message
 passing, & RT decisions 

"   Data distribution: regular,
 irregular 

"   Task priorities 
"   No left looking or right

 looking, more adaptive or
 opportunistic 



LU	
  

Cholesky	
  

QR	
  

DSBP  = 
Distributed Square  
Block Packed 

81 nodes 
Dual socket nodes 
Quad core Xeon L5420 
Total 648 cores at 2.5 GHz 
ConnectX InfiniBand DDR 4x 



•  Goal: Algorithms that communicate as little as possible 
•  Jim Demmel and company have been working on algorithms

 that obtain a provable minimum communication.  
•  Direct methods (BLAS, LU, QR, SVD, other decompositions) 

•  Communication lower bounds for all these problems 
•  Algorithms that attain them (all dense linear algebra, some

 sparse) 

•  Iterative methods – Krylov subspace methods for Ax=b, Ax=λx 
•  Communication lower bounds, and algorithms that attain them

 (depending on sparsity structure) 
•  For QR Factorization they can show: 
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•  We have a m x n matrix A we want to
 reduce to upper triangular form. 



•  We have a m x n matrix A we want to
 reduce to upper triangular form. 

Q1T 



•  We have a m x n matrix A we want to
 reduce to upper triangular form. 

R 

A = Q1Q2Q3R = QR 

Q1T Q2T Q3T 



A. Pothen and P. Raghavan. Distributed orthogonal factorization. In The 3rd 
Conference on Hypercube Concurrent Computers and Applications, volume II, Applications, 
pages 1610‒1620, Pasadena, CA, Jan. 1988. ACM. Penn. State. 
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Communication Reducing QR 
Factorization 

Quad-socket, quad-core machine Intel Xeon EMT64 E7340 at 2.39 GHz.  
Theoretical peak is  153.2 Gflop/s with 16 cores. 

Matrix size 51200 by 3200 



•  Mixed precision, use the lowest
 precision required to achieve a
 given accuracy outcome 
  Improves runtime, reduce power

 consumption, lower data movement 
  Reformulate to find correction to

 solution, rather than solution; Δx
 rather than x. 
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•  Single Precision is 2X faster than
 Double Precision 

•  With some GP-GPUs a factor of 8x 
•  Power saving issues 
•  Reduced data motion 

  32 bit data instead of 64 bit data 

•  Higher locality in cache 
 More data items in cache 
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•  Exploit 32 bit floating point as much as
 possible. 
  Especially for the bulk of the computation 

•  Correct or update the solution with selective
 use of 64 bit floating point to provide a
 refined results 

•  Intuitively:  
  Compute a 32 bit result,  
  Calculate a correction to 32 bit result using

 selected higher precision and, 
  Perform the update of the 32 bit results with the

 correction using high precision.  



L U = lu(A)    SINGLE   O(n3) 
x = L\(U\b)    SINGLE   O(n2) 
r = b – Ax    DOUBLE   O(n2) 
WHILE || r || not small enough 
        z = L\(U\r)    SINGLE   O(n2) 
        x = x + z    DOUBLE   O(n1) 
        r = b – Ax    DOUBLE   O(n2) 
END 

•  Iterative refinement for dense systems,   Ax = b, can work this
 way. 

  Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt
 results when using DP fl pt. 



L U = lu(A)    SINGLE   O(n3) 
x = L\(U\b)    SINGLE   O(n2) 
r = b – Ax    DOUBLE   O(n2) 
WHILE || r || not small enough 
        z = L\(U\r)    SINGLE   O(n2) 
        x = x + z    DOUBLE   O(n1) 
        r = b – Ax    DOUBLE   O(n2) 
END 

•  Iterative refinement for dense systems,   Ax = b, can work this
 way. 

  Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt
 results when using DP fl pt. 

  It can be shown that using this approach we can compute the solution
 to 64-bit floating point precision. 

