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Comparing two proteins
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An amino-acid alignment :
what is common between P1 and P2 ?
order-preserving one-to-one matching

A similarity score :
how similar are P1 and P2 ?
normalised in [0,1]

sim(P1,P2)� 57%
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Common sub-structures ?

A part the 1st protein (in red) which is similar (can be well superimposed) to a
part from the 2nd protein (in grey).
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Root Mean Square Deviation (RMSD)

Given a set of n deviations S = {s1,s2, . . . ,sn}

RMSD(S) =

�
1
n
×

n

∑
i=1

s
2
i

Biologists use two different RMSD measures which differ on the measured
deviations :

RMSDc = deviation between superimposed coordinates

RMSDd = deviation between matched internal distances
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First measure : RMSDc

Root Mean Squared Deviation of superimposed Coordinates
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First : superimpose them (3D transformation T )

Deviations : distances between each superimposed amino-acids

Problem : finding transformation T

INRIA Rennes - Bretagne Atlantique, University of Rennes 1 6/60



First measure : RMSDc

Root Mean Squared Deviation of superimposed Coordinates

First : superimpose them (3D transformation T )

Deviations : distances between each superimposed amino-acids

Problem : finding transformation T

INRIA Rennes - Bretagne Atlantique, University of Rennes 1 6/60



First measure : RMSDc

Root Mean Squared Deviation of superimposed Coordinates

First : superimpose them (3D transformation T )

Deviations : distances between each superimposed amino-acids

Problem : finding transformation T

INRIA Rennes - Bretagne Atlantique, University of Rennes 1 6/60



First measure : RMSDc

Root Mean Squared Deviation of superimposed Coordinates

First : superimpose them (3D transformation T )

Deviations : distances between each superimposed amino-acids

Problem : finding transformation T

INRIA Rennes - Bretagne Atlantique, University of Rennes 1 6/60



Second measure : RMSDd

Root Mean Squared Deviation of internal distances
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For all matched internal distances d ↔ d
�, the deviation is |d −d

�|
No transformation T to compute

Problem : not sensible to chirality
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Optimization standpont

Given a set of n deviations S = {s1,s2, . . . ,sn}

RMSD(S) =

�
1
n
×

n

∑
i=1

s
2
i

Goals :

minimize RMSD

but maximize the length of the alignment

This is multiobjective optimization.
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Many approaches have been proposed...

Based on internal
distances :

Dali (Sander & Holms, 93)

CMO (Godzik & Skolnick, 94)

Paul (Wohlers, Petzold,
Domingues & Klau, 09)

DAST (Malod-Dognin,
Andonov and Yanev, 10)

...

Based on coordinate superimpositions :

MyFit/GaFit (May & Johnson, 94)

VAST (Gibrat, Madej & Bryant, 96) Monte Carlo opt.

CE (Shindyalov & Bourne, 98), approximation of Markov
chains

TM-Align (Zhang & Skolnick 2005)

SAMO (Chen et al., 06), multi-objective optimization

...

Pitfalls

No consensus which scoring is the best (Godzik, 96 ; Hasegawa and Holm, 09)

⇒ No easy tool is availlable for comparing different scoring schemes

Computing optimal alignments is often NP-Hard

⇒ Heuristics are widely used, without score guaranties
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How to get a consensus ?

FIGURE: Comparing 1otrA versus 2di0A using various similarity measures
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Web server CSA (Comparative Structural Alignment)
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CSA : Case study 3 : Detecting hinges–example with 1
hinge

4clnA versus 2bbmA
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CSA : Case study 3 : Detecting hinges–example with 2
hinges

1cbuB versus 1c9kB
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Focus and goal of this talk
Fundamental internal distances similarity measures

DALI (Sander & Holms, 93) : one of the first score and heuristic.

CMO (Godzik & Skolnick, 94) : the simplest internal distances similarity
measure.

Paul (Wohlers, Petzold, Domingues & Klau, 09) : intermediate score.

