What can the PDB tell us about how proteins recognize and bind to each other?

Charles Robert¹ Joël Janin²

¹ Institut de Biologie Physico-Chimique, Paris
² Université Paris XI, Orsay

Preface: ways to approach existing knowledge

- Observations as a function of parameters
 - coded as alphabets, integers, real numbers, ...
 - anywhere from 1 to N dimensions
 - noise
- Pattern recognition
 - Machine learning
 - Intuition (supervision)
- Models
 - quantitative, qualitative, heuristic
 - More data, better models
 - More *types* of data, better models

What

Why

Overall idea

Today I'll talk about three types of experience with biological macromolecules

- Biochemical/biophysical
- Structural
- Mechanical / Dynamic

Why

What

WHAT

Macromolecular interactions in Biology

Macromolecular interactions

- Define the morphology of the organism, its function, its pathologies
- Interactions generally manifested by a complex
 - Repetition ofs interfaces → assemblies (filaments, envelopes, ...)
 - Therapeutic targets

100 000's of protein-protein interactions (PPIs)

- identified by biochemical approaches (TAP/Tag)
- results in form of graphs
 edges = interactions

Current challenges

- structural information missing complexes < 5 % of the PDB
- large assemblies
- pairwise info interface overlap
- flexible association
- dynamic information missing

Protein-protein recognition: affinity and time scales

Affinity :

- > equilibrium constant K_d ; the dissociation reaction has a free energy $\Delta G_d = -RT \ln K_d/c^\circ$ (c°=1M in standard state)
- \succ at a given free component concentration, K_d determines the fraction bound

Time scale:

- > fixed by rate constants k_a (bimolecular) and k_d (monomolecular); $K_d = k_d / k_a$
- \succ k_d determines whether an assembly is **permanent** or **transient** (life time $1/k_d$)

Interface size and stability

ASA

The solvent accessible surface area assesses molecule-solvent contacts. (*Lee & Richards 1971*) BSA

The **buried surface area (=interface area)** assesses molecule-molecule contacts (*Chothia & Janin, 1975*) Each interface atom contributes an average ≈ 10 Å²

The hydrophobic effect

The free energy of desolvating non-polar (aliphatic or aromatic) groups scales linearly with their ASA

$\Delta G_{np} = \gamma ASA$

accepted values $\gamma = 24$ (*Chothia, 1974*) to 50 cal/mol.Å²

Polar and non-polar interactions

- the number of Van der Waals interactions at the interface scales linearly with the BSA
- Interfaces have about 1 H-bond per 200 Å² BSA, but the correlation is mediocre.

$$BSA = ASA_{A} + ASA_{B} - ASA_{AB}$$

Interface size and stability : short-lived complexes

124 protein-protein complexes Janin, Bahadur & Chakrabarti (2008) *Quat. Rev. Biophysics* 2:133-180. Redox (electron transfer) complexes make short-lived interactions; Most have a small interface $BSA = 900-1200 \text{ Å}^2 ext{ 0-3 H-bonds}$ Crawley & Carrondo (2004)

Interface size and stability : long-lived complexes

Quat. Rev. Biophysics 2:133-180.

Interface size and stability : transient complexes

124 protein-protein complexes Janin, Bahadur & Chakrabarti (2008) Quat. Rev. Biophysics 2:133-180.

Redox (electron transfer) complexes make short-lived interactions; most have a small interface $BSA = 900-1200 \text{ Å}^2 0-3 \text{ H-bonds}$ Crawley & Carrondo (2004)

Signal transduction complexes are often short lived. They have standard-size or large interfaces: BSA >2000 Å².

