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< First ...

 Thank a number of people who have
helped with this work

= Emmanuel Agullo, George Bosilca, Aurelien
Bouteiller, Anthony Danalis, Jim Demmel,
Tingxing "Tim" Dong, Mathieu Faverge, Azzam
Haidar, Thomas Herault, Mitch Horton, Jakub
Kurzak, Julien Langou, Julie Langou, Pierre
Lemarinier, Piotr Luszczek, Hatem Ltaief,
Fengguang Song, Stanimire Tomov, Asim
YarKhan, ...

* Much of what | will describe has been
done before, at least in theory.
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< Moore’s Law is Alive and Well
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¢ But Clock Frequency Scaling Replaced
by Scaling Cores / Chip
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Performance Has Also Slowed,
Along with Power

1.E+07

Power is the root cause of all this
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A hardware issue just became a
software problem
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< Power Cost of Frequency

» Power « Voltage? x Frequency (V2F)

e Frequency « Voltage

 Power «Freaue
Cores Freq \Perf Power m )

Superscalar 1 -

“"New" Superscalar 1X 1.5X 1.5X 1.5X 3.3X
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< Power Cost of Frequency

» Power « Voltage? x Frequency (V2F)

e Frequency « Voltage

 Power «Freaue
Cores Freq \Perf Power mﬁ)

1 1
“New" Superscalar 1X 1.5X 1.5X 1.5X 3.3X

: . . O.45X
{ Multicore 2X 0.75)(\0.757/ 1.5X 0.8X 1-88X}
_ __

(Bigger # is better)

Superscalar

50% more performance with 20% less power

Preferable to use multiple slower devices, than one superfast device
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<~ Moore’s Law reinterpreted

* Number of cores per chip will double every
two years

* Clock speed will not increase (possibly
decrease) because of Power

Power < Voltage® * Frequency

Voltage «< Frequency

3
Power o< Frequency

* Need to deal with systems with millions of
concurrent threads

* Need to deal with inter-chip parallelism as
well as intra-chip parallelism
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Example of typical parallel machine
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Example of typical parallel machine

Node/Board
Chip/Socket ... Chip/Socket Chip/Socket
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Example of typical parallel machine
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Example of typical parallel machine
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H. Meuer, H. Simon, E. Strohmaier, & JD

- Listing of the 500 most powertul
Computers 1n the World
- Yardstick: Rmax from LINPACK MPP

Ax= b, dense problem A ey

Rate

- Updated twice a year -
SC*xy 1n the States in November
Meeting in Germany 1n June

- All data available from www.top500.org



N~
< Performance Development

100 Pflop/s 44.16 PFlop/s
10 Pflop/s /
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- 36™ List: The TOP10

. Rmax | % of
Rank Site Computer Country Cores [Pflops] | Peak
Nat. SuperComputer Tianhe-1A, NUDT
! Center in Tianjin | Intel + Nvidia GPU + custom R el e
DOE / Os Jaguar, Cray
3 Oak Ridge Nat Lab AMD + custom S LRl 7
Nat. Supercomputer Nebulea, Dawning
& Center in Shenzhen Intel + Nvidia GPU + IB iEnenl ey =
GSIC Center, Tokyo Tusbame 2.0, HP
& Institute of Technology| Intel + Nvidia GPU + IB "' T | %2
e Hopper, Cray
5 | Lawrence LB:gkeIey Nat AMD + custom UsA 153,408, 1.054 82
Commissariat a
6 I'Energie Atomique feias Oy France 138,368 1.050 84
Intel + IB
(CEA)
DOE / NNSA Roadrunner, IBM
7 | Los Alamos Nat Lab AMD + Cell 6PU + IB e e e
NSF / NICS Kraken, Cray
e U of Tennessee AMD + custom e SRR &
Forschungszentrum Jugene, IBM
4 Juelich (FZJ) Blue Gene + custom S| L e
DOE / NNSA Cielo, Cray
10 LANL & SNL AMD + custom usa 107,132 .817 | 7%




c

ICL

- 36™ List: The TOP10

. Rmax | 7% of | Power GFlops/
Rank Site Computer Country Cores [Pflops] | Peak | [MW] | Watt
Nat. SuperComputer Tianhe-1A, NUDT
! Center in Tianjin | Intel + Nvidia GPU + custom 186,368) 2.57 | 55 NS
Foe..0s Ja uar-_ Crov . -
3 Oak lidge N at L(b /1 An D[+ \uidin \v/ &5 ()| a)| ;7'0 e
N \=/ (=Y \>/ VA Y "~/
Nat. W Nebuiea; Da ning
B g Center in Shenzhen Intel + Nvidia GPU + IB e 2.58 493_
~
4 el “ewe loly sub e 2., Ar YRR IT: —~ Ny ;,/
1 @qWWw/ 1'@?/37"@ (AP | OASY Nl = u
5 Lawre:leg L;;/gfe Nat ;"PP‘?" , cray USA  |153,408 1.054 | 82 | 2.91| 362
Lab y AMD + custom ‘ : :
Commissariat a Tera-10. Bull
6 I'Energie Atomique ’ France 138,368 1.050 84 | 4.59 229
Intel + IB
(CEA)
DOE / NNSA Roadrunner, IBM
7 | Los Alamos Nat Lab AMD + Cell GPU + IB Usdl (122,400 1.04 | 76 BRI
NSF / NICS Kraken, Cray
8 U of Tennessee AMD + custom UsA 98,928 .831 81 3.09 | 269
Forschungszentrum Jugene, IBM
4 Juelich (FZJ) Blue Gene + custom S| L e SE | S
DOE / NNSA Cielo, Cray
10 LANL & SNL AMD + custom UsA 107,152 .817 79 | 2.95 | 277
500 Computacenter LTD HP Cluster, Intel + GigE UK 5,856 .031 53



< Performance of Top20 Over 10 Years

Pfl
flop/s Tianhe-1A. NSCC
3.0
Jaguar ORNL
2.5
2.0
Roadrunne
15

1.0

ASCI| White LENT -~
1
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- Pflop/s Club (11 systems; Peak)

Tianhe-1A 470
Nebulea 2.98
Jaguar 2.33
Tsubame 2.0 2.29
RoadRunner 1.38
Hopper 1.29
Tera-100 1.25
Mole-8.5 1.14
Kraken 1.02
Cielo 1.02
JuGene 1.00

France

NUDT: Hybrid Intel/Nvidia/Self

Dawning: Hybrid Intel/Nvidia/IB

Cray: AMD/Self

HP: Hybrid Intel/Nvidia/IB

IBM: Hybrid AMD/Cell/IB

Cray: AMD/Self

Bull: Intel/IB

CAS: Hybrid Intel/Nvidia/IB

Cray: AMD/Self

Cray: AMD/Self

IBM: BG-P/Self
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Performance of Countries
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< Performance of Countries
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Over the last decade China has become very active in HPC
A sign not a race.



IcLor-

Main configuration of TH-1A system

Q 7,168 compute nodes (YH-X5670-FEP)
a 2 six-core CPU and 1 GPU per node
a CPU: Xeon X5670 (Westmere)
a Processor speed - 2.93GHz
a GPU: nVIDIA M2050
a Connected with CPU by PCI-E
a 32GB memory per node

a 2U height
[ 7168(nodes) X 2(CPU) X 2.93(GHz) X 6(Cores) X 4 }
=i + Total:
| 4,701,061 GFlops
7168(nodes) X 1(GPU) X 1.15(GHz)*448(CUDA Cores)

| =3.692PFlops




3A (2010) 3B (2011) 3C (2012)

High end Roadmap: more cores on a chip

High end Line: multi-core CPUs for server
and HPCs

4-core 3A (2010): 1.0GHz@65nm CMOS,10W

Used: Dawning blade servers, personal Teraflops
HPC called KD-60, a bioinformatics-oriented system
called SuperDragon-I,

8-core 3B (2011): 1.0GHz@65nm, 128GFLOPS@40W

To be used: Petaflops Dawning 6000, personal
Teraflops HPC called KD-50-II1

16-core 3C (2013): 1.5-2.0GHz@28nm, 384-
512GFLOPS@20W 4DDR2 4 HT controllers

(to be taped out 2011)
Planned to be used: 10 Petaflops system



<« Countries Share

——
I i ———
China

--- -.- Absolute Counts
US: 274
---- China: 41
-..- Germany: 26
---I--.-l.- Japan: 26
France: 26
UK: 25