•  Requires extra storage, total is 1.5 times normal; 
•  O(n3) work is done in lower precision 
•  O(n2) work is done in high precision 
•  Problems if the matrix is ill-conditioned in sp; O(108) 
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                  SP/DP peak is 1030 / 515 GFlop/s 



Exploiting Mixed Precision Computations 

•  Single	
  precision	
  is	
  faster	
  than	
  DP	
  because:	
  
  Higher	
  parallelism	
  within	
  floaHng	
  point	
  units	
  

•  4 ops/cycle (usually) instead of 2 ops
/cycle 

  Reduced	
  data	
  moHon	
  	
  
•  32 bit data instead of 64 bit data 

  Higher	
  locality	
  in	
  cache	
  
•  More data items in cache 



PLASMA DP 

PLASMA Mixed Precision 

N = 8400, using 4 
cores 

PLASMA 
DP 

PLASMA 
Mixed 

Time to Solution (s) 39.5 22.8 

GFLOPS 10.01 17.37 

Accuracy  2.0E-02 1.3E-01 

Iterations 7 

System Energy 
(KJ) 

10852.8 6314.8 

|| Ax − b ||
(|| A |||| X || + || b ||)Nε

Two dual-core 1.8 GHz AMD Opteron processors 
Theoretical peak: 14.4 Gflops per node 
DGEMM using 4 threads: 12.94 Gflops 
PLASMA 2.3.1, GotoBLAS2 
Experiments: 

PLASMA LU solver in double precision 
PLASMA LU solver in mixed precision 
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MUMPS package based on multifrontal approach which  
generates small dense matrix multiplies 



106 •  Outer/Inner Iteration 

•  Outer iteration in 64 bit floating point and inner
 iteration in 32 bit floating point 

Inner iteration: 
In 32 bit floating point 

Outer iterations using 64 bit floating point 
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2	



           6,021        18,000        39,000       120,000     240,000	



Matrix size	



Condition number	



Machine:���
   Intel Woodcrest (3GHz, 1333MHz bus)���

Stopping criteria:���
   Relative to r0 residual reduction (10-12)	



Speedups for mixed precision ���
Inner SP/Outer DP (SP/DP) iter. methods vs DP/DP ���
(CG2, GMRES2, PCG2, and PGMRES2 with diagonal prec.)���
(Higher is better)	



Iterations for mixed precision ���
SP/DP iterative methods vs DP/DP ���
(Lower is better)	



2	


2	
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Matrix Algebra on GPU and Multicore Architectures 

"  MAGMA: a new generation linear algebra (LA) libraries to achieve the fastest possible time to an accurate
 solution on hybrid/heterogeneous architectures, starting with current multicore+MultiGPU systems 
Homepage: http://icl.cs.utk.edu/magma/ 

"  MAGMA & LAPACK 

  MAGMA - based on LAPACK and extended for hybrid systems (multi-GPUs + multicore systems);  

  MAGMA - designed to be similar to LAPACK in functionality, data storage and interface, in order to allow
 scientists to effortlessly port  any of their LAPACK-relying software components to take advantage of the
 new architectures 

  MAGMA - to leverage years of experience in developing open source LA software packages and
 systems like LAPACK, ScaLAPACK, BLAS, ATLAS as well as the newest LA developments (e.g.
 communication avoiding algorithms) and experiences on homogeneous multicores (e.g. PLASMA)‏ 

"  Support 
  -  NSF, NVIDIA  [ CUDA Center of Excellence at UTK on the development of 
                                               Linear Algebra Libraries for CUDA-based Hybrid Architectures ] 

"  MAGMA developers 

  University of Tennessee, Knoxville;  University of California, Berkeley;  University of Colorado, Denver 
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CUDA implementation: 
  a_ref points to the GPU memory 
  GPU kernels are started asynchronously which results in overlapping  
  the GPU sgemm with transferring T to the CPU, factoring it, and sending the result back to the GPU 

Commodity Accelerator (GPU) 

    MATLAB code             LAPACK code                               Hybrid code           
(1) B = B ‒ A*A'             ssyrk_(“L”, “N”, &nb, &j, &mone, hA(j,0), ... )   cublasSsyrk('L', 'N', nb, j. mone, dA(j,0), ... )‏ 

                                                                                                                     cublasGetMatrix(nb, nb, 4, dA(j, j), *lda, hwork, nb) 
(2) B = chol(B, ‘lower’)   spotrf_(“L”,  &nb,  hA(j, j),  lda,  info)               cublasSgemm(‘N’, ‘T’, j, … )  
(3) D = D ‒ C*A’               sgemm_(“N”,  “T”,  &j, … )                               spotrf_(“L”, &nb, hwork, &nb, info)  
                                                                                                                     cublasSetMatrix(nb, nb, 4, hwork, nb, dA(j, j), *lda)  ‏

(4) D = B\D                        strsm_(“R”, “L”, “T”, “N”,  &j, … )                       cublasStrsm(‘R’, ‘L’, ‘T’, ‘N’, j, … )‏    