Existing exact solvers

LAGR (Caprara & Lancia, 2004), CMOS (Xie & Sahinidis, 2007), Paul
(Wohlers, Petzold, Domingues & Klau, 09), A_purva (Andonov & al.
2011)

Based on IP approaches coupled with branch and bound.

Upper-bounds = upper-estimations based on Lagrangian relaxations.

Lower-bounds = feasible solution (sub-optimal)

A_purva shown to be the fastest and providing tight upper and lower
bounds.
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The Contact Map Overlap
maximization
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CMO : based on small internal distances

A contact = an internal distance smaller than 7.5Å
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2 amino-acids in contacts (Cα −Cα distance ≤ 7.5Å) ⇔ an edge in the
contact map. a contacts in the structure ⇔ an edge in the contact map
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CMO : the approach

Aligning two proteins ⇒ aligning two contact map graphs
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CMO : Maximizing the number of common contacts
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A common contact (or contact overlap) occurs when two matchings pairs
i ↔ k and j ↔ l match one contact in P1 with one contact in P2

Under this matching, the two proteins share a common small internal
distance

The above alignment has two common contacts

Optimal alignment → the one that maximizes the number of common
contacts
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CMO : Maximising the number of common contacts

Given two contact maps CM1,CM2, an optimal CMO alignment maximizes

the number of common contact edges NCC
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Similarity score :

SIM(CM1,CM2) =
2×NCC

|E1|+ |E2|
(1)

where |E1|, |E2| are the edges of CM1,CM2.

A challenging NP-Complete problem
(Goldman, Istrail & Papadimitriou in 99)
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CMO, the alignment graph approach
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An optimal alignment ⇔ an Increasing Subset of Vertices having a
maximum number of edges
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Approach : branch and bound using new Integer
Programming formulation

LAGR (Caprara & Lancia, 2002)

CMOS (Xie & Sahinidis, 2007)

A_purva (Andonov, Malod-Dognin, Yanev, 2008)

All exact branch and bound approaches providing :

Upper-bounds = upper-estimations of the number of common contacts

Lower-bounds = feasible solution (sub-optimal)

Efficiency depends on the quality (tightness & time) of the bounds

A_purva uses a two steps method

1 Reformulate CMO as an Integer Programming problem P

2 Bounds from Lagrangian relaxation of P
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Achievements I : Automatic classification

Protocol :
Alignments returned by short runs of A_purva

No branch and bound

Only 500 iterations of the minimiser over λ
Score given to CHAVL (Lerman, 93)

Unsupervised ascendant classification tool

Results :
Exactly the same classification as SCOP for the Skolnick set

Total running times 297 sec.
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Achievements II : Automatic classification

Proteus_300 :

300 proteins, 10 families, test set based on ASTRAL compendium

Same protocol as before (only 500 iterations, computed scores given to
CHAVL)

Score function :
SIM(P1,P2) =

2×LB

|E1|+ |E2|
(2)

A_purva needed 13 hours and 38 minutes to complete all 44,850
pairwise comparisons

have been obtained only minor disagreements with the SCOP
classification

Proteus_300 start to be used by the community as a benchmark

Results appeared in J. of Computational Biology (2011) and WABI’08
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Achievements III : Familly identification

SHREC’10 contest :
Given 1000 known protein structures classified into 100 CATH
superfamilies (10 protein structures per super-families)

50 "unknown" protein structures are given later to the participants

Obj : Participants had three days to classify the 50 unknown proteins
into the 100 CATH superfamilies

A_purva achieved the highest success rate (80% of correctly classified
proteins during the competition by using a similarity function different
from (2)), as well as the highest sensitivity and specificity. We observed
afterwards that (2) gives 92% success rate.

Result appeared in Eurographics Workshop on 3D Object Retrieval
(2010)
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Recapitulation

A_purva :

Is an exact solver for protein structure comparison.

Its characteristics to provide tight upper and lower bounds of the solution
makes it very suitable for large-scale data set processing and
classification.