“i.ﬁa'-ﬁfﬁﬁﬁﬁi
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Systems 1n France

27
36
37
55
61
65
76
83
85
86
142
143
225
233
340
401
402
416
426
455
476
492
497
498
499

GENCI-CINES
Government

EDF R&D

IDRIS

CEA

Total Exploration
EDF R&D
Manufacturing

Bull

CEA

CEA

IDRIS

CEA

Financial Institute
Food Industry
Financial Institution
Financial Institution
Financial Institution
ONERA

Financial Institution
Financial Institution
Information Service
Communications
Communications
Communications

Bull SA
SGI
HP
IBM
IBM

Bull SA
SGI
IBM
HP

Bull SA

Bull SA

Bull SA
IBM

Bull SA
HP
HP
IBM
IBM
HP
SGI
HP
HP
IBM
IBM
IBM
IBM

Bull bullx super-node S6010/S6030

SGI Altix ICE 8200EX, Xeon E5472 3.0/X5560 2.8 GHz

Cluster Platform 3000 BL2x220, L54xx 2.5 Ghz, Infiniband
iDataPlex, Xeon X56xx 6C 2.93 GHz, Infiniband

Blue Gene/P Solution

BULL Novascale R422-E2

SGI Altix ICE 8200EX, Xeon quad core 3.0 GHz

Blue Gene/P Solution

Cluster Platform 3000 BL460c G6, Xeon X5570 2.93 GHz, Infiniband
Bull bullx super-node S6010/S6030

Bullx S6010 Cluster, Xeon 2.26 Ghz 8-core, QDR Infiniband
NovaScale 5160, Itanium2 1.6 GHz, Quadrics

Power 575, p6 4.7 GHz, Infiniband

Novascale 3045, Itanium2 1.6 GHz, Infiniband

Cluster Platform 3000 BL460c G1, Xeon L5410 2.33 GHz, GigE
Cluster Platform 3000 BL460c G1, Xeon 5430 2.66 GHz, GigE
iDataPlex, Xeon E55xx QC 2.26 GHz, GigEthernet

iDataPlex, Xeon E55xx QC 2.26 GHz, GigEthernet

Cluster Platform 3000 BL460c G1, Xeon E5450 3.0 GHz, GigE

SGI Altix ICE 8200EX, Xeon Nehalem quad core 2.8 GHz

Cluster Platform 3000 BL260c G5, Xeon QC 2.66Ghz, GigE
Cluster Platform 3000 BL460c G6, Xeon X5570 2.93 GHz, Infiniband
BladeCenter HS22 Cluster, Xeon QC X55xx 2.53 GHz, GigEthernet
xSeries x3650M2 Cluster Xeon QC GT 2.66 GHz, GigEthernet
xSeries x3650M2 Cluster Xeon QC GT 2.66 GHz, GigEthernet
xSeries x3650M2 Cluster Xeon QC GT 2.66 GHz, GigEthernet

138368
23040
24704
16320
40960
11520
10240
32768

8576
11520
11520

9968

3584

7680

8432

6400

6528

6528

5120

3072

5632

3200

5408

5392

5392

5392

1050000
237800
179634
168800
119310
108500
106100

95450
88550
87470
87470
52840
52810
42130
41347
36105
33660
33660
32733
32570
31864
31507
31217
31124
31124
31124

26
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< Processors Used in the Top500 Systems

Intel EM64T

Others
Intel IA-64
Power

AMD x86_64

Intel 81% (406)
AMD 11% (57)
IBM 8% (40)

27
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Linpack Efficiency
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Linpack Efficiency
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“ China

Has 3 Pflops systems = :
> #1, NUDT, Tianhe-1A, located in Tianjin  [RresSRRITH (I )])]}}};;F'
Dual-Intel 6 core + Nvidia Fermi w/custom  [F=SSIl[l} A f .
interconnect e J)JJJJ E
> Budget 600M RMB ‘
» MOST 200M RMB, Tianjin Government 400M

RMB
> #3, CIT, Dawning 6000, Nebulea, located
in Shenzhen
Dual-Intel 6 core + Nvidia Fermi w/QDR
Ifiniband

> Budget 600M RMB

> MOST 200M RMB, Shenzhen Government
400M RMB

> #28, CAS IPE, Mole-8.5 Cluster/320x2
Intel QC Xeon E5520 2.26 Ghz + 320x6
Nvidia Tesla €2050/QDR Infiniband

> #35, Shanghai SCC, Dawning 5000A, QC
Opteron 1.9 Ghz, Infiniband

Others planned for Shandong and NUDT
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" DOE SC, Titan at ORNL,

> Based on Cray design with
accelerators, 20 Pflop/s

" DOE NNSA, Sequoia at
Lawrence Livermore Nat. Lab,

> Based on IBM's B6/Q, 20 Pflop/s

" DOE SC, B6/Q at Argonne
National Lab,
> Based on IBM's B6/Q, 10 Pflop/s

" NSF, Blue Waters at University
of Illinois UC,

> Based on IBM's Power 7 Proc,
10 Pflop/s
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< Japanese 10 PF Facility @ Kobe, Japan

Construction: started in March, 2008 and complete in May, 2010,
Machine operation ~ early 2012

Computer Wing other Facilt
. 2 er Facilities
Total Floor Area:17,500m Co-generation System
2 Computer rooms: 12,600m? Water chiller system
4 Floors (1 underground floor) Electric Subsystem
Computer
— Initially 30MW

capability@2011

________
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> P e
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< computer Delivery Began 1n Late September

OAK
¢RIDGE

m The first eight racks of the K computer were delivered to Kobe from Fujitsu on
September 28, 2010. More than 800 racks are required for a 10 Pflop/s Performance.

= A computer rack weighs about 1,300 kg in average. The rack contains 96 water
-cooled Fujitsu SPARC64 VIIIfx CPU chips, each of which performs 128 Gflop/s,
interconnected with the 3D Torus network that Fujitsu named Tofu.

Photo of First delivery, Sep 28, 2010

15-17TMW



Hardware Technologies FUjiTSU

B SPARC64™ V]lIfx: New HPC-enhanced
CPU based on SPARCV9 architecture

m 8 cores, 2 GHz, 2.2 GFLOP/s per watt 45 nm

B Extended HPC-ACE instruction set
» Reciprocal, trig functions, max/min, SIMD, masked SIMD

B Enlarged number of registers (Floating:256, Int:64)
m User-controllable sector cache

(3: torus)

B Tofu: 6D mesh/torus interconnect ,v"

L. (2. )~ :&“ V “
B Fast node to node communication, Meas) @ .
5 GB/s (bi-directional) Nods Group Uit

(12 nodes group, 2x 3 x 2) Node Group 3D connection

¥ Integrated MPI support for collective
operations and global hardware barrier

W Scalable to 100,000s of nodes
B Direct water cooling packaging

Direct water cooling System Board
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<« PRACE Systems

First PRACE System:

JUGENE, IBM BlueGene/P, Gauss Center for
Supercomputing hosted at Forschungzentrum
Jilich (FZJ), Jilich, Germany, peak 1 Pflop/s

Second PRACE System

CURIE funded by GENCI and hosted at CEA,
France, is designed and built by BULL. CURIE

is based on x86 architecture CPUs with a mix of
thin and fat nodes interconnected through a QDR
Infiniband interconnect. Available now and the total
peak performance will be 1.6 Pflop/s.

Third PRACE System
HLRS based on Cray XE6, > 5 Pflop/s Mid 2012



~ PRACE Systems

= European HPC-facilities at the top of an
HPC provisioning pyramid Tier:0 ém

— Tier-0: 3-6 European Centres for Petaflop

— Tier-0: ? European Centres for Exaflop / Tier-1

— Tier-1: National Centres
— Tier-2: Regional/University Centres / Tier-2 \

« 1t PRACE System

— BG/P by Gauss Center for Supercomputing at Juelich
» 294912 CPU cores, 144 TB memory
» 1 PFlop/s peak performance
» 825.5 TFlop/s Linpack
» 600 I/0O nodes (10GigE) > 60 GB/s I1/0
+ 2.2 MW power consumption
+ 35% for PRACE

2"d PRACE System (2010/2011) - GENCI

— Intel based system by Bull
+ ~90,000 cores
» 1.6 PFlop/s peak performance

3rd PRACE System 2011 HLRS
4t PRACE System 2012 LRZ
5th and 6t Systems 2012/2013 — Cineca and BSC
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Russia

Q T-Platforms will supply Moscow State university with a 1.3 Pflop/s
system

QO Roughly $25M

O First stage in place, 510 Tflop/s system and second stage adds 800
Tflop/s = 1.31 Pflop/s

Q TB2-TLTM hybrid blade system from T-Platforms equipped with
NVIDIA's TeslaTM X2070 GPUs.

