Normal modes in structural biology

Charles H. Robert
CNRS Laboratoire de Biochimie Théorique
Institut de Biologie Physico Chimique
Paris

- What are normal modes?
- What are they good for?
- How do we obtain normal modes?
- How are they used in structural biology and drug design?
Why (or how) II
Normal modes are used to describe the simplified dynamics of macromolecules.

To proceed we must understand:

- Macromolecular structure
- Macromolecular dynamics and its role
- Standard approaches to understanding dynamics...
- … then we come back to simplified dynamics: normal modes
• Macromolecular structure
• Macromolecular dynamics and its role
• Standard approaches to understanding dynamics...
• … simplified dynamics --> normal modes
• Use of normal modes in biology and pharmaceutical research
Macromolecular structure

- Organism cell macromolecules (proteins, DNA, RNA)

- Low to medium resolution (down to 3-4 Å)
 Electron Microscopy

- High resolution (1 Å):
 X-ray crystallography (Chemistry Nobel to Kendrew and Perutz 1962)
 Nuclear Magnetic Resonance (Chemistry Nobel to Wütrich 2002)

- Protein Data Bank (PDB) contains over 80,000 structures
 PDB id = number + 3 letter-numbers

Myoglobin, PDB entry 1mbn
First protein crystal structure (Kendrew, 1958)
Example: interleukin receptor

- Type 1 interleukin receptor (cytokine receptor)
 inflammation, medical stuff

- In the hypothalamus, IL-1 binding to the receptor increases fever

- Crystal structures of extracellular domain of receptor with interleukin, inhibitors, or agonist peptides
Focus on amino acids and chemical groups

- 3D coordinates x, y, z for each atom
- Distances are at the scale of Angstroms (1Å = 0.1 nm)
- See the 20 amino acid types
- Hydrogen bonding, charge interactions

Interferon receptor (PDB id 1g0y)

E.g., Aspartic acid
Atoms: type and positions in space

- Space filling representation
- Use van der Waals radii 1-2 Å
- Gives an idea of accessibility, excluded volume
Solvent accessible surface

- Accessibility depends on specifying “to what”
- Accessible surface defined by contact with a spherical probe
- Typically, probe approximates a water molecule
 sphere radius = 1.4 Å
Facilitates identification of binding pockets

Focus on the backbone of the polypeptide chain

Connectivity

Conformation

Domains

Secondary structure
alpha helices
beta sheets
What can we do with a structure?

- Understand a biochemical reaction – catalysis
- See how proteins interact with other macromolecules, ligands, substrates
- Understand affinity – e.g., burial of hydrophobic surface, H-bonds, ...
- Understand the effects of amino-acid point mutations
- Try to **block interactions** by tailoring a small molecule (drug) to bind instead
But a structure is not enough

- Proteins are not frozen in one form
- Atoms are in constant thermal movement ($E = kT$)
- The structure changes in time
- ...
- Structures (crystal, NMR, ...) are really average structures
[plan]

- Macromolecular structure
- Macromolecular dynamics and its role
- Standard approaches to understanding dynamics...
- … simplified dynamics --> normal modes
- Use of normal modes in biology and pharmaceutical research
Effects of atom movements

Protein folding to the native structure

Protein shape changes constantly

The shape of a binding site change can change constantly

Conformational change: there may be more than one stable structure!

Basis of
• allostery
• cooperative binding
• signal transduction
... la biologie, quoi
Interleukin receptor again

Interleukin 1 (IL-1) binding to the receptor involves a substantial conformational change

Interferon receptor (PDB id 1g0y)
Interleukin receptor conformational change

Interferon receptor with IL-1 antagonist protein (PDB id 1ira)

Who would have guessed?
From structure to **dynamics**: how do proteins move?

- How “good” is the average structure?
- How does the structure change?
- Do changes occur on binding?
To understand dynamics we first need to know the energy

Why?

The energy of a particular configuration (conformation) X determines its probability (Boltzmann' law)

$$p(X) = \text{const} \; \exp\left(-\frac{E(X)}{kT}\right)$$

higher $E(X) \rightarrow$ lower probability of X
Potential Energy surface (heuristic view)

- The molecule can explore the entire conformational space. Thermal energy allows it to cross energy barriers.
- A broad, deep minimum (basin) indicates a stable structure.
- Multiple conformations reflect multiple basins A, B, ...

Conformational space (3N dimensional)
Importance of a “good” model of the energy

Energy model must include effects of all important forces at the atomic level

Example: protein folding

Christian Anfinsen: Denature a protein, then renature it again: obtain the same native state

Dynamics of unfolded polypeptide chain direct its folding to the native (folded) state

• The native structure is at a global energy minimum
Levinthal's paradox (1960s)

Take an unfolded protein of 100 residues with 10 backbone states/residue
 (e.g., phi, psi torsion angles in staggered positions)

Number of possible states 10^{100}

Try to find the native folded state?

