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Preface: ways to approach existing
knowledge

« Observations as a function of parameters
— coded as alphabets, integers, real numbers, ... What
— anywhere from 1 to N dimensions
— noise
« Pattern recognition
— Machine learning
— Intuition (supervision)
 Models
— quantitative, qualitative, heuristic Why
— More data, better models
— More types of data, better models



Overall idea

Today I'll talk about three types of experience
with biological macromolecules

— Biochemical/biophysical What
— Structural
— Mechanical / Dynamic Why



WHAT
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100.000's ‘of ﬁrotein-protein interactions (PPlIs)
— identified by biochemical approaches (TAP/Tag)

— results in form of graphs
edges = interactions

* Current challenges

— structural information missing
complexes < 5 % of the PDB

— large assemblies

— pairwise info — interface overlap
— flexible association

— dynamic information missing




Protein-protein recognition: affinity and time scales

Affinity :

> equilibrium constant K; the dissociation reaction has a free energy AGy4 =-RT In

Kg/c® (c°=1Min standard state)

> at a given free component concentration, K4 determines the fraction bound

Time scale:

> fixed by rate constants k, (bimolecular) and k4 (monomolecular); Ky = ky / k,
> kydetermines whether an assembly is permanent or transient (life time 1/k)

Measurable range

Kqg | 1M 1mM | 1uM 1nM 1pM ‘
1/ky <microsecond millisecond second hour days
random  short-lived transient  stable  permanent
Type of cell adhesion
assembly redox complexes antigen-antibody
crystal enzyme-substrate enzyme-inhibitor
packing signal transduction

non-specific specific

weak dimers
oligomeric proteins




Interface size and stability

ASA
The solvent accessible surface area assesses

molecule-solvent contacts. (Lee & Richards 1971)
BSA

The buried surface area (=interface area) assesses

molecule-molecule contacts (Chothia & Janin, 1975)

Each interface atom contributes an average =~ 10 A2

The hydrophobic effect
The free energy of desolvating non-polar (aliphatic or
aromatic) groups scales linearly with their ASA

Aan =Y ASA
accepted values Y =24 (Chothia, 1974) to 50 cal/mol.A2

Polar and non-polar interactions

» the number of Van der Waals interactions at the

interface scales linearly with the BSA

> Interfaces have about 1 H-bond per 200 A2 BSA, but the
correlation is mediocre.

Can we relate
BSA and stability ?




Interface

size and stability : short-lived complexes
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Redox (electron transfer) complexes
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124 protein-protein complexes
Janin, Bahadur & Chakrabarti (2008)
Quat. Rev. Biophysics 2:133-180.



Interface size and stability : long-lived complexes
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124 protein-protein complexes
Janin, Bahadur & Chakrabarti (2008)
Quat. Rev. Biophysics 2:133-180.
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Redox (electron transfer) complexes
make short-lived interactions;

most have a small interface
BSA =900-1200 A2  0-3 H-bonds

Crawley & Carrondo (2004))

Enzyme/inhibitor and

Antigen/antibody complexes are
long-lived and highly specific;

most have a standard-size interface
BSA =1200-2000 A2 6-15 H-bonds
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Interface size and stability : transient complexes

Redox (electron transfer) complexes

small

make short-lived interactions;

Redox 11 most have a small interface
M Other 64 BSA =900-1200 A2  0-3 H-bonds

= Enz.yme 35 Crawley & Carrondo (2004)
| Antlbody 11

~ Signal transduction complexes
are often short lived. They have
standard-size or large interfaces:

BSA >2000 A2
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124 protein-protein complexes
Janin, Bahadur & Chakrabarti (2008)

Enzyme/inhibitor and

antigen/antibody complexes are
long-lived and highly specific.
Most have a standard-size interface

BSA =1200-2000 A2 6-15 H-bonds
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BSA (A2)

Quat. Rev. Biophysics 2:133-180.