O 32 - Intel Westmere processor 2.13 GHz, 4 core
32 Nvidia Fermi GPUs

Infiniband interconnect

32*4*4*2.13 + 32*515 = 17.571 Tflop/s per blade
6 blades per rack = 105.4 Tflop/rack
12 racks system = 1.265 Pflop/s
QDR Infiniband

o000 00 o

14 PB memory

mmmmmmmmm




" 1 GFlop/s; 1988:. Cray Y-MP; 8 Processors

> Static finite element analysis

"1 TFlop/s; 1998; Cray T3E. 1024
Processors

> Modeling of metallic magnet atoms, using a
variation of the locally self-consistent multiple
scattering method.

" 1 PFlop/s; 2008; Cray XT5; 1.5x10°
Processors
> Superconductive materials

" 1 EFlop/s: ~2018; ?; 1x107 Processors
(10° threads)



¢ Performance Development in

ICLOr"

_Top500

1 Eflop/s

100 Pflop/s
10 Pflop/s -

1 Pflop/s
100 Tflop/s

10 Tflop/s

1 Tflop/s
100 Gflop/

1(¥ﬂop/s
+ 1 Gflop/s

100 Mflop/s

rrrrrrrrrr1rrrrrrrrrrrrrrrrrrrrrrrrr T T T T T T T T T T
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2014
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Exascale Applications and Technology

Modeling and

Scientific Grand Challenges 4 b
Simulation at the

FOREFRONT QUESTIONS IN NUCLEAR SCIENCE AND

Town Hall Meetings April-June 2007
Scientific Grand Challenges Workshops
November 2008 - October 2009

= Climate Science (11/08),

= High Energy Physics (12/08),

»=  Nuclear Physics (1/09),

»  Fusion Energy (3/09),

*  Nuclear Energy (5/09),

= Biology (8/09),

= Material Science and Chemistry (8/09),

= National Security (10/09) (with NNSA)

Cross-cutting workshops
= Architecture and Technology (12/09)

» Architecture, Applied Math and CS (2/10)

-

Meetings with industry (8/09, 11/0

External Panels
=  ASCAC Exascale Charge (FACA)
= Trivelpiece Panel

Exascale for
Energy and the
Environment

THE ROLE OF COMPUTING AT THE EXTREME SCALE

* Washington, D.C.
Scientific Grand Challenges
CHALLENGES FOR UNDERSTANDING THE
QUANTUM UNIVERSE AND OF
COMPUTING AT THE EX A

Scientific Grand Challenges

CHALLENGES IN CLIMATE CHANGE SCIENCE AND
THE ROLE OF COMPUTING AT THE EXTREME SCALE

H2-air LSB flame

“The key finding of the Panel is that there are compelling needs for
exascale computing capability to support the DOE’s missions in energy,
national security, fundamental sciences, and the environment. The
DOE has the necessary assets to initiate a program that would
accelerate the development of such capability to meet its own needs
and by so doing benefit other national interests. Failure to initiate an
exascale program could lead to a loss of U. S. competitiveness in
several critical technologies.”

Trivelpiece Panel Report, January, 2010
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Potential System Architecture

a

System peak

Power

System memory

Node performance

Node memory BW

Node concurrency

Total Node Interconnect BW
System size (nodes)

Total concurrency

Storage
10

MTTI

2 Pflop/s
7 MW
0.3 PB
125 GF

25 GB/s

12

3.5 GB/s
18,700

225,000
15 PB

0.2TB

days



¢ Potential System Architecture
~ with a cap of $200M and 20MW

Systems 2011 2018 Difference
Today & 2018

System peak 2 Pflop/s 1 Eflop/s 0(1000)
Power 7 MW ~20 MW
System memory 0.3PB @4 i @
Node performance 125 GF 1,2 or 15TF 0(10) - O(100)
Node memory BW 25 GB/s QB/S @
Node concurrency 12 O(1k) or 10k 0(100) - O(1000)
Total Node Interconnect BW 3.5GB/s 200-400GB/s O(100)
System size (nodes) 18,700 0(100,000) or O(1M) 0(10) - O(100)
Total concurrency 225,000 @ion) 0(10,000)
Storage 15 PB 500-1000 PB (>10x system 0(10) - O(100)
memory is min)
10 0.2TB 60 TB/s (how long to drain the 0(100)
machine)

MTTI days O(1 day) - 0(10)

i




¢ Exascale (10" Flop/s) Systems: &=
Two Possible Swim Lanes AR

 Light weight processors (think BG/P)
= ~1 GHz processor (10°) |
= ~1 Kilo cores/socket (103)
= ~1 Mega sockets/system (10°9)

Socket Level

MMMMMMM

» Hybrid system (think GPU based)
= ~1 GHz processor (10°)
= ~10 Kilo FPUs/socket (104)  fi&&
= ~100 Kilo sockets/system (10°)




¢ Commodity plus Accelerators

ICLLr"

Commodity Accelerator (GPU)
Intel Xeon Nvidia C2050 “Fermi”
8 cores 448 “Cuda cores”
3 GHz 1.15 GHz
8*4 ops/cycle AAS-aoslovele

96 Gflop/s (DP) 515 Gflop/s (DP)

Device Memory

erconnect
PCI-X lane

64 Gb/s

1 GW/s

45
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“ We Have Seen This Before

* Floating Point Systems FPS-164
Scientific Computer (1976)

* Intel Math Co-processor (1980)
* Weitek Math Co-processor (1981)

There's one for every machine,

The Intel” Math CoProcessor




(. Balance Between Data Movement and
" Floating point

* FPS-164 and VAX (1976)
= 11 Mflop/s; transfer rate 44 MB/s

= Ratio of flops to bytes of data movement:
1 flop per 4 bytes transferred

* Nvidia Fermi and PCI-X to host
= 500 Gflop/s; transfer rate 8 GB/s

= Ratio of flops to bytes of data movement:
62 flops per 1 byte transferred

* Flop/s are cheap, so are provisioned in
excess

47



= Challenges of using GPUs

. High levels of parallelism

Many GPU cores, serial kernel execution
[ e.g. 240 in the Nvidia Tesla; up to 512 in Fermi - to have concurrent kernel
execution ]

. Hybrid/heterogeneous architectures
Match algorithmic requirements to architectural
strengths

[ e.g. small, non-parallelizable tasks to run on CPU, large and parallelizable on
GPU ]

. Compute vs communication gap

Exponentially growing gap; persistent challenge

[ Processor speed improves 59%, memory bandwidth 23%, latency 5.5% ]
[ on all levels, e.g. a GPU Tesla C1070 (4 x C1060) has compute power of
0(1,000) Gflop/s but GPUs communicate through the CPU using O(1) GB/s

connection ] 48/29
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< How to Count Cores?

]

(] ) O

<diffuseShader>:

 CPU Conventional Core Quad
(5]

ALU ] ALU
(Execute) | (Execute) |

mul r3, vo, cbo[0]

ALU madd r3, vi, cbe[1], r3 ' ‘
(Execute) madd r3, v2, cbe[2], r3

clmp r3, r3, 1(0.0), 1(1.0)

sample ro, v4, to, so

P
mov 03, 1(1.0) |
4 4
l ALU | ALU

(Execute) | (Execute)

One instruction stream per work-item @ [ ]

i
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* In GPUs - Add ALUs

* SIMD Processing

* Amortize cost :
/complexity of [
managing an |

instruction stream
across many ALUs.