If 1 ps/state, exhaustive search $>> 10 \times$ age of the universe
 $(4 \times 10^{17} \text{ sec} = 10^{11} \text{ years})$

Yet proteins do find the native state, on μsec to sec timescale
Implicit model of the energy in early reasoning

- Exhaustive search assumes equal probabilities for non-native states
- This implies that the potential energy surface is flat
 AKA “the golf-course model”

Would be extremely unlikely to find the native conformation (like a “hole in one”)
Resolution of paradox: **folding funnel**

- In a real protein, local interactions are quickly explored
- Native-like local interactions are **lower energy** than the alternatives
- Energy decreases as we approach the native state

Folding funnel or "New view" (for biochemists) -- Ken Dill, UCSF, early 1990s
A better golf course
Energy models- what do they include?

Energy function decisions

Need potential energy V as a function of atom coordinates

But what functions…

…and what atoms?
Bonded interactions

Energy of interaction for covalently bonded atoms

- Bonds (2 atoms)
- Valence angles (3 atoms)
- Torsion angles (4 atoms)
- Improper angle (4 atoms, planar groups)

After Patrice Koehl's course
Animated view of variations in bonded variables

[from Stote and Dejaegere]
Describing the bonded energy

Specifying a conformation X specifies its conformational variables (distances, angles)

Conformational variables

- **Bond:**
 - r

- **Angle:**
 - θ

- **Dihedral:**
 - ϕ

Energy terms

- $V_{\text{bond}} = \frac{1}{2} K_{\text{bond}} (r - r_o)^2$

- $V_{\text{angle}} = \frac{1}{2} K_{\text{angle}} (\theta - \theta_o)^2$

- $V_{\text{dihedral}} = K_{\text{dihedral}} (1 - \cos(n \phi))$

 e.g., $n = 3$ for sigma overlap of sp3 orbitals

Diagram showing the energy minima and maxima for different dihedral angles, with 2.9 kcal/mol as the energy difference between eclipsed and staggered conformers.
Describing the non-bonded energy

Energy of interaction for all other pairs of atoms

Conformational variables

- charge-charge: \vec{V}_{Coulomb}
- dipole: \vec{V}_{dipolar}
- van der Waals: $\vec{V}_{\text{Lennard-Jones}}$

Energy terms
[plan]

- Macromolecular structure
- Macromolecular dynamics and its role
- **Standard approaches to understanding dynamics...**
- … simplified dynamics --> normal modes
- Use of normal modes in biology and pharmaceutical research
We have a structure, we have an energy model.

We can inject thermal energy, then find atom positions (structure) as a function of time t.

- Use classical mechanics for conformational dynamics
 - Use quantum mechanics for bond breaking and forming
Molecular Dynamics (MD)

Starting structure R_1
- R is set of vectors, one r_i for each atom i
- R obtained from a xtal structure, model, ...

(Locally minimize energy of the system)
- Like reducing temperature
- Find R'_1 such that $\nabla V(R'_1) \approx 0$
- Minimizes initial accelerations

Assign initial velocities
- inject thermal energy
- e.g., Maxwell-Boltzmann distribution

We have positions, velocities, forces (negative gradient of V) and a timestep \sim femtosecond $= 10^{-15}$ s

Solve Newton's equations of motion
- Use force to get new position R_2 at time 2
- calculate new force, use new force to get new position R_3 ... etc
- $R_1, R_2, R_3, \ldots, R_{1,000,000}$ simulate the atom motions in time
• Thermal energy allows the molecule to change conformation by crossing energy barriers on the potential energy surface

• In principle, with long simulations the entire conformational space can be explored (ergodicity)
Importance of solvent

- Water screens electrostatic interactions because of its high dielectric constant (*bulk effect*)

- Local water interactions (*specific water binding*) provide structural stabilization

- Finite-size effects (solvent exclusion) are important as well
Explicit solvent with periodic boundary conditions: solvent model for typical MD simulations

Primary cell containing the molecule under study is repeated in 3D lattice
- Solid shape tiling 3D space
- Cube, rhombic dodecahedron, truncated octahedron
- Significant savings in solvent molecule number if quasi-spherical solid can be chosen

Sufficient solvent is necessary to extend beyond cutoff range (12 A)

Any atom leaving the primary cell is concomitantly replaced in its symmetry-related position

Advantage: Both bulk and specific binding effects are taken into account

Disadvantage: Solvent atoms typically outnumber protein atoms (10:1)
Implicit solvent models - $W_{\text{solvation}}$