Enzyme/inhibitor and antigen/antibody complexes are long-lived and highly specific. Most have a standard-size interface $BSA = 1200-2000 \text{ Å}^2$ 6-15 H-bonds

Rigid-body vs. flexible recognition

Rigid-body recognition: chymotrypsin-inhibitor complex

High affinity: $K_d \approx 0.1 \text{ nM}$ A standard-size (*BSA* = 1470 Å²), single patch interface:

No change in conformation between the free and bound components: 0.6 Å C α RMS

Flexible recognition: Transducin G α **-G** $\beta\gamma$

Low affinity: K_d≈ 1 μM A large interface (*BSA* =2500 Å2) in two patches. ` Major conformation changes (1.8 Å Cα RMS)

Conclusion (1)

There is a relation between stability and interface size

- > biologically relevant interfaces have a minimum size with a $BSA \approx 900 \text{ Å}^2$
- > small interfaces (BSA \approx 1000 Å²) form weak homodimers and short-lived complexes
- > standard-size interfaces ($BSA = 1200-2000 \text{ Å}^2$) yield stable, specific assemblies
- ...but it may be masked by the conformation changes that accompany the formation of large interfaces (flexible recognition)

Other determinants of affinity and specificity

- > stable assemblies (transient complexes and strong homodimers) have close-packed interfaces
- > weak homodimers and crystal packing interfaces are loosely packed
- The interface is enriched in hydrophobic (aromatic/aliphatic) groups relative to the free protein surface In homodimers, but not in transient complexes; it is depleted of electric charges.
- > The interface core has a specific **amino acid composition**; the rim is like the protein surface
- > Residues of the interface core are **conserved in evolution**; the rim is not conserved

Engineering novel interactions

Baker lab: Design proteins to bind the epitope of **Spanish flu virus hemagglutinin (HA)** recognized by a broadly neutralizing antibody (Fleishman et al. 2011, *Science* 332:816)

Making high affinity Spanish flu HA binders

Fleishman et al. 2011, Science 332:816

Schematic view of the results

Some 100 candidate complexes were designed and tested in two separate experiments.

Only three (Pdar/Prb; Karanicolas et al. 2011; HB36 and HB80, Fleishman et al. 2011) were reproducibly detected in the yeast display/fluorescence assay.

All other candidates have $K_d >> 1 \ \mu M \ (\Delta G_d < 8 \ kcal/mol)$.

Why is the success rate of the designs so low?

Rosetta force field predicts similar binding free energies for the **designs** and a majority of the 120 **natural complexes** taken from the docking benchmark of Hwang et al. (2010).

• Can other force fields do better?

Fleishman et al. (2011) JMB

Assessing structural predictions in community-wide experiments: CAPRI and CASP

> CASP (Critical Assessment of methods of Structure Prediction):

- predict the mode of **folding** of a protein based on the amino acid sequence
- compare to an unpublished X-ray or NMR structure.
- J. Moult (CARB, Rockville MD) launched CASP in 1994
- round of predictions once every two years with >100 targets and >500 predictors

> CAPRI (Critical Assessment of PRedicted Interactions):

- predict the mode of **recognition** of two proteins by docking their 3D structures
- compare to unpublished X-ray structures of protein-protein complexes.
- CAPRI started in 2001; about 60 groups participate
- Targets are few: a round of prediction begins any time one is made available

http://capri.ebi.ac.uk/

The Seattle Challenge to CAPRI: predict affinity

Based on their refined docking models, David Baker and Sarel Fleishman challenged CAPRI groups to

>predict which designs make a stable complex

rank the designs relative to the known natural complexes in terms of binding free energy

CAPRI Round 20 (Feb. 2010): 42 designs, one successful CAPRI Round 21 (April-June 2010): 87 designs, one successful

38 CAPRI groups participated

... and cosigned a JMB paper

Fleishman et al., 2011

dat 10.1016/jjmb.2011.09.031		J. Mpl. Blol (2011) xx, xxx-xx
Self-Selan	Contents lists available at www.aciencedirect.com	IMB
	Journal of Molecular Biology	
ELSEVIER.	journal homepage: http://ees.elsevier.com.jmb	ta in the

Community-Wide Assessment of Protein-Interface Modeling Suggests Improvements to Design Methodology