Rigid-body vs. flexible recognition

Rigid-body recognition:

chymotrypsin-inhibitor complex
High affinity: K= 0.1 nM |
A standard-size (BSA = 1470 A?), single patch  Flexible recognition: Transducin Ga-Gpy
interface: Low affinity: Kg= 1 uM
No change in conformation between the free A large interface (BSA =2500 A2) in tyvo patches. °
and bound components: 0.6 A Co. RMS Major conformation changes (1.8 A Ca RMS)




Conclusion (1)

There is a relation between stability and interface size
> biologically relevant interfaces have a minimum size with a BSA =900 A2
> small interfaces (BSA=1000 A2) form weak homodimers and short-lived complexes
> standard-size interfaces (BSA =1200-2000 A?) yield stable, specific assemblies

...but it may be masked by the conformation changes that accompany the formation of large
interfaces (flexible recognition)

Other determinants of affinity and specificity
> stable assemblies (transient complexes and strong homodimers) have close-packed interfaces
» weak homodimers and crystal packing interfaces are loosely packed

» The interface is enriched in hydrophobic (aromatic/aliphatic) groups relative to the free protein
surface In homodimers, but not in transient complexes; it is depleted of electric charges.

» The interface core has a specific amino acid composition; the rim is like the protein surface

> Residues of the interface core are conserved in evolution; the rim is not conserved



Engineering novel interactions

Baker lab: Design proteins to bind the epitope of Spanish flu virus hemagglutinin (HA)
recognized by a broadly neutralizing antibody (Fleishman et al. 2011, Science 332:816)

865 candidate scaffolds
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Making high affinity Spanish flu HA binders

Fleishman et al. 2011, Science 332:816
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Schematic view of the results

Some 100 candidate complexes were designed and tested in two separate experiments.

Only three (Pdar/Prb; Karanicolas et al. 2011; HB36 and HB80, Fleishman et al. 2011) were
reproducibly detected in the yeast display/fluorescence assay.

All other candidates have Ky >>1 uM (AGy < 8 kcal/mol).

natural
complexes

designs

Binding energy >

Fleishman et al. (2011) JMB



Why is the success rate of the designs so low ?

Rosetta force field predicts similar binding free energies for the designs
and a majority of the 120 natural complexes taken from the docking
benchmark of Hwang et al. (2010).
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Assessing structural predictions in community-wide experiments:

CAPRI and CASP

» CASP (Critical Assessment of methods of Structure Prediction):

» predict the mode of folding of a protein based on the amino acid sequence

e compare to an unpublished X-ray or NMR structure.

e J. Moult (CARB, Rockville MD) launched CASP in 1994

» round of predictions once every two years with >100 targets and >500 predictors
» CAPRI (Critical Assessment of PRedicted Interactions):

e predict the mode of recognition of two proteins by docking their 3D structures

e compare to unpublished X-ray structures of protein-protein complexes.

» CAPRI started in 2001; about 60 groups participate

» Targets are few: a round of prediction begins any time one is made available

http://capri.ebi.ac.uk/



The Seattle Challenge to CAPRI: predict affinity

Based on their refined docking models, David Baker
and Sarel Fleishman challenged CAPRI groups to

»predict which designs make a stable complex

»rank the designs relative to the known natural
complexes in terms of binding free energy

CAPRI Round 20 (Feb. 2010):
42 designs, one successful
CAPRI Round 21 (April-dune 2010):
87 designs, one successful

38 CAPRI groups participated
and cosigned a JMB paper

Fleishman et al., 2011
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Community-Wide Assessment of Protein-Interface

Modeling Suggests Improvements to
Design Methodology

Sarel J. Fleishman', Timothy A. Whitehead ', Eva-Maria Strauch’,
Jacob E. Corn’, Sanbo Qin®, Huan-Xiang Zhou®, Julie C. Mitchell®,
Omar N. A Demerdash®, Mayuko Takeda-Shitaka ®, Genki Terashi®,
lain H. Moal ®, Xiaofan Li® Paul A. Bates ®, Martin Zacharias ’,
Hahnbeom Park®, Jun-su Ko®, Hasup Lee® Chaok Seok®,