1. Hydrophobic effect
 - Solvation energy assumed proportional to exposed surface

2. Electrostatics
 - Water has a high polarizability (dielectric constant) – it “screens” charge-charge interactions
 - Can also calculate solvation energy using Poisson-Boltzmann equation (water+ions), but expensive-- used on individual structures or sets of structures

3. Heuristic model: dielectric “constant” assumed to vary with distance
 - e.g., $\varepsilon = d/1A$
 - For short distances (a few Angstroms): no bulk effect, dielectric constant small(on the order of 1)
 - At long distances: dielectric constant approaches bulk value (80), good screening

Advantage: Speed: only protein atoms are treated explicitly

Disadvantage: No specific solvent binding effects
Explicit/implicit solvent approaches

Compare by looking at the partition function. sum of probabilities over all configurations of the system, used to normalize the probability

Explicit solvent

All coordinates present — protein and solvent $N = 50,000$ atoms

$$Z = \int \ldots \int \exp \left(-\frac{U(r_1, \ldots r_{Np}, s_1, \ldots s_{Ns})}{kT} \right) dr_1 dr_2 \ldots dr_{Np} ds_1 \ldots ds_{Ns}$$

protein + solvent

Implicit solvent

Solvent coordinates integrated out, *only protein coordinates are left* $N = 5,000$ atoms

$$Z = \int \ldots \int \exp \left(-\frac{U_p(r_1, \ldots r_{Np}) + W_{sol}(r_1, \ldots r_{Np})}{kT} \right) dr_1 dr_2 \ldots dr_{Np}$$

protein only

U is the potential energy (i.e., E)

W_{sol} is the solvation free energy as a function of the protein coordinates

W_{sol} is a free energy (a PMF) because solvent configurational sampling is included in its definition

• But W_{sol} must be derived or defined by a model
Example:
Molecular dynamics simulation of a small G protein
Studying protein dynamics using MD

• Pros:
 Lots of detail
 Realistic simulation of atom movements
 Movements may suggest mecanistic models

• Cons:
 Lots of detail
 Significant computational effort
 Results tend to be anecdotal – significant analysis effort required to ascertain large-scale principles
[plan]

• Macromolecular structure

• Macromolecular dynamics and its role

• Standard approaches to understanding dynamics...

• ... simplified dynamics --> normal modes

• Use of normal modes in biology and pharmaceutical research
What are normal modes?
Normal Mode versus Molecular Dynamics (heuristic view)

In **MD** the molecule can explore all possible structures (in principle)
- Thermal energy allows it to cross energy barriers

In **Normal Modes** motion is restricted to a harmonic approximation of a single minimum
- Thermal energy produces vibrational deformations about a stable structure

In the low-temperature limit, NM is equivalent to MD
- Thermal movement becomes harmonic as cooled structure is trapped in an energy minimum
Represent N atoms each with coordinates (x,y,z) by a single vector of $3N$ coordinates

$$\mathbf{R} = [(x_1, y_1, z_1), (x_2, y_2, z_2), \ldots, (x_N, y_N, z_N)]$$

$$\mathbf{x} = [x_1 \quad x_2 \quad x_3 \quad x_4 \quad x_5 \quad x_6 \quad \ldots \quad x_{3N}]$$

Expand potential energy V about a point x_0

$$V(\mathbf{x}) = V(\mathbf{x}_0) + \sum_i^{3N} \left(\frac{\partial V}{\partial x_i} \right)_{\mathbf{x}_0} (x_i - x_{i0}) + \frac{1}{2!} \sum_{i,j}^{3N} \left(\frac{\partial^2 V}{\partial x_i \partial x_j} \right)_{\mathbf{x}_0} (x_i - x_{i0})(x_j - x_{j0})$$

- We specify our starting conformation x_0 to be a minimum of V: first derivatives are zero
- Harmonic approximation: keep 2^{nd} order terms only
Normal Mode Dynamics

Analytical solution to the equations of motion for harmonic potential

- Eigensystem analysis
- Periodic solutions = vibrations
How do we calculate normal modes?
Energy minimization

- Typically start with a crystal structure of a macromolecule
- Adjust the conformation to reduce the energy
- Removes steric clashes, optimizes bond lengths, ...
 Crystal structure is ignorant of our energy model!
- Potential energy surface V has multiple minima – we will only look for the nearest local minimum

Extremely simple example: two conformational variables
Explicit solvent with periodic boundary conditions is incompatible with normal modes calculations

Lots of solvent used for MD

Extensive energy minimization of system necessary for NM calculation
 • Bulk water freezes!
 • Protein movements become highly restricted, high frequency, unrealistic
Use of a hydration shell