* NVIDIA refers to these " Shared Cix Data
ALUs as “CUDA 5

Cores” (also streaming
processors)
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128 Elements in Parallel

—
o500

[—
o555

BC]DD Q000 8800 0000
000 0000 00 0000
4 L 4 2 3
4 4 3 L 4
0800 0OBGE GeEe GEoo
G880 G8E0 O0E0C @ese0
BC]DD 0000 0000
) 0000 00 0000
4 4 3 3
4 g g g
0eno G G863 0a00
aseo G 60eC eseo

000 0000 8800 0000
2 L 4 4 3
4 L 4 3 3
. 3 0866 00
0 @0e0 @80
0000 0000 0000 0000
0000 0000 0oococ 0000
4 L L L
4 g g g
800 O0OB66 08638 G200
GESC GEGG 600 eseO

16 cores each with 8 ALUs (CUDA Cores)

Total of 16 simultaneous instruction streams with

128 ALUs (CUDA Cores)
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a NVIDIA GT280 “old Telsa”

e
Eoleeses) | L
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Tex
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Zcull/Clip/Rast Output Blend Work Distributor

« 240 streaming processors (CUDA Cores) (ALUs)

- Equivalent to 30 processing cores, each with 8
“CUDA cores”



c

< NVIDIA GeForce GTX 280 (Tesla)

° NV|D|A_Speak Processing Core
= 240 CUDA cores (AL s |
0 CUDA cores (ALUs)
 Generic speak
: e
= 30 processing cores
« 8 CUDA Cores (SIMD functional units) per core Shared OixPale

1 mul-add (2 flops) + 1 mulps nctionalunit (3 flops/cycle)
Best case theoretically:(240 mul-adds)+ er cycle
e 1.3 GHz clock

e 30*8*(2+1)*1.33 =933 Gflop/s peak

Best case reality: 240 mul-adds per clock
« Just able to do the mul-add so 2/3 or 624 Gflop/s

All this is single precision
« Double precision is 78 Gflop/s peak (Factor of 8 from SP; exploit mixed prec)

141 GB/s bus, 1 GB memory
4 GB/s via PCle (we see: T = 11 us + Bytes/3.3 GB/s)
In SP SGEMM performance 375 Gflop/s
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~ NVIDIA Tesla C2070 (Fermi), GF100 Chip

* NVIDIA-Speak
= 448 CUDA cores (ALUs)

* Generic speak

= 14 processing cores
» 32 CUDA Cores (SIMD functional units) per core

1 mul-add (2 flops) per ALU (2 flops/cycle)

= Best case theoretically: 448 mul-adds

e 1.15 GHz clock
e 14*32*2*1.15 =1.03 Tflop/s peak

= All this is single precision
« Double precision is half this rate, 515 Gflop/s

= In SP SGEMM performance 580 Gflop/s T "_"""
= In DP DGEMM performance 300 Gflop/s EEd HHEEN SIS SaiE | ESSH HES £
» Interface PCI-x16

Processing Core

Foymarphtrgine [l Pobmorph tngine Jil Poymor crane [l Poymorn Engae Poymorph Evgine Jll Potymoron Engine Jil Potymorn Engine il Potymorn Engine
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Future Computer Systems g)

Most likely be a hybrid design

= Think standard multicore chips and accelerator
(GPUs)

Today accelerators are attached
Next generation more integrated
Intel’s MIC architecture “Knights Ferry” and

“Knights Corner” to come. 5%
| ~ .

= 48 x86 cores
AMD’s Fusion in 2012 - 2013

= Multicore with embedded graphics ATI
Nvidia’s Project Denver plans to develop
an integrated chip using ARM
architecture in 2013.
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What’s Next?

Mlxed La i i
All Large Core i i

Many Floating- photonic NoC N
Point Cores S

3D memory
layers

multi-core
processor layer

+ 3D Stacked
Memory

e e

w

Small Core i Many Small Cores
i ii o
ii - S
- -
. -
. -
All Small Comd-ddd-d---

Different Classes of
Chips
Home
Games / Graphics
Business
Scientific




IcLor-

The High Cost of Data Movement

*Flop/s or percentage of peak flop/s become
much less relevant

Approximate power costs (in picoJoules)

DP FMADD flop 100 pJ
DP DRAM read 4800 pJ
Local Interconnect 7500 pJ
Cross System 9000 pJ

Source: John Shalf, LBNL

*Algorithms & Software: minimize data
movement; perform more work per unit data

movement.

o7
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<~ Moore’s Law Reinterpreted

 Number of cores per chip doubles
every 2 year, while clock speed
decreases (not increases).

= Need to deal with systems with millions
of concurrent threads

e Future generation will have billions of
threads!

= Need to be able to easily replace inter
-chip parallelism with intro-chip
parallelism
 Number of threads of execution
doubles every 2 year



¢ Factors that Necessitate Redesign of

ICL

Our Software

e Steepness of the ascent from terascale
to petascale to exascale
« Extreme parallelism and hybrid design
e Preparing for million/billion way
parallelism
o Tightening memory/bandwidth
bottleneck

« Limits on power/clock speed
implication on multicore

e Reducing communication will become
much more intense

e« Memory per core changes, byte-to-flop
ratio will change
 Necessary Fault Tolerance
e MTTF will drop
o Checkpoint/restart has limitations
» shared responsibility

Software infrastructure does not exist today

Average Number of Cores per Supercomputer for Top 20 Systems
125,000

100,000

75,000

50,000

25,000 I
CORES I

500 '00 '01 '02 '03 ‘04 '05 '06 '07 '08 ‘09 "0
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“Major Changes to Software

e Must rethink the design of our
software

= Another disruptive technology

« Similar to what happened with cluster
computing and message passing

= Rethink and rewrite the applications,
algorithms, and software
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= Emerging Architectures

* Are needed by applications

» Applications are given (as function of time)
» Architectures are given (as function of time)

» Algorithms and software must be adapted or
created to bridge to (hostile) architectures for

the sake of the complex applications
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¢ Software/Algorithms follow
hardware evolution in time

« 70's - LINPACK, vector operations:

= Vector architectures
= Level-1 BLAS operation

e Vector operations
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¢ Software/Algorithms follow
hardware evolution in time

« 70's - LINPACK, vector operations:

= Vector architectures

= Level-1 BLAS operation
e Vector operations

« 80's - LAPACK, block operations

= SMP architectures

= Cache based
e Matrix operations




¢ Software/Algorithms follow
hardware evolution in time

« 70's - LINPACK, vector operations:

= Vector architectures

= Level-1 BLAS operation
e Vector operations

« 80's - LAPACK, block operations

= SMP architectures

= Cache based
e Matrix operations

* 90's - ScaLAPACK, dist. Memory
= Message passing
= Data decomposition




¢ Software/Algorithms follow

ICLOr"

hardware evolution in time

* Today - Multicore Heterogeneous

Architectures
= PLASMA, many-cores friendly:

 Tile based - DAG scheduled algorithms,

block data layout

= MAGMA, GPU:
» GPU BLAS

[
- o

P!
- @
L R
[

bo?



IcLOr-

Exascale algorithms that expose and exploit
multiple levels of parallelism

Synchronization-reducing algorithms
» Break Fork-Join model

Communication-reducing algorithms

= Use methods which have lower bound on
communication

Fault resilient algorithms

* Implement algorithms that can recover from
failures

Mixed precision methods
= 2x speed of ops and 2x speed for data movement

Reproducibility of results
= Today we can’t guarantee this
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Fork-Join Parallelization of LU and QR.

Parallelize the update: dgemm
* Easy and done in any reasonable software. ]
* This is the 2/3n3 term in the FLOPs count. -'_ - -I
* Can be done efficiently with LAPACK+multithreaded BLAS

AN/

dgetf2

T
7NN

dtrsm (+ dswp)

e | VVHH

RN

m-ma=
N7
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< Parallel Tasks in LU/LLT/QR

I
J.J.J

> ——> Step4 .

o Break mto smaller tasks and remove
dependencies

-

n-EEE
:HHfHH“l || {m i'\:‘::
“Bma 1 oe [ \I\I
n S
|
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<~ Data Layout is Critical

Y

Y

Y Y

* Tile data layout where each data tile
is contiguous in memory

- Decomposed into several fine-grained
tasks, which better fit the memory
of the small core caches



¢ PLASMA: Parallel Linear Algebra s/w

ICLOr"

for Multicore Architectures

‘Objectives
= High utilization of each core Cholesky
= Scaling to large number of cores x4
= Shared or distributed memory

‘Methodology
= Dynamic DAG scheduling (QUARK)
= Explicit parallelism
* Implicit communication
= Fine granularity / block data layout

°Arb|trary DAG with dynamic scheduling
i B, .E; ﬁ- = :E_E o Fork-join
%- % %-::z __,_f = === parallelism

DAG scheduled
parallelism

Time > 70
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IcLor-

Synchronization Reducing Algorithms

e Regular trace

e Factorization steps pipelined

e Stalling only due to natural
load imbalance

e Dynamic

e Out of order execution

e Fine grain tasks

¢ Independent block operations

The colored area over the
rectangle is the efficiency

L

I

vy

..‘r’“"._'
i

Tuat miua
' ‘.‘ ,ll

i ".*. I i

g

e

‘l

¥

ll '”wd].