Thomas Bourquard® """ Julie Bernauer'®, Anne Poupon '*-1% 14,
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Shiyong Liu=, Yangyu Huang®, Lin Li**, Dachuan Guo*,
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Ora Schueler-Furman®, Yuval Inbar*, Viadimir Patapov **,
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Daron M. Standley *’, Haruki Nakamura®, Kengo Kinoshita **,
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Victor L. Hsu ®*, Jian Zhan®', Yuedong Yang®', Yaoqi Zhou*',
Panagiotis L Kastritis **, Alexandre M. J. J. Bonvin*, WQiJi Zhang®,
Carlos J. Camacho®*, Krishna P. Kilambi**, Aroop Sircar *,

Jeffrey J. Gray >, Masahito Ohue™, Nobuyuki Uchikoga™,

Yuri Matsuzaki**, Takashi Ishida**, Yutaka Akiyama®®,

Raed Khashan®*, Stephen Bush®, Denis Fouches **,

Alexander Tropsha®, Juan EsquiveRodriguez *’, Daisuke Kihara ¥,
P. Benjamin Stranges™*, Ron Jacak **, Brian Kuhiman®,

Sheng-You Huang **, Xiaogin Zou ®, Shoshana J. Wodak*®-4'- 4%,

Joel Janin** and David Baker " ***



The Seattle Challenge: how did CAPRI perform?

. ldon’t
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» lknow yes
Predict the stable designs ? o HB369
(HB36, HB80) s bind
No one could ! s

Rank designs vs. complexes in terms of stability: some predictors did better than others...

»Group 6 (Paul Bates, Cancer Research UK, London) ranks 75% of the natural complexes above all the designs
»Group 8 (Park, Seoul National University) ranks 40% of the natural complexes above all the designs
»Group 9 (xxx) returns nearly random ranks
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Conclusion (2)

What did we learn from CAPRI affinity predictions ?

Telling a design from a natural complex may not

need a force field...
» Group 8 (Park, Seoul National University) makes out
designs by their lack of sequence conservation...
» Other groups trained their procedure on previous
designs from the Baker lab...

... but the goal was to improve Rosetta

Commonly used force fields (including Rosetta) contain
poorly estimated energy terms, especially electrostatics

Group 6 (Paul Bates, Cancer Research UK, London) uses a
solvation self-energy (ACE: Analytical Continuum
solvent Electrostatics) - discriminates between natural
complexes and designs much better than the Coulombic
energy in Rosetta.
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WHY (OR HOW)
i

Modelling of affinity



Modeling affinity from structure

Horton & Lewis (1992, Protein Sci. 1:169)

AGcalcz o Aan * B AGpol +y
)
© 1HBS
g 3CPA
g 2TPI-IV
= 1INS
o
25
(@]
o
1CSE O
1 SHFL

> o AGy,, =25 calimol.A2
similar to Chothia (1974)

>A6pol based on atomic desolvation
coefficients (Eisenberg & Mclachlan, 1986)

has the wrong sign ([3 =-1.2)

> Y = -6 kcal/mol

(=AG 4 from external degrees of freedom)

o
1CHO 3SGB
DO
2SSl

r=0.98

P 1TPA 15 observed values
2TPI-BPTI 3 variables
|
-10 0

- AGcalc

(kcal/mol)



Later attempts to fit AG had more parameters,

yet they did far less well !

Sample size r <AG, - AGps>
correl. coeff (kcal/mol)

Horton & Lewis (1992) 15 0.98 0.8
Audie & Scarlata (2007)

overfitting 2 training set 24 0.98 0.6

test set 35 0.73 2.4

Zhang et al. (2005) 82 0.73 2.2

Su et al. (2009) test set 5 82 0.73 2.2

test set 6 86 0.76 2.2

> Wr'ong model the reaction has a product, but no reactants !

» Wrong data and errors propagating from one paper to the next




Problems with the experimental data
in Horton & Lewis (1992)

1HBS Hemoglobin S

» the dimer does not exist,
except in crystal

> thereis no Kd in literature

only a critical concentration

A 4

(kcal/mol)

@ insulin dimer TP
1INS

— dipeptides

-
@

- AG‘obs

BPTI / trypsin AG s

valid range or trypsinogen (kcal/mol)
10-16 kcal/mol

2PTC trypsin 18

2TP|M0 data

2TPG trypsinogen 7

-AG_ e  (kcalmol)



Building a structure-affinity benchmark

Start from the Docking Benchmark version 4.0 (Hwang et al. 2010),
which includes 176 complexes and their unbound protein structures,

‘Concen'TmTior: (xM)

and collect K, values from the literature.