Example: Left-Looking Hybrid  
                Cholesky factorization 



"   MAGMA uses HYBRIDIZATION methodology based on 
"   Representing linear algebra algorithms as collections  

of TASKS and DATA DEPENDENCIES among them 
"   Properly SCHEDULING the tasks' execution over the  

multicore and the GPU hardware components 

"   Successfully applied to fundamental 
linear algebra algorithms 
"   One and two-sided factorizations and solvers 
"   Iterative linear and eigen-solvers 

"   Faster, cheaper, better ? 
"   High-level 
"   Leveraging prior developments 
"   Exceeding in performance homogeneous solutions 

Hybrid CPU+GPU algorithms 
(small tasks for multicores and large  
      tasks for GPUs)  ‏
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FERMI       Tesla C2050: 448 CUDA cores @ 1.15GHz 
                  SP/DP peak is 1030 / 515 GFlop/s  

ISTANBUL AMD 8 socket 6 core (48 cores) @2.8GHz 
                  SP/DP peak is 1075 / 538 Gflop/s  

LU Factorization in double precision 

"  Similar results for Cholesky & QR 
"  60% faster than the commercially 
  available CULA library for GPUs  



Performance of tile LU factorization in double precision arithmetic 

GPU : Fermi C2050  
           (14 processors @1.14GHz) 
CPU : dual-socket hexa-core 
           Intel Nehalem @2.67GHz 
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•  The LSMS Code is a first-principles
 computer model that simulates the
 interactions between electrons and
 atoms in magnetic materials. 

•  LSMS is a real-space multiple scattering,
 Green-function-based method.  

•  First app to reach TeraFlop and
 PetaFlop 





•  The product (a + bi) · (c + di) normally requires  
  4 multiplications and 2 additions 

  Real part = a · c – b · d 
  Imaginary part = a · d + b · c 

•  But it can be calculated in the following way, using  
  3 multiplications and 5 additions.     

  k1 = c · (a + b)     
  k2 = a · (d − c)     
  k3 = b · (c + d)     
  Real part = k1 − k3     
  Imaginary part = k1 + k2 

•  Resulting in 1 less multiplication and 3 more additions 
•  Can be applied to matrices resulting in a 25% reduction in

 operation count for ZGEMM. 
  Remove 2·n3 operations in exchange for adding 3·n2

 operations. 



•  Need extra storage, 2n2 

•  The imaginary part may be
 contaminated by relative errors
 much larger than those for
 conventional multiplication. 
  However if the errors are measured

 relative to   
 ||A||*||B|| then they are just as small
 as for conventional multiplication. 
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Functionality Coverage 

linear systems and least squares 
LU (LAPACK pivoting)     , LDLT (no pivoting) 
Cholesky, QR & LQ 

mixed-precision linear systems LU, Cholesky, QR 

tall and skinny factorization QR & LQ 

Q matrix generation & application QR & LQ, tall and skinny QR & LQ 

explicit matrix inversion Cholesky 

symmetric EVP eigenvalues only (no vectors) 

SVD singular values only (no vectors) 

Level 3 BLAS (tile layout) 
GEMM, HEMM, HER2K, HERK, SYMM, 
SYR2K, SYRK, TRMM, TRSM 
(complete set) 

In-place layout translations 
CM, RM, CCRB, CRRB, RCRB, RRRB 
(all combinations) 

PLASMA 3.0 (June 6) 

Features 

Covering four precisions: Z, C, D, S (and mixed-precision: ZC, DS) 

Static scheduling and dynamic scheduling with QUARK 

Support for Linux, MS Windows, Mac OS and AIX 



Functionality Coverage 

symmetric EVP eigenvalues & eigenvectors 

SVD singular values & singular vectors 

LDLT pivoting 

PLASMA 3.x (November 15) 

Features 

GPU acceleration (factorizations, reductions to band forms, BLAS 3) 



Functionality Coverage 

linear systems and least squares LU, Cholesky, QR & LQ 

mixed-precision linear systems LU, Cholesky, QR 

Q matrix generation & application QR & LQ, tall and skinny QR & LQ 

general EVP 
1st and 3rd stage have GPU acceleration;  
2nd stage is LAPACK on multicore 

symmetric EVP 
1st and 3rd stage have GPU acceleration;  
2nd stage is LAPACK on multicore 

SVD 
1st and 3rd stage have GPU acceleration;  
2nd stage is LAPACK on multicore 

BLAS 
GEMM, TRSM, GEMV, SYMV, auxiliary 
routines, etc., for both Tesla and Fermi 

MAGMA 1.0 (June 6) 

Features 

Covering four precisions: Z, C, D, S (and mixed-precision: ZC, DS) 

Static scheduling for single NVIDIA GPU 

Support for Linux, MS Windows, and Mac OS 



Functionality Coverage 

SpMV Different matrix formats 

Krylov space methods PCG, GMRES, BiCG, LOBPCG, etc.  