Sarel J. Fleishman¹, Timothy A. Whitehead¹, Eva-Maria Strauch¹, Jacob E. Corn¹, Sanbo Qin², Huan-Xiang Zhou², Julie C. Mitchell³, Omar N. A. Demerdash⁴, Mayuko Takeda-Shitaka⁵, Genki Terashi⁵, Iain H. Moal⁶, Xiaofan Li⁶, Paul A. Bates⁶, Martin Zacharias⁷, Hahnbeom Park⁸, Jun-su Ko⁸, Hasup Lee⁸, Chaok Seok⁸, Thomas Bourquard^{9,10,11}, Julie Bernauer¹⁰, Anne Poupon^{12,13,14}, Jérôme Azé¹⁰, Seren Soner¹⁵, Sefik Kerem Ovali¹⁵, Pemra Ozbek¹⁵, Nir Ben Tal¹⁶, Türkan Haliloglu¹⁵, Howook Hwang¹⁷, Thom Vreven¹⁷, Brian G. Pierce¹⁷, Zhiping Weng¹⁷, Laura Pérez-Cano¹⁸, Carles Pons¹⁸, Juan Fernández-Recio¹⁸, Fan Jiang¹⁹, Feng Yang²⁰, Xinqi Gong²⁰, Libin Cao²⁰, Xianjin Xu²⁰, Bin Liu²⁰, Panwen Wang²⁰, Chunhua Li²⁰, Cunxin Wang²⁰, Charles H. Robert²¹, Mainak Guharoy²¹, Shiyong Liu²², Yangyu Huang²², Lin Li²², Dachuan Guo²², Ying Chen²², Yi Xiao²², Nir London²³, Zohar Itzhaki²³, Ora Schueler-Furman²³, Yuval Inbar⁴, Vladimir Patapov²⁴, Mati Cohen²⁴, Gideon Schreiber²⁴, Yuko Tsuchiya²⁵, Eiji Kanamori²⁸, Daron M. Standley²⁷, Haruki Nakamura²⁵, Kengo Kinoshita²⁸, Camden M. Driggers²⁹, Robert G. Hall³⁰, Jessica L. Morgan²⁹, Victor L. Hsu²⁹, Jian Zhan³¹, Yuedong Yang³¹, Yaoqi Zhou³¹, Panagiotis L Kastritis³², Alexandre M. J. J. Bonvin³², Weiyi Zhang³³, Carlos J. Camacho³³, Krishna P. Kilambi³⁴, Aroop Sircar³⁴, Jeffrey J. Gray³⁴, Masahito Ohue³⁵, Nobuyuki Uchikoga³⁵, Yuri Matsuzaki³⁵, Takashi Ishida³⁵, Yutaka Akiyama³⁵, Raed Khashan³⁶, Stephen Bush³⁸, Denis Fouches³⁶, Alexander Tropsha³⁶, Juan Esquive-Rodríguez³⁷, Daisuke Kihara³⁷, P. Benjamin Stranges³⁸, Ron Jacak³⁸, Brian Kuhlman³⁸, Sheng-You Huang³⁹, Xiaoqin Zou³⁰, Shoshana J. Wodak^{40,41,42}, Joel Janin⁴³ and David Baker^{1,44+}

The Seattle Challenge: how did CAPRI perform?

Rank designs vs. complexes in terms of stability: some predictors did better than others...

Group 6 (Paul Bates, Cancer Research UK, London) ranks 75% of the natural complexes above all the designs
 Group 8 (Park, Seoul National University) ranks 40% of the natural complexes above all the designs
 Group 9 (xxx) returns nearly random ranks

Conclusion (2)

What did we learn from CAPRI affinity predictions ?

Telling a design from a natural complex may not need a force field...

- Group 8 (Park, Seoul National University) makes out designs by their lack of sequence conservation...
- Other groups trained their procedure on previous designs from the Baker lab...

... but the goal was to improve Rosetta

Commonly used force fields (including Rosetta) contain poorly estimated energy terms, especially electrostatics *Group 6* (Paul Bates, Cancer Research UK, London) uses a **solvation self-energy** (ACE: Analytical Continuum solvent Electrostatics) → discriminates between natural complexes and designs much better than the Coulombic energy in Rosetta.

WHY (OR HOW) 1

Modelling of affinity

Later attempts to fit ΔG had more parameters, yet they did far less well !