Take starting structure from MD simulation

Cut away water farther than a given cutoff (e.g., H-bonding distance) from protein

Remaining water layer is included with the protein during energy minimization and normal modes calculation

But bulk water is important too...
Implicit solvent models – W_{solv} again

1. Solvation energy proportional to exposed surface area
 - Very good for hydrophobic effect
 - Difficult to integrate with normal modes (need 2nd derivatives)

2. Continuum electrostatics
 - Water has a high dielectric constant – it “screens” charge-charge interactions
 - Calculate solvation energy using Poisson-Boltzmann equation (water+ions)
 - Expensive, used on individual structures or sets of structures
 - Difficult to integrate with normal modes

3. Heuristic model: dielectric “constant” assumed to increase with distance
 - e.g., $\varepsilon = d/1A$
 - For short distances (a few Angstroms): no bulk effect, dielectric constant small(on the order of 1)
 - For long distances: dielectric constant approaches bulk value (80), good screening
 - Well adapted to use with normal modes
Techniques for energy minimization

Extensive minimization is required for calculation of Normal Modes

- 1st derivative (energy gradient) approaches
 - steepest descent (gradient of V)
 - conjugate gradient (list of productive directions)

- 2nd derivative (curvature of energy surface) approaches
 - use curvature matrix (Hessian)
 - *Would find minimum in one step if surface were quadratic*
 - For a real surface, very useful once we are near the minimum

Quality of minimization judged by magnitude of residual forces

- force proportional to gradient: should be **zero** at minimum
Normal modes calculation

Vibrational energy

Total vibrational energy is conserved

\[E = T + V \]

Sum of kinetic energy (T) and potential energy (V) of the macromolecule

Kinetic energy is a function of the \textbf{velocities} (time derivative of the positions)

\[T(\cdot) \]

The Potential energy is a function of the \textbf{positions}

\[V(R) \]
Represent N atoms each with coordinates (x, y, z) by a single vector of $3N$ coordinates

$$R = \begin{bmatrix} (x_1, y_1, z_1), & (x_2, y_2, z_2), & \ldots, & (x_N, y_N, z_N) \end{bmatrix}$$

$$x = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & \ldots & x_{3N} \end{bmatrix}$$

Vibrational energy is

$$\frac{1}{2} \sum_{\text{atoms, } a}^N m_a (v_x^2 + v_y^2 + v_z^2) + \frac{1}{2} \sum_{i, j}^{3N} \left(\frac{\partial^2 V}{\partial x_i x_j} \right) (x_i - x_{o_i})(x_j - x_{o_j})$$

- **Kinetic energy**: sum over atoms
- **Potential energy**: sum over Cartesian coordinates

But the equation has an inconvenient form...
Root-mass weighting

Change to root-mass-weighted coordinates

\[\xi_i = \sqrt{m_i}(x_i - x_{i0}) \]

Vibrational energy can now be written

\[E_{\text{vib}} = \frac{1}{2} \sum_i^{3N} \dot{\xi}_i^2 + \frac{1}{2} \sum_{i,j}^{3N} \left(\frac{\partial^2 V}{\partial \xi_i \partial \xi_j} \right)_{0} \xi_i \xi_j \]

kinetic energy + potential energy

.... or even more compactly as a matrix equation (H is the mass-weighted Hessian or force constant matrix)

\[E(\xi) = \frac{1}{2} \dot{\xi}^t \dot{\xi} + \frac{1}{2} \xi^t H \xi \]
Rewrite in diagonal form to obtain vibrations

\[E(q) = \frac{1}{2} \dot{q}^t \ddot{q} + \frac{1}{2} q^t L q \]

\(L \) is the result of finding matrix \(A \) that diagonalizes the mass-weighted Hessian \(H \)

\[L = A^t H A \]

The equation has **periodic** time-dependent solutions for each degree of freedom \(j \) with amplitude \(b_j \) depending on \(T \)

\[q_j(t) = b_j \cos(j t + \phi_j) \]

\(L \) contains the squared **vibrational frequencies** (eigenvalues)

\[
L = \begin{bmatrix}
\omega_1^2 & 0 & 0 & \cdots & 0 \\
0 & \omega_2^2 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & \cdots & \omega_{2N}^2 \\
0 & 0 & \cdots & 0 & \omega_{3N}^2 \\
\end{bmatrix}
\]

6 zero eigenvalues, **number of NM vibrations is 3N - 6**

translations of the CM of the protein in x, y, z are not periodic (3 dof)
rigid rotations about x, y, z axes are not periodic (3 dof)

Note: angular frequencies (radians/sec) are typically converted to \(\text{cm}^{-1} \) using \(\nu = \omega/2\pi c \)
Diagonalization provides the normal mode coordinates

\[L = A^t \mathcal{H} A \]

The columns of \(A^t \) are the eigenvectors -- aka the normal mode vectors.