Did their best NOT to
> associate a K with the wrong proteins or the wrong complex
> use second hand data that can’t be traced to an actual measurement
> or data obtained in vivo, or under poorly defined conditions (ICg)
» copy typos (including typos in original papers)

while keeping track of
> method artefacts in Ky measurement (immobilization,reporter groups etc.)
» the conditions of the measurement : pH, ionic strength etc.
» differences between the proteins in crystal and solution studies
(genetic constructs, mutations, covalent modifications)
» allosteric ligand effects

"A structure-based benchmark for protein—protein binding affinity"
Kastritis, Moal, Hwang, Weng, Bates, Bonvin & Janin. (2011) Prot
Sci 20, 482-91.




Benchmark composition: Measuring K4

144 experimental values:

Time (min)
40% Titration =
> Spectroscopy: fluorescence,
UV absorbance, NMR etc...

» Calorimetry (ITC)

pcalisec
& & o
» N o
1 " 1 i 1

o
o
L

kcal/mole of injectant |
@ o » N o

407% Kinetics (K =kyk,)

» Surface plasmon resonance (SPR)

T T T T T T T T T T T
05 00 05 10 15 20 25 30 35 40 45 50

> Fast kinetics (stopped-flow) SPR
157% Enzyme inhibition K K
> Ki corrected for competition with substrate and < d
slow binding
0 50 100
57% Other methods time (sec)

> Analytical ultracentrifugation, ...

oncentration (xM)



How experimental conditions affect K

oncentration (xM)

Temperature lonic strength pH
230
24
225 pa ) ,
- /(
g 22.0 2r % //
= | 2t z o7
. \?\ 20 i //
/
210 L " ~<
31 32 R :’4?3 . 34 35 '90 " i - 0,1
10°/T(K") l 1/2 pH
range K ratio O(AG)
(kcal/mol)
Temperature 20-35°C 2 0.4
lonic strength 0.1-05M 3 0.7
pH 5-85 53 24

Data on Streptomyces inhibitor / thermolysin (Kunugi et al. 1999 FEBS Lett 259:815)



Error bars in K4 data

Source of discrepancy O(Ky) 7/ K4 O(AG)
kcal/mol
Experimental error (as reported) 20-50% 0.1-0.25
Discrepancy between methods 2-10 0.4-1.4
Protein sequence, modifications etc... 1-10 <14

Dependence on

temperature (20-35°C) 2 0.4

ionic strength (0.1-0.5 M) 2-10 0.4-1.4

pH (6-8.5) 10-90 1.4-2.7
Conclusion:

> Most K, values in our set are defined to within one order of magnitude
> It makes no sense to model or predict AG to within better than 1.4 kcal/mol

unless one can also model its pH dependence




Similar structures, different affinities:

Colicin Dnase domain / immunity protein
Kleanthous et al. (1998) Mol. Microbiol. 28:227; Meenan et al. (2010) PNAS 107:10080

Colicins are protein weapons excreted by E. coli strains to kill other bacteria; they carry DNase (or other)
enzymic activities. To protect itself against its own colicin, each strain also produces an immunity protein
that inhibits the cognate colicin very efficiently (K; <1 pM), and other (non-cognate) colicins poorly (K;>1 nM).

Cell survival requires K; < 0.1 nM.

The DNase domain of colicin E9 has been crystallized
in complex with the cognate Im9 (1EMV) and the

non-cognate Im2 (68% seq id; 2WPT).

The two complexes have very similar structures

(rmsd = 0.4 A), and very different affinities

PDB complex Ky
1EMV  E9/Im9 241014 Mm
SWPT E9/Im2 107 M

Kq ratio =4.10°  AAG = 9.2 kcal/mol




Similar structures, different affinities:

Trypsinogen as an allosteric protein
Bode (1979) JMB 127:357

16 195 245
K1V DS
1
activation catalysis

How trypsinogen becomes trypsin:

Proteolytic cleavage of the Lys-lle16 peptide
bond releases a -NH,* that can interact with
Asp194 at the active site, triggering a major
conformation change. The protein becomes
fully ordered, a substrate binding site forms,
and the enzyme becomes active

» BPTI binding induces the same change
> addition of the /leVal dipeptide also !