Availability on our plateforme : http ://apurva.genouest.org

webserver CSA (Comparative Structural Alignment) :
http ://csa.project.cwi.nl

Related publications :

Maximum contact map overlap revisited. J. Comput. Biol., 18(1) :1–15,
2011.

An efficient lagrangian relaxation for the contact map overlap problem.
In WABI ’08, pp. 162–173. Springer-Verlag, 2008.

Shrec-10 track : Protein models. 3DOR : Eurographics Workshop on 3D

Object Retrieval, pp. 117–124 2010
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The Distance-Based
Alignment Search Tool (DAST)
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CMO introduces some “errors” :
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Matching “1 ↔ 1�,2 ↔ 3�,4 ↔ 4�”

maximum number of common contacts (2)

1 and 4 from P1 are in contact, while 1� and 4� in P2 are remote
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CMO : Problem of forgetting long internal distances
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CMO gives maximum score → perfectly identical proteins ? !
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DAST : Principle

Replace the notion of common contact

With the more general notion of similar internal distance

Align only similar internal distances

If all aligned internal distances are equal (≈ θ),

RMSD of internal distance is ≤ θ
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DAST : Matching two amino-acids
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If i ∈ P1 and k ∈ P2 come from same
kind of SSEs :
→ Vertex i.k is in the alignment graph
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DAST : Matching two internal distances
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If |dij −dkl | ≤ θ then
→ Edge (i.k , j.l) is in the alignment

graph
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DAST : Feasible and optimal matching
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�� Feasible matching :

A clique
→ All matched internal distances are

similar (≈ θ)

Optimal matching :
Maximum clique
→ Longest (in terms of amino-acids) of

such matching

RMSD of internal distance is ≤ θ
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Back to our strange CMO alignment
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CMO vs DAST alignments

DAST : RMSDd ≤ 2Å, but shorter alignments than CMO

Length (AA) RMSDd (Å)
Instance CMO DAST CMO DAST

1amkA–1aw2A 247 200 1.39 0.68

similar 1amkA–1htiA 247 204 1.24 0.74

instances 1qmpA–1qmpB 129 118 0.22 0.22

1ninA–1plaA 97 58 1.42 0.96

1tmhA–1treA 254 233 0.90 0.44

1amkA–1b00A 120 41 5.62 1.23

dissimilar 1amkA–1dpsA 163 32 13.01 1.06

instances 1b9bA–1dbwA 123 44 6.02 1.11

1qmpA–2pltA 95 17 7.36 1.18

1rn1A–1b71A 104 26 11.22 0.82

CMO : 7.5 Å contact maps, DAST : 3 Å distance threshold

Remark : DAST approach is significantly slower than CMO (A_purva solver).
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Optimal DALI protein structure
alignment
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What is CMO weakness ?

FIGURE: Alignment of 1aawA (gray) and 1gxiE (pink), an instance of the Sisy set.
Optimal superposition according to the respective alignment. Residues colored in
dark tone are aligned, residues colored in light tone are unaligned. Left : The Sisy
reference alignment (29 aligned residues, RMSD of 1.14). Middle : The optimal
CMO alignment ; it correctly aligns 96.55% of the aligned residues of the reference
alignment. Alignment length is 56, RMSD 4.25. Additional gaps are inserted.
Overaligning and insertion of additional gaps leads to a low RMSD value. Right : The
heuristic DALI alignment correctly aligns all residues of the reference alignment, but
extends the alignment length to 50 (RMSD of 2.55).
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Distance matrix ALIgnment (DALI)
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DALI approach

DALI (distance matrix alignment) (Holm and Sander,1993) – one of the
most widely used structural alignment heuristics.