Each normal mode is a linear combination of the root-mass weighted Cartesian coordinates. The jth normal mode coordinate is defined from the jth eigenvector:

\[q_j = \sum_{i=1}^{3N} A_{ij} \xi_i \]

Normal mode vector can be used to describe the vibrational movement of each atom

\[\delta x_{ij} = \frac{A_{ij}}{\sqrt{m_i}} b_j \cos(\omega_j t + \phi_j) \]

Amplitude of the motion
Normal modes directions allow for “intelligent” deformation of a structure

Changing the shape of a structure (macromolecule) involves changing the atom coordinates.

In general, the Cartesian coordinate axes are not aligned with the principal axes of the hyper-parabola described by the mass-weighted Hessian.

Normal coordinates are “natural” coordinate axes

The Hessian describes the potential energy in the region of the minimum.

Cartesian coordinate x1

Cartesian coordinate x2

Normal mode coordinate q1

Normal mode coordinate q2

Displacement along a single Cartesian coordinate

Displacement along a single normal mode coordinate moves all coupled atoms simultaneously.
Normal Mode calculation, summary

- Minimize the potential energy V

- Change to mass-weighted coordinates, expand V to quadratic terms (defines the Hessian matrix)

- Diagonalizing the mass-weighted Hessian matrix gives vibrational solutions
 - Eigenvalues: (squared) frequencies of vibration
 - Eigenvectors: coordinates q = directions of vibration, implicating all atoms.
 Each eigenvector is a linear combination of Cartesian atom coordinates

- Normal coordinates correspond to the directions of natural vibrational movement of the structure near the minimum
Normal modes provide dynamic information without MD

With MD, in principal one can explore entire conformational space (3N dof)

- In practice one is often confined to starting region
- Harmonic approximation is not as artificial as it might appear!
Use of NM for proteins

1977
• BPTI Molecular Dynamics [McCammon, Gelin, Karplus (1977) Nature]

1982
• BPTI Normal Modes [Noguti and Go (1982) Nature; Levitt et al. (1985) JMB]

1990's
• Simplified normal modes (ENM, GNM)
• NM projections on conformational differences
• Simplified normal modes (ENM, GNM)
• Mode exploration

2000's
• Crystal structure refinement
• Flexible docking
• Reaction path estimation
Entropy estimation

Important for rationalizing or predicting free-energy changes

- Binding affinity calculations require entropy of bound and free states

In the harmonic approximation (normal modes), the entropy is calculated from the volume of the potential energy well

- Larger entropy for larger-amplitude (lower frequency) vibration (larger box)
- Analytical calculation

Energy levels are spaced closer together in the shallow potential -- larger number of occupied states -- higher entropy
Consequences of normal coordinate description

For a given vibrational mode, all atoms move in a particular direction, and at the same frequency.

Independence of vibrational modes:
• Exciting one normal mode doesn't excite another
• Can speak of the vibrational energy of a mode, associated with a vibrational frequency (cm⁻¹)
• Higher frequency = more localized motion
• Lower frequency = more “collective” motion -- modes often called “collective movements”

Vibrations in actual solvent are overdamped (friction)
• Absolute frequencies (eigenvalues) used mainly for ordering
• Directions of vibration (eigenvectors) are more physically meaningful

Go et al (1982) PNAS 80, 3696

Frequencies of vibration for BPTI

Atom displacements in 1st low-frequency mode
Compare NM dynamics to experiment – xtallo

Crystal structures provide isotropic temperature factors (B factors) describing atom dynamics in the crystal:
- Like a standard deviation (écart type) around the average atom position
- Temperature (B-) factor is the surface of sphere containing a given probability of finding the atom center

We can calculate the same quantity using vibrational contributions from all NM's (for fluctuation of a single atom \(i=j \))

\[
\langle \delta_i \delta_j \rangle = 2kT \sum_{k=1}^{3N-6} \frac{q_{ik}q_{jk}}{\omega_k^2}
\]

Sum over modes

Typically compare alpha carbon (CA) fluctuations

Crystal B-factors are larger because they include other factors:
- Crystal disorder
- Model imprecision

Fluctuations for a nucleotide exchange factor [Robert et al. (2004) JMB]
Compare NM for different (but related) minima

Compare NM determinations for 20 different structures (snapshots) obtained from MD

Compare to fluctuations derived from crystallographic B-factors (in red) and MD simulation (in black)

Variability among NM results depending on structure chosen to analyze!
Excellent quality X-ray crystal structures provide *anisotropic* temperature factors.