LAPACK for Multicore  LU, QR, and Cholesky w/ QUARK 

Multicore + GPU algorithms LU, QR, and Cholesky w/ QUARK 

Multicore + multiGPU algorithms LU, QR, and Cholesky w/ StarPU 

MAGMA 1.x (November 15) 



•  Develop implementations for two-sided
 factorizations: bi‑diagonalization, Hessenberg
 reduction, etc. 

•  Develop accurate performance models 
•  Develop auto-tuning framework  
•  Propose mechanisms for static and dynamic

 scheduling of work in a multi-socket multi-blade
 hybrid system 

•  Investigate impact of memory architectures on
 different algorithmic approaches to common
 linear algebra workloads  
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•  Writing high performance software is hard 
•  Ideal: get high fraction of peak performance from 

one algorithm 
•  Reality: Best algorithm (and its implementation) can 

depend strongly on the problem, computer 
architecture, compiler,… 
  Best choice can depend on knowing a lot of 

applied mathematics and computer science 
  Changes with each new hardware, compiler 

release 
•  Automatic performance tuning 

  Use machine time in place of human time for tuning 
  Search over possible implementations 
  Use performance models to restrict search space  
  Past successes: ATLAS, FFTW, Spiral, Open-MPI 



•  Many parameters in the code needs to be
 optimized. 

•  Software adaptivity is the key for applications to
 effectively use available resources whose
 complexity is exponentially increasing 
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"   Best algorithm implementation can depend strongly 
on the problem, computer architecture, compiler,… 

"   There are 2 main approaches 
  Model-driven optimization 

[Analytical models for various parameters;  
 Heavily used in the compilers community; 
 May not give optimal results ] 

  Empirical optimization 
[ Generate large number of code versions and runs them on a given 
  platform to determine the best performing one; 
  Effectiveness depends on the chosen parameters to optimize and 
  the search heuristics used ] 

"   Natural approach is to combine them in a hybrid 
approach  
[1st model-driven to limit the search space for a 2nd empirical part ] 
[ Another aspect is adaptivity – to treat cases where tuning can not be 
  restricted to optimizations at design, installation, or compile time ] 



•  For example           when done in parallel can’t
 guarantee the order of operations. 

•  Lack of reproducibility due to floating point
 nonassociativity and algorithmic adaptivity
 (including autotuning) in efficient production
 mode 

•  Bit-level reproducibility may be unnecessarily
 expensive most of the time 

•  Force routine adoption of uncertainty
 quantification  
  Given the many unresolvable uncertainties in

 program inputs, bound the error in the
 outputs in terms of errors in the inputs 
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•  Hardware has changed dramatically while
 software ecosystem has remained stagnant 

•  Community codes unprepared for sea change
 in architectures 

•  No global evaluation of key missing
 components 

•  The IESP was Formed in 2008 
•  Goal to engage international computer

 science community to address common
 software challenges for Exascale 

•  Focus on open source systems software that
 would enable multiple platforms 

•  Shared risk and investment 
•  Leverage international talent base 



Build an international plan for
 coordinating research for the next

 generation open source software for
 scientific high-performance

 computing 

Improve the world’s simulation and modeling
 capability by improving the coordination and
 development of the HPC software environment 
Workshops: 

www.exascale.org 



www.exascale.org 
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•  IESP provides coordination internationally,
 while regional groups have well managed
 R&D plans and milestones 

IESP 

US-DOE EU-EESI JP US-NSF 

www.exascale.org 
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“We can only see a short
 distance ahead, but we
 can see plenty there
 that needs to be
 done.” 
  Alan Turing (1912 

—1954) 

•  www.exascale.org 

Published in the January 2011 issue of 
The International Journal of High
 Performance Computing Applications 



•  For the last decade or more, the research
 investment strategy has been
 overwhelmingly biased in favor of hardware.  

•  This strategy needs to be rebalanced -
 barriers to progress are increasingly on the
 software side.   

•  Moreover, the return on investment is more
 favorable to software. 
  Hardware has a half-life measured in years, while

 software has a half-life measured in decades. 
•  High Performance Ecosystem out of balance 

  Hardware, OS, Compilers, Software, Algorithms, Applications 
•  No Moore’s Law for software, algorithms and applications 
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