'Ilr

Y.

Y

Tile LU factorization; Matrix size 4000x4000, Tile size 200
8-socket, 6-core (48 cores total) AMD Istanbul 2.8 GHz




£ Pipelining: Cholesky Inversion

3 Steps: Factor, Invert L, Multiply L’s

L e B

I-} e |
A

BRRAT " e 7

i I mm e I.l.l.lhlll 1 1 |?I“
A i
| u | ] oo
<. R
LLIII ||||| HDDIIII]
i @

TRTRI

,

LAUUM

48 cores
POTRF, TRTRI and LAUUM.
The matrix is 4000 x 4000,tile size is 200 x 200,

POTRF+TRTRI+LAUUM: 25 (7t-3)
Cholesky Factorization alone: 3t-2

Pipelined: 18 (3t+6)
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0. Prioritization of critical path and
- noncritical tasks

* DAG scheduling of critical
path tasks

 Allows taking advantage of
asynchronicity between
major steps and adaptive
load balancing for
noncritical tasks
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““ If We Had A Small Matrix Problem

* We would generate the DAG,
find the critical path and
execute it.

* DAG too large to generate ahead
of time
= Not explicitly generate
= Dynamically generate the DAG as

we g0

* Machines will have large
number of cores in a
distributed fashion

= Will have to engage in message
passing
= Distributed management

= Locally have a run time system



- Big DAGs: No Global Critical Path

 DAGs get very big, very fast

o So windows of active tasks are used; this means no
global critical path

o Matrix of NBxNB tiles; NB3 operation
« NB=100 gives 1 million tasks
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“ PLASMA Local Scheduling

Dynamic Scheduling: Sliding Window

¢ Tile LU factorization
¢ 10 x 10 tiles

¢ 300 tasks

4 100 task window

I/
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“ PLASMA Local Scheduling

Dynamic Scheduling: Sliding Window

¢ Tile LU factorization
¢ 10 x 10 tiles

¢ 300 tasks

4 100 task window




{\
< Some Questions

* What’s the best way to represent the DAG?

* What’s the best approach to dynamically generating
the DAG?
* What run time system should we use?

= We will probably build something that we would target to the
underlying system’s RTS.

- What about work stealing?
= Can we do better than nearest neighbor work stealing?

* What does the program look like?
= Experimenting with Cilk, Charm++, UPC, Intel Threads

= | would like to reuse as much of the existing software as
possible

80
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“PLASMA Scheduling

Dynamic Scheduling with QUARK

. Sequential algorithm definition

- Side-effect-free tasks

- Directions of arguments (IN, OUT, INOUT)

- Runtime resolution of data hazards (RaW, WaR, WaW)
- Implicit construction of the DAG

- Processing of the tasks by a sliding window

e OIld concept
e Jade (Stanford University)
e SMP Superscalar (Barcelona Supercomputer Center)
e StarPU (INRIA)



PLASMA
(On Node)

execution window

....................

..................

QUARK

Number of tasks in DAG:

O(n3)

Cholesky: 1/3 n3
LU: 2/3 n3
QR: 4/3 n3

DPLASMA
(Distributed System)

? ? ? inputs

tasks

outputs

DAGUE

Number of tasks in parameterized DAG:

O(1)

Cholesky: 4 (POTRF, SYRK, GEMM, TRSM)
LU: 4 (GETRF, GESSM, TSTRF, SSSSM)
QR: 4 (GEQRT, LARFB, TSQRT, SSRFB)

DAG: Conceptualized & Parameterized




Start with PLASMA

for i,j = 0..N
QUARK_Insert( GEMM, A[i, j],INPUT, B[j, i],INPUT, C[i,i],INOUT )
QUARK_Insert( TRSM, A[i, j],INPUT, B[j, i],INOUT )

——

Parse the C source code to Abstract Syntax Tree

QUARKInsert

Analyze dependencies with Omega Test

{1<i<N: GEMM(i, j) => TRSM(3F) } Loops & array
references

v have to be
affine

Generate Code which has the Parameterized DAG
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< Example: Cholesky 4x4

** RT is using the symbolic
information from the
compiler to make
scheduling, message
passing, & RT decisions

*k Data distribution: regular,
irregular

*k Task priorities

** No left looking or right
looking, more adaptive or
opportunistic




Gflop/s

6000
4000 //-—-—
3000 //
DSBP =
——DSB
1000 / 5P Distributed Square
0 — T T T T T T T T ~——ScalAPACK Block Packed
O O O O X O OO N0
& & &V o K A0 VS
N S R S
Matrix size 4500 -
4000 LU
3500
81 nodes « 3000
Dual socket nodes ;3- ;ggg
Quad core Xeon L5420 © 1500 ——HpL
Total 648 cores at 2.5 GHz 1283 ——DAGUE
ConnectX InfiniBand DDR 4x 0 ===ScalAPACK
O O N O O ©® & O N O
M S I K S M . S
® & & oA A0 O
R RN L L NQ<o 09 \2)0
4500
4000 / Matrix size
3500 / /—4
» 3000 7 —
2 2500
S 2000 [
g / /
1500 T~ ——DAGUE
1000 I/
500 7 ScalAPACK
0 ) 1 T 1 T 1 T ] T ] 1
Q O N0 O O O O 0O N0 O O
S & P P P XD AC P S P
FEFTES PP L

Matrix size



N
<. Communication Avoiding Algorithms

o Goal: Algorithms that communicate as little as possible

« Jim Demmel and company have been working on algorithms
that obtain a provable minimum communication.

« Direct methods (BLAS, LU, QR, SVD, other decompositions)
« Communication lower bounds for all these problems

« Algorithms that attain them (all dense linear algebra, some
sparse)

e Iterative methods - Krylov subspace methods for Ax=b, Ax=Ax

« Communication lower bounds, and algorithms that attain them
(depending on sparsity structure)

« For QR Factorization they can show:

Lower bound

# flops O(mn?)
# words (")('\'/‘;‘_Vz)

2

# messages | O(21;)

w3/2
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< Standard QR Block Reduction

 We have a m x n matrix A we want to
reduce to upper triangular form.
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< Standard QR Block Reduction

 We have a m x n matrix A we want to
reduce to upper triangular form.

Q1TI » ]
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< Standard QR Block Reduction

 We have a m x n matrix A we want to
reduce to upper triangular form.

‘ R
Q1T » Q2T » Q3T »

A =Q,Q,Q;R = QR



¢ Communication Avoiding QR

ICL

_ Example

A. Pothen and P. Raghavan. Distributed orthogonal factorization. In The 3rd
Conference on Hypercube Concurrent Computers and Applications, volume I, Applications,
pages 1610-1620, Pasadena, CA, Jan. 1988. ACM. Penn. State.



€ Communication Avoiding QR

ICL

__ Example

1
1
D, : omain_Tile_QR
1
1

D 1 omain_Tile_QR

1
D 2 L-) Domain_Tile_QR

1
D3 E-)Dom in_Tile_QR

A. Pothen and P. Raghavan. Distributed orthogonal factorization. In The 3rd
Conference on Hypercube Concurrent Computers and Applications, volume I, Applications,
pages 1610-1620, Pasadena, CA, Jan. 1988. ACM. Penn. State.



¢ Communication Avoiding QR

ICL

__ Example

I 3
I H
D, : omain_Tile_QR i
1
L) !
:” .
D, “aDomain_Tile_QR
Ly
— — —
r? ;
D 2 :‘-) Domain_Tile_QR i
1
‘> |
|"> 'J
1
D3 5—-)D0m in_Tile_QR

-

v

A. Pothen and P. Raghavan. Distributed orthogonal factorization. In The 3rd
Conference on Hypercube Concurrent Computers and Applications, volume I, Applications,
pages 1610-1620, Pasadena, CA, Jan. 1988. ACM. Penn. State.



£ Communication Avoiding QR

ICLOr"

__ _Example

I
I
D, : omain_Tile_QR
1
1

S | N | E— - )

\
4
1

D 1 omain_Tile_QR

D 2 L) Domain_Tile_QR

| —

]
D3 HDom in_Tile_QR

A. Pothen and P. Raghavan. Distributed orthogonal factorization. In The 3rd
Conference on Hypercube Concurrent Computers and Applications, volume I, Applications,
pages 1610-1620, Pasadena, CA, Jan. 1988. ACM. Penn. State.