Allosteric interaction:
BPTI binding raises the affinity
of trypsinogen for lleVal by

> 5 orders of magnitude.




Conclusion (3)
What is new in the structure/affinity benchmark ?

Reliable K4 values for = 80% of the complexes in the Docking Benchmark and built the first

version of a database
» Along with the complexes, it contains unbound structures
» Nine entries represent cognate/non-cognate pairs of complexes,

» Many proteins are allosteric
(trypsinogen, G-proteins, receptors etc...)

» Many displays large conformation changes ...

» Empirical models must account for their free energy cost !

http.//bmm.cancerresearchuk.org/~bmmadmin/Affinity

Kastritis et al. (2011) Protein Sci. 20:482
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Fitting AG with one parameter:
rigid-body recognition

AGCBJC: 04 BSA + [3

2ptc®

48 of the 145 complexes (33%) display
small changes at the interface

(X 6x2 <35 A2, |_rmsd below =1 A)

For 46 of them, AG, correlates well with
the interface size: the BSA accounts
for =1/3 of the variance

<AGcaIc' AG obs™
(kcal/mol) Outliers

N r

48 0.55 2.4 2

AG calc

20

The outliers
2ptc (trypsin/BPTI) electrostatics?
120k (Rab4/rabenosyn-5) poor packing?




Fitting AG : the cost of conformation changes

AGC&|C= o BSA + B

20

16

8 12 16

AG calc

27 of the 145 complexes (20%) display very
large movements and/or disorder-to-order
transitions

(Z 6x2>165 A2, |_rmsd=1.5t09 A)

They all yield AG_ ;> AGgps
except 1jiw (UEV/ubiquitin), which has a Zn metal

bond at the interface.

" Taking AGiy. - AG,ps to be an estimate of
the free energy cost of the conformation
changes, the maximum is 34 kcal/mol and
the mean:

<AG > = 4.7 kcal/mol



Fitting observed AG’s with protein-protein docking potentials

Vreven, Hwang, Pierce & Weng (2012) Protein Sci. 21:396

l-rmsd <1A 1-2A >2A Al
Conformation changes small medium large

Potential I (correlation coefficient to observed AG)
AffinityScore (Audie 2009) 0.46 0.07 0.28 0.25
PyDock 0.21 0.42 0.06 0.26

(Cheng, Blundell, Fernandez-Recio 2007)

Rosetta (Gray et al., Baker 2003) 0.61 0.24 0.36 0.41
ZRANK (Pierce & Weng 2007) 0.51 0.11 0.20 0.22

new ZAPP (Vreven et al 2012) 0.66 0.61 0.62 0.63




ZAPP score (kcal/mol)

-10

=12 1

44 -

-16 9

-18 1

-20

r=0.63

A multi-parameter fit of AG

Vreven et al. (2012) Protein Sci. 21:396

* Antibody-antigen ™ Enzyme-containing A "Other”

Descriptors used in ZAPP

-20

-18 -16 -14 -12 -10 -8 -6 -4

AGobs (kcal/mol)

B

Ros_Sol
Ros_HB
Elec_IrA
Elec_IrR
Bur_CS
Loop, helix

MisRes

Tobi-Bahar (2006)
residue pair potential

Rosetta solvation potential
Rosetta H-bonding potential
Zrank long-range electrostatics
(attractive and repulsive terms)
#buried hydrophobic groups

#loop and helix residues
at interface

#residues ordered at interface

rms [AG 4. - AGgps] = 2.25 keal/mol




Kinetics of rigid-body protein-protein recognition

kon = K qt qr pr kcoII

p, = m/16 da? 8B Oy
~ 104 for da = Op = Oy = 20°

Janin (1997) Proteins 28:153

~ 0.5 transmission coefficient

K
kco" ~ 6.6.10° M1.s"
(Einstein-Schmoluchowski, 300 K in water)

For many antibody-antigen (including
lysozyme-HyHELS5) and protease-inhibitor
complexes, electrostatics play a minor part:

Ko = 105-108 M1.s-1
with ¢y= Q,=1, P, =10%10°

In barnase-barstar, electrostatic steering is
important at low/moderate ionic strength:

G 0 = 10%-108

kon =107-1010 M-1.s1
(Schreiber & Fersht, 1998)



Modeling the rigid-body association reaction

transition state complex Ko = K d; P Keon
K K transmission coefficient
—>
( Keoy = 1019 M 1.5 collision rate
Pr (Einstein-Smoluchowski)

P, probability of the correct orientation

D (g long-range electrostatics
1-pr

> predicts  k, = 10°-106 M-'.s-
assuming
» efficient conversion of the transition state to
the product complex (K =0.5)
Janin (1997) Proteins 28:153 > weak long-range interactions (q;, =1)
— - Northup & Erickson (1992) PNAS 89:3338 » that in the transition state, the subunit
Zhou (1993) Biophys. J. 64:1711 orientation is determined to within 15-20°

Gabdoulline &Wade (2001) JMB 306:1139 (P 1074-10)



Modeling long-range electrostatics effects on k,

Schreiber, Haran & Zhou (2009) Chem. Rev. 109:839

ionic strength (M)
1.0 0.5 0.2 0.1 0.02
I I
" |

B 5////

10° | /
<
: L

10° | . The association rate constants of wild-type
ka 0( and mutant TEM1-BLIP complexes at
different salt concentrations.

» At moderate ionic strength (0.2 M),
long-range effects change k_ by a
factor q, < 20.

» They are modeled accurately by
Debye-Huckel screening

\

104 | ] ] ]
0.2 0.3 0.4 0.5 0.6 0.7 0.8

|l + Ka



Flexible recognition:
Conformer selection vs. Induced fit

Conformer selection

the free protein is in equilibrium between two or more conformations
only bound-like conformers can make productive collisions; if they form a

fraction o (probably <<1) of the population

the association rate becomes aka << ka

Induced fit
Koshland (1958, PNAS 44:98)

the free protein is in the unbound conformation

interactions made in the transition state induce a change to the bound
conformation;

the change has a high probability B to be occur before the transition state

dissociates; the transmission coefficient becomes K

the association rate becomes Bka (possibly =k_)




Rate constants in the structure/affinity benchmark

Moal & Bates (2012) PLOS Comp Biol 8:e1002351

Kinetic data are available for 44 out of the 144 complexes of the structure/affinity benchmark.

+ kg is in the range 10%-107 M""s1 for 72% of the complexes fast
binders

* kg is inthe range 10°-102 s for70% " "
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Fitting observed rate constants

Moal & Bates (2012) PLOS Comp Biol 8:e1002351

» 23 descriptors for 44 k, and 44 k4 values.

* models evaluated on all 144 K values (= ky/k,) of the structure/affinity benchmark.

Molecular descriptors with a high correlation to log k_

Descriptor r
BSA 0.24
DFIRE_EBU -0.47 Energy change btween bound and unbound (DFIRE)
OPUS_PSP_EBU -0.40 id. (OPUS force field)
NUM_HB 0.39 Number of interface H-bonds
H_BOND_ENS -0.35 H-bonding potential (FireDock)
ROS_HBOND_UB -0.35 id.  (PyRosetta)
ATOM_P 0.39 Fraction of polar atoms at interface

EBU (from DFIRE of OPUS) represents the energy cost of conformation changes. Its high

correlation to log kasuggests a predominance of conformer selection.
A model with only 3 parameters (the two descriptors DFIRE_EBU and NUM_HB and a constant)

predicts log k. to within 0.8 RMS.




Conclusion (4)

Rigid-body recognition:

a simple geometric model of translational/rotational diffusion accounts for observed
rates of association; except at low ionic strength, long-range electrostatics plays only a

minor role. Thus:
> The rate of dissociation largely determines K;

» Short-range interactions govern affinity and specificity.

Flexible recognition:

slow binding is the exception, either:
» the conformation changes are fast (induced fit mechanism), or
» the competent species are highly populated (conformer selection)

» the correlation with EBU suggests that the second mechanism may be rather common