Compare movements from NM to principal axes of the probability ellipsoids for 83 high-resolution protein crystal structures.

Example 50% probability ellipsoids from high-resolution small-molecule crystal structure [DMSO, de Paula et al (2000)].

Atom movement correlation – two different energy models.

90% probability ellipsoids for CA atoms from the syntenin PDZ2 domain (resolution 0.73 Å) colored by degree of anisotropy.

Pertinence of normal modes for understanding conformational changes

• Superpose structures of a protein in two different conformations
 \(A = \text{closed}, \quad B = \text{open} \)

• Calculate the conformational difference vector
 \[
 \Delta \mathbf{x} = \mathbf{x}_{\text{closed}} - \mathbf{x}_{\text{open}}
 \]

• Mode involvement (or overlap) of a mode can be defined as the projection of the mode vector onto the conformational difference vector

\[
\text{projection}_i = \frac{\mathbf{v}_i \cdot \Delta \mathbf{x}}{||\mathbf{v}_i|| \cdot ||\Delta \mathbf{x}||}
\]

Here \(\mathbf{v}_i = M^{-1/2} \mathbf{q}_i \), but can use \(\mathbf{v}_i \) or \(\mathbf{q}_i \) if CA-only

Tama and Sanejouand (2001) Prot Eng 14, 1
Normal-modes-related approaches
Normal Modes – Pros and Cons

Advantages
- Less computationally demanding than MD
- Identify correlated motions
- Analytical

Disadvantages
- Extensive minimization needed
 - Can be costly
 - Structural deviation
- Diagonalize large matrices (3N x 3N)
 - Memory/time
- Dependence on initial structure
- Solvent effects poorly incorporated
 - Single solvent configuration if any
 - Heuristic distance-dependent dielectric
- Strict application only to small displacements about minimum
 - Large-amplitude movements are nonsensical
 - Disadvantage for conformational searching

[Image: Structural deviation from crystal structure upon energy minimization of 83 proteins]
Rotation-translation blocks (RTB)

- All-atom NM calculations are memory-intensive for large systems
- Partition the polypeptide chain into blocks (e.g., a single amino acid)
- Combine rotations and translations of blocks to calculate approximate low-frequency modes (matrix dimension = 6 x number of blocks)
- **Allows treating assemblages of arbitrary size**
- Improved method (Block Normal Modes) includes relaxations within the blocks [Li & Cui (2002) Biophys J 83, 2457]

Quality of RTB mode vectors versus exact
Frequencies converge to exact values

Elastic Network Model (ENM)

Join atom pairs by Hookean springs

Use distance cutoff to limit pairs to a reasonable number

\[V_{ENM} = \sum_{i,j} C_{i,j} (d_{i,j} - d_{i,j}^o)^2 \quad \forall \quad d_{i,j} < d_{cutoff} \]

Reference distances are original distances in (crystal) structure

- **No energy minimization necessary!**
- **No structural deviation!**

Typical conventions

- All force constants \((C_{ij})\) are set equal
- Use residues (e.g., CA atoms) instead of all-atom representation
- Cutoff at 8-13 Å

Can use inverse weighting instead of cutoff

Consensus Normal Modes

Different local minima have different properties

Combine information for several different minima on the energy surface via the **covariance matrix** (inverse of the Hessian matrix of 2nd derivatives of the energy surface)

Average the covariance matrix over these minima

Calculate normal modes using the averaged covariance matrix

Lessens bias from any single structure determination -- more robust

Principal Component Analysis (PCA)

Also known as factor analysis, data mining, ...

Requires collections of related structures
- Multiple crystal structures of same protein (e.g., HIV protease)
- Structure determination by NMR provides a family of structural solutions
- MD sampling

Calculate the covariance matrix directly from the sampled structures
- Superimpose the structures
- Diagonalize the covariance matrix
- Components (eigenvectors) are displacement vectors (like normal modes)
Quasiharmonic modes

• Like PCA, but structures are extracted at regular intervals from MD simulation and mass weighted as in normal modes.

• Expect MD sampling of a single basin (single average structure) to follow some normal distribution.

\[\text{normal} = \text{quadratic deviations about the mean} \]

• Diagonalize the covariance matrix (inverse of an effective Hessian) to find effective modes.
[plan]

- Macromolecular structure
- Macromolecular dynamics and its role
- Standard approaches to understanding dynamics...
- … simplified dynamics --> normal modes
- Use of normal modes in biology and pharmaceutical research
Normal modes in structural biology and drug research
Refining crystal structure data

Traditional molecular replacement refinement of crystal structures explores a limited space of rigid-body displacements of a known structure:

- Calculate model structure factor, compare to experimental data
- Rotate/translate
- Recalculate structure factor
- ...wash, rinse, repeat...
- --> Minimize R-factor (difference between calculated and experimental structure factors)