A
]
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£ Communication Avoiding QR

ICLOr"

__ _Example

I
I
D, : omain_Tile_QR
1
1

S | N | E— - )

\
4
1

D 1 omain_Tile_QR

D 2 #2Domaijn_Tile_QR

| —

]
D3 HDom in_Tile_QR

A. Pothen and P. Raghavan. Distributed orthogonal factorization. In The 3rd
Conference on Hypercube Concurrent Computers and Applications, volume I, Applications,
pages 1610-1620, Pasadena, CA, Jan. 1988. ACM. Penn. State.
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Communication Reducing QR
Factorization
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IcLOr-

Mixed Precision Methods

* Mixed precision, use the lowest
precision required to achieve a
given accuracy outcome

= [mproves runtime, reduce power
consumption, lower data movement

= Reformulate to find correction to
solution, rather than solution; Ax
rather than x.

96
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< Mixed Precision

» Single Precision is 2X faster than
Double Precision

* With some GP-GPUs a factor of 8x
* Power saving issues

« Reduced data motion
= 32 bit data instead of 64 bit data

* Higher locality in cache
= More data items in cache



N

< |dea Goes Something Like This...

o Exploit 32 bit floating point as much as
possible.
= Especially for the bulk of the computation

e Correct or update the solution with selective
use of 64 bit floating point to provide a
refined results

e Intuitively:
= Compute a 32 bit result,

= Calculate a correction to 32 bit result using
selected higher precision and,

= Perform the update of the 32 bit results with the
correction using high precision.
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N . . . . .
~ Mixed-Precision lterative Refinement

 Iterative refinement for dense systems, Ax = b, can work this

way.
L U = lu(A) o(n’)
x = L\(U\b) o(n’)
r=>b- Ax o(n’)
WHILE || r || not small enough
z = L\(U\r) o(n?
X=X+2Z o(n’)
r=>b- Ax o(n?
END

= Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt
results when using DP fl pt.



N . . . . .
~ Mixed-Precision lterative Refinement

 Iterative refinement for dense systems, Ax = b, can work this

way.
L U = lu(A) SINGLE o(n’)
x = L\(U\b) SINGLE o(n?
r=>b- Ax DOUBLE o(n’)
WHILE || r || not small enough
z = L\(U\r) SINGLE o(n?
X=X+2Z DOUBLE o(n’)
r=b- Ax DOUBLE o(n?
END

= Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt
results when using DP fl pt.

= |t can be shown that using this approach we can compute the solution
to 64-bit floating point precision.

Requires extra storage, total is 1.5 times normal;
O(n3) work is done in lower precision

O(n?) work is done in high precision

Problems if the matrix is ill-conditioned in sp; O(108)




Gflop/s

AX —_ b FERMI Tesla C2050: 448 CUDA cores @ 1.15GHz

SP/DP peak is 1030 / 515 GFlop/s

500

450

400

350

300

250

200

150

100

50

960 3200 5120

Single Precision

Double Precision
B =
e i

e

7040 8960 11200 13120

Matrix size
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- AX = b FERMI  Tesla C2050: 448 CUDA cores @ 1.15GHz
SP/DP peak is 1030 / 515 GFlop/s

@ Direct solvers
- Factor and solve in working precision

@ Mixed Precision Iterative Refinement

- Factor in single (i.e. the bulk of the computation
in fast arithmetic) and use it as preconditioner
in simple double precision iteration, e.g.

X, =x+(LU_)"P (b—Ax)

500

Single Precision
450

400 : L
Mixed Precision

350

300

Double Precision

250 2 — (=0
++

Gflop/s

e
200

150

100

Similar results for Cholesky & QR
< factorizations

960 3200 5120 7040 8960 11200 13120

Matrix size



< Exploiting Mixed Precision Computations

« Single precision is faster than DP because:
= Higher parallelism within floating point units

* 4 ops/cycle (usually) instead of 2 ops
/cycle

= Reduced data motion

« 32 bit data instead of 64 bit data
" Higher locality in cache

* More data items in cache
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«~- Power Profiles

Two dual-core 1.8 GHz AMD Opteron processors
Theoretical peak: 14.4 Gflops per node
DGEMM using 4 threads: 12.94 Gflops
PLASMA 2.3.1, GotoBLAS2
Experiments:
PLASMA LU solver in double precision
PLASMA LU solver in mixed precision

N = 8400, using 4 PLASMA PLASMA
cores DP Mixed

Time to Solution (s) 39.5 22.8

GFLOPS 10.01 17.37

Accuracyj 4, p 1| 2.0E-02 1.3E-01
(LA X I +115)Ne

Iterations 7

System Energy 10852.8 6314.8

(KJ)

Power (Watts)

Power (Watts)

PLASMA DP

300

50

DX g o R I R TR S N e i N e e e
0 10 20 30 40 50
Time (seconds)

N T P e el d i it TG I
0 10 20 30 40 50



ICL

Sparse Direct Solver and Iterative
Refinement

105

MUMPS package based on multifrontal approach WhICh
generates small dense matrix multiplies

Opteron wiintel compiler I lterative Refinement

O Single Precision

Speedup Over DP
]
1.8

7
1.6-4 B
14
271

, _
084 | [f
0.6+

0.4

021
o—FM
[
6‘¢

Tim Davis's Collection, n=100K - 3M
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< Sparse Iterative Methods (PCG)

 Quter/Inner lteration Inner iteration:

106 In 32 bit floating point

Outer iterations using 64 bit floating point

initi Compute 7?0 = b — Az(®) for some initial guess z(%)
Compute 7(°) = b — Az(?) for some initial guess z(%) Compute 1) =
= ‘- solve Mz(i-1) — p(i-1)
for 1=1,2,... e 501

solve M z(i=1) = p(i=1) ifi=1
T (2 p) = 20
Pi—1 — 71(2_1) Z(Z_l) else
eq - Bi—1 = pi-1/pi-2
if:=1 ) = 261 1 g,_ =D
1) — (0 endif
pt) = 20 ¢ = Ap®)
else % = pa p4
20 = g(i=1) 4 Q’z'pl
Bi—1 = pi—1/pi-2 20) = 1li=1) _ el
p(z) — (i=1) + /3 1p(i_ 1) check convergence; continue if necessary
-~ 1= end
endif

¢ = Apt)

a; = pi_y /p®" ¢

r(i) = 7’(i_1) —_ azq(l)

check convergence; continue if necessary
end

 Quter 1teration 1n 64 bit rloating point and inner
iteration in 32 bit floating point
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2 4

1.75 1

1.5 1

1.25 4

0.75 1

Mixed Precision Computations for
Sparse Inner/Quter-type lterative Solvers

Speedups for mixed precision

Inner SP/Outer DP (SP/DP) iter. methods vs DP/DP
(CG?, GMRES?, PCG?, and PGMRES? with diagonal prec.)
(Higher is better)

mCG?
mPCG’
m GMRES °
m PGMRES’

11,142 25,980 79,275 230,793 602,091

Iterations for mixed precision
SP/DP iterative methods vs DP/DP

(Lower is better)

Machine:
Intel Woodcrest (3GHz, 1333MHz bus)

Stopping criteria:
Relative to 1, residual reduction (10-'?)