Available via the European Bioinformatics Institute (EBI) structural
analysis tool box, it processes about 1500 pairwise alignment user
requests a month

DALI paper has been cited almost 3000 times (more than 5000 times
including closely related and follow-up papers), more often than any
other structural alignment program.
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DALI generic scoring scheme

Various scores when comparing protein A with B
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Distance score (d) = compatibility between internal distances ((1.2) ↔
(1.3)) ;

Sequence score (s) = compatibility between matched residues ( 1 ↔ 1) ;

Optimal alignment = residues matching maximizing the sum S(A,B)=d+s
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DALI approach : more details

Function d(·, ·), which is used in the objective function, is the DALI elastic
similarity function that scores pairs Aij and Bkl of inter-residue distances as

d(Aij ,Bkl) =

�
0.2− |Aij −Bkl |

1
2 (Aij +Bkl)

�
e
−
� 1

2 (Aij+Bkl )
20

�2

Based on the overall DALI score S(A,B), the DALI z-score Z (A,B) is
computed as follows :

Z (A,B) =
S(A,B)−m(L)

0.5 ·m(L)
.

The term m(L) for L =
√

nAnB is the approximate mean score and the
denominator 0.5 ·m(L) estimates the average standard deviation. The
z-score thus measures the significance of the detected structural similarity
based on an experimentally determined background distribution of DALI

scores.
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Integer Programming approach to
DALI
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Mathematical model : objective and variables

Protein comparison is order-preserving one-to-one amino-acid
matching/alignment

� �

� �

�

�

objective : max ∑
i,j∈A

∑
k ,l∈B

d(Aij,Bkl)yikjl + ∑
i∈A,k∈B

s(Ai,Bk)xik

xik ∈ {0,1} : aligning residues i and k

yikjl ∈ {0,1} : aligning distance between i and j with distance between k

and l

d(Aij,Bkl) : structure score (i.e. DALI elastic similarity function)
s(Ai,Bk) : sequence score
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Alignment graph formalism

It contains both :
Rules for creating the alignment graph

Definition of the sub-graph corresponding to an optimal alignment

Inspired by the Contact Map Overlap for Protein Comparison

Led to an efficient CMO solver (Andonov et al., 11)

Goal of this study : To adapt it for DALI approach
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Alignment graph formalism : Vertices and weights
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To each matching pair i ↔ k corresponds a vertex i.k in the alignment
graph

its weight, s(Ai,Bk), corresponds to the sequence score when aligning
residues i and k
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Alignment graph formalism : Edges and weights
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Aligning distance Aij with distance Bkl (i.e. matching pairs i ↔ k and
j ↔ l) is modeled by the edge (i.k, j.l)

Its weight, d(Aij,Bkl), is given by the DALI elastic similarity function
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Modeling feasible alignment

A feasible alignment is order-preserving one-to-one amino-acid matching
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A feasible matching ⇔ an Increasing Subset of Vertices (ISV) in the
alignment graph
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Score of a feasible alignment
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The score of an alignment = the weight of the induced graph (sum of
vertices and edges)
(here : 0.75+0.5-0.5 + 0.2+0.2+0.2= 1.35)

The optimal alignment = the one with the maximum score
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CMO, the alignment graph approach : recall
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An optimal alignment ⇔ an Increasing Subset of Vertices having a
maximum number of edges

CMO can be viewed as a subcase of DALI scoring function
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Mathematical model : constraints

Let SOS (Special Order Set) denote a set of mutually exclusive vertices (x
variables). The notion Increasing Subset of Vertices (ISV) allows to define
various SOS : any row, any column, .... The most important is as follows :
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k

∑
l=1

xil +
i−1

∑
j=1

xjk ≤ 1, ∀ row i,∀ col k .

n rows and m columns → n×m equations.

Determine the vertex feasible solutions set
(ISV)
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Principle of modeling : binding edges and vertices together
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Edge-driven tail vertex activation

xik ≥ yikjl ,∀ edge (ik .jl).

xjl ≥ yikjl ,∀ edge (ik .jl).

Vertices-driven edge activation

xik + xjl − yikjl −1 ≤ 0,∀ edge (ik .jl).