Extend this space to include NM displacements of the starting model:

- Pointless to use all-atom model (it’s not refined!) Use CA-only (ENM approach)
- Limit search to the first 5-20 normal modes + rotation/translations
- Model “relaxes” to fit data

Use of normal modes increases radius of convergence for successful refinement

Delarue & Dumas (2004) PNAS 101, 6957
Interpreting low-resolution structural data

Electron Microscopy (EM)
- Obtain an “envelope” at 5-10 Å resolution
- Often one has high-resolution data for related conditions (e.g. xtal structure for an apo form = no ligand)

Apply an even coarser grained model than ENM!
- Calculate NM for the grid points near CA atoms inside the molecular envelope
- Refine structure factor for this envelope to match data
- Reconstruct atomic model
- rmsd drops from 3.8 to 1.8 Å in the example shown

Related applications with Small Angle X-ray scattering (SAXS)
Identifying correlated motions

Atoms are not independent – for one atom to move, others must get out of the way
- Atoms are bonded
- Dense medium

Can identify correlated atom motions
- Sidechain rotamer changes
- Domain movements

Important for interpreting mechanisms

Adenylate kinase. Crystal structures of open and closed forms. (Chapman, Structure 2007)
Examples of mode involvement

Domain closing on substrate binding
- Adenylate kinase binds ATP+AMP
- Project of each mode onto conformational difference vector
 - $P_{\text{max}} = 0.53$ (full all-atom potential)
 - $P_{\text{max}} = 0.62$ (simplified ENM)

Mechano-sensitive channel (MscL) opening
- Closed structure known
- Homology-modelled open structure
 - $P_{\text{max}} = 0.25$ (ENM)

Tama & Sanejouand (2001) Prot Eng 14, 1
Valadie et al. (2003) JMB 332, 657
Examples of mode involvement

Small G-protein activation (Ras, Rho, Arf ...)
- e.g., Arf1-GDP \rightarrow Arf1-GTP
- Catalyst is an exchange factor (GEF)
- Crystal structures
 Four structures of two free GEFs
 Nucleotide-free Arf1-GEF complex

Mode movements in free GEFs
- GEF hydrophobic groove closes on extracting “switch 1” region of G-protein
- open \rightarrow closed movement in GEF
- Low-frequency modes give large projections on this conformational-difference vector

Low frequency twisting modes in Arf1-GEF complex may help expel GDP

Robert et al. (2004) JMB
Modes for homologous structures

Do different but homologous proteins give similar movements?

• Pairwise projections of mode vectors for two different structures of two homologous GEFs
 • Arno (human)
 • Gea2 (yeast)
 • 37% sequence identity
• Low-frequency modes have fairly high similarity

Justification for ENM approaches

• Structural topology is one of the most important factors -- ignores amino-acid sequence
Flexibility in protein-protein interactions

Example: Domain swapping

- Two elements a,b pack well in one protein
- Why not pack ab' and a'b in a dimer?

- $2\degree$ structure or whole domains
- Oligomerization mechanism
- Evolution of enzymes (active site at interface)

Olfactory Binding Protein (Tegoni et al., 2002)

Flexible protein-protein docking

Prediction of the structure of protein-protein complexes

- **Protein interactions are essential in biology**
- But free structures outnumber complexes more than 20:1
- Similar problem for multidomain proteins

Predicting is fairly easy for rigid-body complexes

in which structures deviate by < about 1 Angstrom
6 degrees of freedom
 = 3 rotations, 3 translations

Association often involves conformational changes

3 \((N_1 + N_2)\) degrees of freedom
Example of flexible docking: FlexDock

Vibrational analysis (Gaussian Network, related to ENM)

Identify hinges between rigid parts of a flexible protein

Dock rigid parts separately

Use geometric hashing to filter the resulting docked complexes

Successful prediction of calmodulin docking to nitric oxide synthase peptide

Flexible docking of small molecules to proteins

Example: Inhibitor docking to a matrix metallo-proteinase (MM3)

Only have structure of the protein receptor bound to a small-molecule ligand
 Use for docking a novel inhibitor

Remove bias from known ligand by energy minimizing the apo receptor structure...
 ... but the binding pocket closes

Low-frequency NM allows opening of the binding pocket and successful docking

Floquet et al. (2006) FEBS Lett
Flexible docking of small molecules to proteins

- ENM calculated in limited region around binding site for speed
- Blind search of NM directions in multiple conformation docking trials
- Improves cross-docking results (test different ligands for same protein)
- Improved docking poses compared to single-receptor trials

High energy, 1.7 Å rmsd. (single receptor)
Low energy, 1.2 Å rmsd. (NM search)