11,142 25,980 79,275 230,793 602,091 -&— Matrix Size

6,021 18,000 39,000 120,000 240,000 < Condition number
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<= Matrix Algebra on GPU and Multicore Architectures

s  MAGMA: a new generation linear algebra (LA) libraries to achieve the fastest possible time to an accurate
solution on hybrid/heterogeneous architectures, starting with current multicore+MultiGPU systems
Homepage: http://icl.cs.utk.edu/magma/

« MAGMA & LAPACK

 MAGMA - based on LAPACK and extended for hybrid systems (multi-GPUs + multicore systems);

MAGMA - designed to be similar to LAPACK in functionality, data storage and interface, in order to allow
scientists to effortlessly port any of their LAPACK-relying software components to take advantage of the
new architectures

 MAGMA - to leverage years of experience in developing open source LA software packages and
systems like LAPACK, ScaLAPACK, BLAS, ATLAS as well as the newest LA developments (e.g.
communication avoiding algorithms) and experiences on homogeneous multicores (e.g. PLASMA)|

s Support
- NSF, NVIDIA [ CUDA Center of Excellence at UTK on the development of
Linear Algebra Libraries for CUDA-based Hybrid Architectures ]
« MAGMA developers

University of Tennessee, Knoxville; University of California, Berkeley; University of Colorado, Denver
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€ One-Sided Dense Matrix Factorizations

ICL
(LU, QR, and Cholesky) from MAGMA
Exam ;Ie: Left-Looking Hybrld I l Thread Execution‘ Control Unit l
Cholesky factorization * s W s W -
A
Host
Memory )
c |D )
Commodity Accelerator (GPU)
MATLAB code LAPACK code Hybrid code
(1) B=B - A*A ssyrk_(“L”, “N”, &nb, &j, &mone, hA(j,0), ... )| cublasSsyrk('L', 'N', nb, j. mone, dA(j,0), ...)
cublasGetMatrix(nb, nb, 4, dA(j, j), *Ida, hwork, nb)
(2) B = chol(B, ‘lower’) | spotrf_(“L”, &nb, hA(j, j), Ida, info) cublasSgemm(‘N’, ‘T, j, ...)
(3)D=D-C*A sgemm_(“N”, “T”, &j, ...) spotrf_(“L”, &nb, hwork, &nb, info)
cublasSetMatrix(nb, nb, 4, hwork, nb, dA(j, j), *Ida)
(4) D=B\D strsm_(“R”, “L”, “T”, “N”, §&j, ...) cublasStrsm(‘R’, ‘L, T’, ‘N’ j, ...)

CUDA implementation:
. a_ref points to the GPU memory
« GPU kernels are started asynchronously which results in overlapping
the GPU sgemm with transferring T to the CPU, factoring it, and sending the result back to the GPU



) Hybridization Methodology

» MAGMA uses HYBRIDIZATION methodology based on

¥ Representing linear algebra algorithms as collections
of TASKS and DATA DEPENDENCIES among them

& Properly SCHEDULING the tasks' execution over the Hybrid CPU+GPU algorithms
multicore and the GPU hardware components (small tasks for multicores and large
tasks for GPUs)

» Successfully applied to fundamental P

1 GPU

linear algebra algorithms 8
® One and two-sided factorizations and solvers
® lIterative linear and eigen-solvers l Ghu
.

» Faster, cheaper, better ?

& High-level
® Leveraging prior developments
® Exceeding in performance homogeneous solutions

110
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Results - one sided factorizations

LU Factorization in double precision

240 == FERMI MAGMA

== |[STANBUL:
PLASMA

200 & MKL11.0

% |APACK FERMI Tesla C2050: 448 CUDA cores @ 1.15GHz

SP/DP peak is 1030 / 515 GFlop/s

@

o ISTANBUL AMD 8 socket 6 core (48 cores) @2.8GHz
9120 SP/DP peak is 1075 / 538 Gflop/s

L

80

»Similar results for Cholesky & QR
40 -60% faster than the commercially
available CULA library for GPUs
0

1024 3072 5184 7040 9088
Matrix Size

111/10



“ Tile LU factorization on multi-GPUs

Performance of tile LU factorization in double precision arithmetic

600

GPU : Fermi C2050
500 (14 processors @1.14GHz)

CPU : dual-socket hexa-core
Intel Nehalem @2.67GHz

400
7] =o—=All
a
o 300 =8—3 GPUs
L 2 GPUs
Q)
:: € > e = VAN 12 CPUS
100
0
R o0 b gV B P oP P VP g D
SIS SN R SO RN R N I S

Matrix size
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QR (DP): Weak Scalability

1000
theoritical peak per core m—am—
=>=theoretical peak per GPU
2 max GPU-kernel perf (UB)
% =our perf per core —=
s 100 =@~our perf per GPU
9
| .
]
a
(%]
Q
o
5 10
O ¢ ¢ ¢ & & & R 2 2 & ¢ L 4 L 4
1
g o O o o O o 4 O 02 93 ¢33
S S S S S S S S s o560 5& $o
O O O O O O O O o—- o8 ol
h ~ ™M ~ ) © ~ ) o o+ a9 o7

Numer of cores and GPUs



e

= QR (DP): Strong Scalability

10000 =0=N=23,040
==N=17,280
N=11,520

=>&N= 5,760

100

Time (Seconds)

10

10

Number of Cores and GPUs



¢. Locally-Self-Consistent Multiple
~-Scattering

 The LSMS Code is a first-principles
computer model that simulates the
interactions between electrons and
atoms in magnetic materials.

» LSMS is a real-space multiple scattering,
Green-function-based method.

.* First app to reach TeraFlop and
B»q . PetaFlop
!




A parallel implementation and scaling of the LSMS method:
perfectly scalable at high performance

QOOOOOC ’

00008 @
000008 e
O00H0®C g
O0000®

DO000O | .,
OOOOOOKT pilr) = (T, )

Vi(r) < (pi(r),{Q;})
ti — V;(T)
T = [I — tGo]_lt

*Need only block 7 of 7

(&) = (A=)
*Calculation dominated
by ZGEMM

*Sustained performance
similar to Linpack
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= Complex Multiplication

* The product fa + bi) + (c + di) normally requires
4 multiplications and 2 additions
= Realpart=a‘c-b-d
* |maginary part=a‘d+b-c
- But it can be calculated in the following way, using
3 multiplications and 5 additions.

» ki=c-(a+Db)
» k2=a-(d-c)
= k3=b-(c+d)

Real part = k1 - k3
* |Imaginary part = k1 + k2
* Resulting in 1 less multiplication and 3 more additions

« Can be applied to matrices resulting in a 25% reduction in
operation count for ZGEMM.

= Remove 2-n3 operations in exchange for adding 3-n?
operations.



IcLOr-

No Free Lunch

* Need extra storage, 2n?

* The imaginary part may be
contaminated by relative errors
much larger than those for
conventional multiplication.

= However if the errors are measured
relative to

| |A]|*||B]| then they are just as small
as for conventional multiplication.
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<« ZGEMM on Nvidia Fermi

3 mults & 5 adds
Version of
ZGEMM

400
350

300 Conventional call

To ZGEMM
20 4 mults & 2 adds

200

Gflop/s

150

100

50

256 1024 1792 2560
Matrix size

Nvidia C2050 (Fermi): 448 CUDA cores @ 1.15GHz,
theoretical SP peak is 1.03 Tflop/s, DP peak 515 GFlop/s)
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PLASMA 3.0 (June 6)

LU (LAPACK pivoting)ys , LDLT (no pivoting)y

linear systems and least squares Cholesky, QR & LQ

mixed-precision linear systems LU, Cholesky, QR

tall and skinny factorization QR & LQ

Q matrix generation & application QR & LQ, tall and skinny QR & LQ*

explicit matrix inversion Cholesky

symmetric EVP eigenvalues only (no vectors)*

SVD singular values only (no vectors)i%
GEMM, HEMM, HER2K, HERK, SYMM,

Level 3 BLAS (tile layout) SYR2K, SYRK, TRMM, TRSM

(complete set)

CM, RM, CCRB, CRRB, RCRB, RRRB

In-place layout translations (all combinations)

Covering four precisions: Z, C, D, S (and mixed-precision: ZC, DS)
Static scheduling and dynamic scheduling with QUARK
Support for Linux, MS Windows, Mac OS and AlX



L
«-PLASMA 3.x (November 15)

symmetric EVP eigenvalues & eigenvectors
SVD singular values & singular vectors
LDLT pivoting

GPU acceleration (factorizations, reductions to band forms, BLAS 3)
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MAGMA 1.0 (June 6)

linear systems and least squares LU, Cholesky, QR & LQ
mixed-precision linear systems LU, Cholesky, QR
Q matrix generation & application QR & LQ, tall and skinny QR & LQ

1st and 3" stage have GPU acceleration;

general EVP 2d stage is LAPACK on multicore

1st and 3" stage have GPU acceleration;

symmetric EVP 2 stage is LAPACK on multicore

1st and 3" stage have GPU acceleration;

SVD 2nd stage is LAPACK on multicore

GEMM, TRSM, GEMV, SYMV, auxiliary

el routines, etc., for both Tesla and Fermi

Covering four precisions: Z, C, D, S (and mixed-precision: ZC, DS)
Static scheduling for single NVIDIA GPU
Support for Linux, MS Windows, and Mac OS
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«-MAGMA 1.x (November 15)

SpMV

Krylov space methods
LAPACK for Multicore
Multicore + GPU algorithms

Multicore + multiGPU algorithms

Different matrix formats

PCG, GMRES, BiCG, LOBPCG, etc.
LU, QR, and Cholesky w/ QUARK
LU, QR, and Cholesky w/ QUARK
LU, QR, and Cholesky w/ StarPU
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< Futures

Develop implementations for two-sided
factorizations: bi-diagonalization, Hessenberg
reduction, etc.