Needed because of negative edge weights.
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Mathematical model : constraints
Feasible alignment (ISV) :

k

∑
l=1

xil +
i−1

∑
j=1

xjk ≤ 1,∀ row i,∀ col k .
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Edge-driven tail vertex activation : xjl ≥ ∑
i.k∈SOSjl

yikjl

Edge-driven head vertex activation : xik ≥ ∑
jl∈SOSik

yikjl

Vertices-driven edge activation
xik ≤ ∑

(r ,s)∈SOSik

(yrsik − xrs)+1 for w(ersik )< 0
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Mathematical model : the entire Linear Integer Program

max ∑
i,j∈A

∑
k ,l∈B

d(Aij,Bkl)yikjl + ∑
i∈A,k∈B

s(Ai,Bk)xik

Subject to :

Feasible alignment (ISV) :
k

∑
l=1

xil +
i−1

∑
j=1

xjk ≤ 1,∀ row i,∀ col k . (3)

Edge-driven tail vertex activation : xjl ≥ ∑
i.k∈SOSjl

yikjl (4)

Edge-driven head vertex activation : xik ≥ ∑
jl∈SOSik

yikjl (5)

Vertices-driven edge activation : xik ≤ ∑
(r ,s)∈SOSik

(yrsik −xrs)+1 for w(ersik )< 0

(6)
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Lagrangian relaxation principle

IP problem P :

ZP = max cx

s.t. x ∈ X — “easy” constraints
Ax ≤ b — “complicating” constraints

Lagrangian relaxation LR(λ) :

ZLR(λ) = max {cx +λ(b−Ax)|x ∈ X}

LR(λ) is also an IP problem, but easier to solve than P

LR(λ) is relaxation (upperbound) of P for any λ (i.e. ZP ≤ ZLR(λ))

Improving bounds / solving P :

Lagrangian dual ZLD : ZLD = min
λ

ZLR(λ)

INRIA Rennes - Bretagne Atlantique, University of Rennes 1 53/60



Lagrangian relaxation principle

IP problem P :

ZP = max cx

s.t. x ∈ X — “easy” constraints
Ax ≤ b — “complicating” constraints

Lagrangian relaxation LR(λ) :

ZLR(λ) = max {cx +λ(b−Ax)|x ∈ X}

LR(λ) is also an IP problem, but easier to solve than P

LR(λ) is relaxation (upperbound) of P for any λ (i.e. ZP ≤ ZLR(λ))

Improving bounds / solving P :

Lagrangian dual ZLD : ZLD = min
λ

ZLR(λ)

INRIA Rennes - Bretagne Atlantique, University of Rennes 1 53/60



Lagrangian relaxation principle

IP problem P :

ZP = max cx

s.t. x ∈ X — “easy” constraints
Ax ≤ b — “complicating” constraints

Lagrangian relaxation LR(λ) :

ZLR(λ) = max {cx +λ(b−Ax)|x ∈ X}

LR(λ) is also an IP problem, but easier to solve than P

LR(λ) is relaxation (upperbound) of P for any λ (i.e. ZP ≤ ZLR(λ))

Improving bounds / solving P :

Lagrangian dual ZLD : ZLD = min
λ

ZLR(λ)

INRIA Rennes - Bretagne Atlantique, University of Rennes 1 53/60



Lagrangian relaxation principle

IP problem P :

ZP = max cx

s.t. x ∈ X — “easy” constraints
Ax ≤ b — “complicating” constraints

Lagrangian relaxation LR(λ) :

ZLR(λ) = max {cx +λ(b−Ax)|x ∈ X}

LR(λ) is also an IP problem, but easier to solve than P

LR(λ) is relaxation (upperbound) of P for any λ (i.e. ZP ≤ ZLR(λ))

Improving bounds / solving P :

Lagrangian dual ZLD : ZLD = min
λ

ZLR(λ)