Rueda et al. (2009) J Chem Inf Mod 49, 716
NM in binding affinity calculations

Predicting the free energy for a binding process

\[A + B \rightarrow AB \]

Exact methods for calculating \(G \):
- long MD simulations in explicit solvent (Free energy perturbation, PMF, ...)
- Expensive in terms of computation time

Simpler approach:
- MD of complex alone, explicit or implicit solvent, to sample both free and bound degrees of freedom
- Estimate solvation free-energy contribution (e.g., MM-PBSA)

How to calculate remaining entropy change (unbound A and B)?
- Normal modes -- vibrational entropy:

\[
S_{\text{vib}} = \sum_{j=1}^{3N} \left(\frac{\hbar \nu_j}{kT} \right) \frac{1}{e^{\frac{\hbar \nu_j}{kT}} - 1} - \ln(1 - e^{-\frac{\hbar \nu_j}{kT}})
\]

- Larger vibrational amplitude (lower frequency)--> larger entropy contribution
- Energy \(\hbar \nu = kT \) for \(\nu = 417 \text{ cm}^{-1} \)
Enhanced conformational sampling using normal modes

Goal: Change the conformation of our protein by displacing the starting conformation along a chosen normal mode q_k

- Displace the structure (●) by moving all the atoms along q_k
- Displacements along other modes $q_{m\neq k}$ are set to zero: becomes a line search
- $E(q_k)$ increases rapidly as we leave the harmonic (minimum) region of A
- To avoid this, the search should occur in space of all coordinates – this is rarely done
Enhanced conformational sampling

Another approach: restraining the mode coordinate

- Can calculate the coordinate q_k along the vector q_k by projecting the position vector onto the mode vector
- Add restraint term to potential energy in terms of this projection
- Only one degree of freedom is restrained (instead of $3N-6-1$ in previous case)
- PMFs can be calculated along mode directions
- Now included in Charmm (VMOD) [Perahia & Robert (2003, 2006)]

$$V_{\text{rest}} = K (q_k - q_{\text{target}})^2 / 2$$

![Diagram](image.png)

Mode used for the search

Allowed search region

Other modes

A

B

q_{target}

q_k -->
Neocarzinostatin (NCS): protein + enediyne ligand
 - Ig-fold beta sandwich + double beta ribbon « thumb »
 - Antitumoral activity (digestive system cancers - Japan)
 - Ligand is synthesis target with NCS apoprotein as transporter

Structure: Beta-sandwich + thumb = binding crevice
 - Directed mutagenesis to bind new ligands
 - Computational protein design to find mutants to optimize binding of a given ligand?

Example: opening/closure of ligand binding pocket

Low frequency normal mode describes opening/closing of binding pocket
Restrained search along a normal mode direction: crevice opening

Restrainment is necessary — displacement along mode direction followed by MD returns it to the original structure if mode restraint not present!

Umbrella sampling along the mode coordinate allows calculation of Potential of Mean Force (PMF)

- estimation of free energy profile along opening/closing coordinate
Constrained search along a normal mode direction: crevice opening

Calculation of Potential of Mean Force (PMF) along the opening coordinate suggests intrinsic flexibility of the binding site.

![Graph showing free energy and thermal energy over displacement along mode](image)
Constrained search along a normal mode direction allows opening the binding site of HIV-1 protease

PMF calculated along two different consensus normal mode (CM) coordinates

- HIV-1 protease can open sufficiently to bind substrate with relatively small overall energy change
- Opening has been indicated by NMR but not yet observed in long MD simulations

Summary

Rationalizing, predicting, and modifying biological macromolecular function requires more than structure – it requires understanding dynamics.

Normal modes analysis

- provides an faster alternative to standard MD approaches
- directly accounts for the highly correlated nature of atomic movements
- facilitates structural data refinement
- facilitates functional model building
- improves predictions of protein-ligand and protein-protein interactions (therapeutic applications...)

Overall Summary

WHAT Biochemistry/Biophysics

WHY Simple Models
 Modelling detailed dynamics

Next: Tools for intuition:
 VMD, PyMol

 Biopython
 Biskit, MDanalysis
 ...Flexbase
Acknowledgements

D. Perahia (ENS Cachan)
M. Guharoy, A. Pal (IBPC, Paris)
M. Ben Hamida-Rebaï
F. Cazals (Here!)
P. Chakrabarti, S. Dey (Bose Institute, Calcutta)
H. Van Tilbeurgh lab (FAAM, IBBMC, Orsay)
A. Bonvin, P. Kastritis (Utrecht University)
I. Moal, P. Bates (Cancer Research UK, London)
H. Hwang, Z. Weng (University of Massachusetts, Worcester)