- Develop accurate performance models
* Develop auto-tuning framework

* Propose mechanisms for static and dynamic
scheduling of work in a multi-socket multi-blade
hybrid system

* Investigate impact of memory architectures on
different algorithmic approaches to common
linear algebra workloads
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Automatic Performance Tuning

* Writing high performance software is hard

 |deal: get high fraction of peak performance from
one algorithm

» Reality: Best algorithm (and its implementation) can
depend strongly on the problem, computer
architecture, compiler,...

= Best choice can depend on knowing a lot of
applied mathematics and computer science

= Changes with each new hardware, compiler
release
« Automatic performance tuning

= Use machine time in place of human time for tuning
= Search over possible implementations

= Use performance models to restrict search space

» Past successes: ATLAS, FFTW, Spiral, Open-MPI
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How to Deal with Complexity?

* Many parameters in the code needs to be
optimized.
« Software adaptivity is the key for applications to

effectively use available resources whose
complexity is exponentially increasing

MFLOPS compile,
Execute,
Measure
A
\ 4
L1Size N
Detect "| ATLAS Search | muyNU KLl ATLAS MM MiniMMM
Hardware NR > Engine xFetch | Code Generator »  Source
Parameters MUIL‘i‘dd » (MMSearch) I'V“ ;'Add », (MMCase)
I arency o

126
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Auto-Tuning

Fl

rl

Best algorithm implementation can depend strongly
on the problem, computer architecture, compiler,...

There are 2 main approaches

= Model-driven optimization
[Analytical models for various parameters;
Heavily used in the compilers community;
May not give optimal results ]
= Empirical optimization
[ Generate large number of code versions and runs them on a given
platform to determine the best performing one;
Effectiveness depends on the chosen parameters to optimize and
the search heuristics used ]

Natural approach is to combine them in a hybrid

approach
[ 15t model-driven to limit the search space for a 2"4 empirical part ]
[ Another aspect is adaptivity - to treat cases where tuning can not be

restricted to optimizations at design, installation, or compile time ]



* Reproducibility

 For example Exi when done in parallel can’t
guarantee the order of operations.

* Lack of reproducibility due to floating point
nonassociativity and algorithmic adaptivity
(including autotuning) in efficient production
mode

- Bit-level reproducibility may be unnecessarily
expensive most of the time

* Force routine adoption of uncertainty
quantification

= Given the many unresolvable uncertainties in
program inputs, bound the error in the

outputs in terms of errors in the inputs 18



c. A Call to Action: Exascale is a Global

ICLOr"

Challenge

S . A

| rﬁ I[

o]
|IESP

Hardware has changed dramatically while
software ecosystem has remained stagnant

Community codes unprepared for sea change
in architectures

No global evaluation of key missing
components

The IESP was Formed in 2008

Goal to engage international computer
science community to address common
software challenges for Exascale

Focus on open source systems software that
would enable multiple platforms

Shared risk and investment
Leverage international talent base



¢ International Exascale Software
Program

18 ) TERNATEEONAL
A

w2 EXASGALE
” (]
\‘-ZI', -SAUF WARE PROJECT

Improve the world’s simulation and modeling
capability by improving the coordination and
development of the HPC software environment

Workshops:

Build an international plan for
coordinating research for the next
generation open source software for
scientific high-performance
computing

www.exascale.org



<~ Roadmap Components ., ..

&) EXASCAL
5" 4’5‘ X SOFTWA £T

4.1 Systems Software.....ciiiiiiiiiicciiinecssirsss s s srssre s s ss s s rsa s asan s nans
4.1.1 Operating SYSteMS ..uuuiiiiiiiiiiii s
4.1.2 RUNtIME SYSteMIS ot a e a e ea s
72 N 7 O =3V 2] o= o o =
4
4
2

www.exascale.org

1.3 External ENVIrONmMENtS ...
1.4 Systems Management .. .cooiiiiiii e
Development Environments......cccciiimmmsssssnsssnssssssnsssnssnsnnnnnnnsns
4.2.1 Programming Models .....ooiiiiiiiiiiiiii i
A.2.2 FramEWOIKS ouuutttttetr e aa s arrrsaassaraaesssasseeeeess
4. 2.3 COMPIIEIS. i e
4.2.4 Numerical Libraries. ... e
4.2.5 Debugging to0IS ...uuuiiiiiii i e
4.3 ApplicationS....iiiiiiciiiiiiiiiisscc s srnrrrrssa s s ra s arraa s naaanannnnn
4.3.1 Application Element: Algorithms ...,
4.3.2 Application Support: Data Analysis and Visualization....................
4.3.3 Application Support: Scientific Data Management ........................
4.4 Crosscutting DIMeNSIONS ....cciiiiiirsssnnmssmmssssansssssssssssssnnnsssssssssnnnnns
2 N = =1 1= i Lol
4.4.2 Power Management ...
4.4.3 Performance Optimization .......cceiiiiiiiiii i e
4.4.4 Programmability.....ccceeiiiiiiiiii

4.
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Roadmap Components 5", ) EX éiﬁg Alg;
4.1 Systems Software 4.3 Applications
4.1.1 Operating systems 4.3.1 Application Element:
4.1.2 Runtime Systems Algorithms
4.1.31/0 systems 4.3.2 Application Support:

Data Analysis and
Visualization

4.3.3 Application Support:
Scientific Data

4.1.4 Systems Management
4.1.5 External Environments

4.2 Development Environments Management
4.2.1 Programming Models
4.2.2 Frameworks 4.4 Crosscutting Dimensions
4.2.3 Compilers 4.4.1 Resilience
4.2.4 Numerical Libraries 4.4.2 Power Management
4.2.5 Debugging Tools 4.4.3 Performance Optimization

4.4 .4 Programmability

l

=  see |JHPCA, Feb 2011, http://hpc.sagepub.com/content/25/1/3



r. Example Organizational Structure:

ICL

~Incubation Period (today):

JP

« |ESP provides coordination internationally,
while regional groups have well managed
R&D plans and milestones

www.exascale.org
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Published in the January 2011 issue of
The International Journal of High
Performance Computing Applications

“We can only see a short
distance ahead, but we
can see plenty there
that needs to be
done.”

= Alan Turing (1912
—1954)

*  www.exascale.org



< Conclusions

* For the last decade or more, the research
investment strategy has been
overwhelmingly biased in favor of hardware.

* This strategy needs to be rebalanced -
barriers to progress are increasingly on the
software side.

* Moreover, the return on investment is more
favorable to software.

= Hardware has a half-life measured in years, while

software has a half-life measured in decades.

e High Performance Ecosystem out of balance

= Hardware, OS, Compilers, Software, Algorithms, Applications
 No Moore’s Law for software, algorithms and applications
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“PLASMA and Magma

Institutions
University of Tennessee University of Colorado University of California
Knoxville Denver Berkeley
Sponsors

P T — (intel. >

NVIDIA.

& The MathWorks™ El Microsoft
AMD




6
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e Current Team e Past Members e Outside Contributors
e Dulceneia Becker e Emmanuel Agullo e Fred Gustavson
e Henricus Bouwmeester e Wesley Alvaro e Lars Karlsson
e Jim Demmel e Alfredo Buttari e Bo Kagstrom
e Jack Dongarra e Bilel Hadri

e Mathieu Faverge
e Azzam Haidar

e Blake Haugen

e Mitch Horton

e Jakub Kurzak

e Julien Langou

e Hatem Ltaief

. names listed alphabeticall ]
o Piotr Luszczek [ 2 y

e Stan Tomov
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< Last ...

 Thank a number of people who have
helped with this work

= Emmanuel Agullo, George Bosilca, Aurelien
Bouteiller, Anthony Danalis, Jim Demmel,
Tingxing "Tim" Dong, Mathieu Faverge, Azzam
Haidar, Thomas Herault, Mitch Horton, Jakub
Kurzak, Julien Langou, Julie Langou, Pierre
Lemarinier, Piotr Luszczek, Hatem Ltaief,
Fengguang Song, Stanimire Tomov, Asim
YarKhan
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