INRIA Rennes - Bretagne Atlantique, University of Rennes 1 53/60



Mathematical model : the entire Linear Integer Program
max ∑

i,j∈A

∑
k ,l∈B

d(Aij,Bkl)yikjl + ∑
i∈A,k∈B

s(Ai,Bk)xik

Feasible alignment (ISV) :
k

∑
l=1

xil +
i−1

∑
j=1

xjk ≤ 1,∀ row i,∀ col k . (7)

Edge-driven tail vertex activation : xjl ≥ ∑
i.k∈SOSjl

yikjl (8)

Edge-driven head vertex activation : xik ≥ ∑
jl∈SOSik

yikjl (9)

Vertices-driven edge activation : xik ≤ ∑
(r ,s)∈SOSik

(yrsik −xrs)+1 for w(ersik )< 0

(10)

Equations (8) and (10) will be relaxed in order to apply a Lagrangian
relaxation similar to the one for CMO approach. The relaxed problem can be
solved by double dynamic programming in time O(|V |+ |E |) where |E | is
much larger than in CMO.
Although theoretical not very different from CMO version, the Lagrangian
relaxation implementation required significant programming effort.
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Visualization of the computations in the relaxed problems

The relaxed problem is solved by dynamic programming in O(|V |+ |E |).

Left : Local profit computation. Node 1.1 picks its best set of outgoing
edges (i.e. maximizing this node’s profit).
Center : The solution of the relaxed problem. It is composed of the
increasing path that is the solution of the global problem, colored in blue,
together with the outgoing edges that these nodes picked in their
respective local problem. The relaxed solution maximizes the sum of
profits. Its score is LR(λ) = 7 and an upper bound on the optimal score.
Right : The feasible solution that can be deduced from the relaxed
solution. It is composed of the nodes that are activated in the relaxed
solution together with all induced edges. Its score is Zlb = 4 and
represents a lower bound on the optimal score.

INRIA Rennes - Bretagne Atlantique, University of Rennes 1 55/60



Computational results : DALI (Heuristic) vs DALIX (Exact)

Computations are done on cluster nodes each with two quad core 2.26 GHz
Intel Xeon processors. The DALIX computation time limit for SCOPCath
alignments is 30 CPU minutes per instance and for all other data sets 30
CPU hours per instance. In each branch-and-bound node are computed
1000 Lagrangian iterations.

SKOLNICK SCOPCath SISY RIPC

Family Superfamily Fold

Alignments 164 386 151 926 62 11
Positive z-score 164 359 141 302 61 11
DALIX optimal 136 143 14 31 11 2
DALI optimal 38 50 5 5 3 0
DALIX better 123 287 118 258 31 6
DALI better 3 16 14 30 27 5
missed by DALI 83 24 123
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Computational results I : Exact vs Heuristic solution

SKOLNICK SCOPCath SISY RIPC

family superfamily fold
Alignments 164 386 151 926 62 11
DaliX optimal 136 143 14 31 11 2
Dali optimal 38 50 5 5 3 0
Missed by Dali 0 83 24 123 0 0
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Computational results I : DALI score improvement
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FIGURE: The barplot bins the percentages of DALI score improvement for the cases in
which the DALIX alignment has positive z-score and is better than the DALI alignment.
On family level, these are 278, on superfamily level 118 and on fold level 258
alignments. The improvement is computed with respect to the DALI alignment. The
DALIX computation time limit is 30 CPU minutes. For most alignments, the score
improvement is small. There is furthermore a large percentage of protein pairs that
are entirely missed by DALI , i.e. for which DALI falsely reports that there is no
structural similarity.
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Conclusions

First exact general algorithm for distance matrix alignments

It is applicable to any distance matrix-based scoring scheme (i.e. is able
to consider scoring functions with positive and negative values)

The new tool allows to evaluate the precision of DALI-one of the most
popular heuristic structural alignment method

Some anomalies of the DALI heuristic (cases for which DALI entirely
misses structural similarities)

But globally the exact computations confirmed the high quality of the
DALI heuristic (they are almost always very close to the optimum).
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