		Sample size	r correl. coeff	<ΔG _{calc} - ΔG _{obs} > (kcal/mol)
Horton & Lewis (1992)		15	0.98	0.8
Audie & Scarlata (2007)				
overfitting	<pre>? training set</pre>	24	0.98	0.6
	test set	35	0.73	2.4
Zhang et al. (2005))	82	0.73	2.2
Su et al. (2009)	test set 5	82	0.73	2.2
	test set 6	86	0.76	2.2

Wrong model the reaction has a product, but no reactants !
Wrong data and errors propagating from one paper to the next

Problems with the experimental data in Horton & Lewis (1992)

Building a structure-affinity benchmark

Start from the **Docking Benchmark** version 4.0 (Hwang et al. 2010), which includes 176 complexes and their **unbound protein structures**, and **collect K_d values** from the literature.

Did their best NOT to

- associate a K_d with the wrong proteins or the wrong complex
- use second hand data that can't be traced to an actual measurement
- > or data obtained *in vivo*, or under poorly defined conditions (IC_{50})
- copy typos (including typos in original papers)

while keeping track of

- method artefacts in K_d measurement (immobilization, reporter groups etc.)
- the conditions of the measurement : pH, ionic strength etc.
- differences between the proteins in crystal and solution studies (genetic constructs, mutations, covalent modifications)
- > allosteric ligand effects

"A structure-based benchmark for protein–protein binding affinity" Kastritis, Moal, Hwang, Weng, Bates, Bonvin & Janin. (2011) Prot Sci 20, 482-91.

Benchmark composition: Measuring K_d

144 experimental values:

40% Titration

- Spectroscopy: fluorescence,
 UV absorbance, NMR etc...
- > Calorimetry (ITC)

40% Kinetics $(K_d = k_d/k_a)$

- > Surface plasmon resonance (SPR)
- Fast kinetics (stopped-flow)

15% Enzyme inhibition

 K_i corrected for competition with substrate and slow binding

5% Other methods

> Analytical ultracentrifugation, ...

How experimental conditions affect K_d

	range	K _d ratio	<mark>(ΔG)</mark> (kcal/mol)
Temperature	20 - 35 °C	2	0.4
Ionic strength	0.1 - 0.5 M	3	0.7
рН	5 - 8.5	53	2.4

Data on Streptomyces inhibitor / thermolysin (Kunugi et al. 1999 FEBS Lett 259:815)

Error bars in K_d data

Source of discrepancy	O (K _d) / K _d	Ο(ΔG) kcal/mol	(K _d)
Experimental error (as reported)	20-50%	0.1-0.25	
Discrepancy between methods	2-10	0.4-1.4	
Protein sequence, modifications etc	1-10	<1.4	
Dependence on			
temperature (20-35°C)	2	0.4	
ionic strength (0.1-0.5 M)	2-10	0.4-1.4	
pH (6-8.5)	10-90	1.4-2.7	

Conclusion:

- > Most K_d values in our set are defined to within one order of magnitude
- > It makes no sense to model or predict ΔG to within better than 1.4 kcal/mol

unless one can also model its pH dependence

Similar structures, different affinities: Colicin Dnase domain / immunity protein

Kleanthous et al. (1998) Mol. Microbiol. 28:227; Meenan et al. (2010) PNAS 107:10080

Colicins are protein weapons excreted by *E. coli* strains to kill other bacteria; they carry DNase (or other) enzymic activities. To protect itself against its own colicin, each strain also produces an **immunity protein** that inhibits the cognate colicin very efficiently ($K_i < 1 \text{ pM}$), and other (non-cognate) colicins poorly ($K_i > 1 \text{ nM}$). Cell survival requires $K_i < 0.1 \text{ nM}$.

The DNase domain of colicin **E9** has been crystallized in complex with the **cognate Im9** (1EMV) and the **non-cognate Im2** (68% seq id; 2WPT). The two complexes have **very similar structures** (rmsd = 0.4 Å), and very **different affinities**

PDB	complex	K _d
1EMV	E9 / Im9	2.4 10 ⁻¹⁴ M
2WPT	E9 / Im2	10 ⁻⁷ M
K _d ratio	= 4.10 ⁶	ΔΔG = 9.2 kcal/mol

Similar structures, different affinities: Trypsinogen as an allosteric protein Bode (1979) JMB 127:357

How trypsinogen becomes trypsin:

- Proteolytic cleavage of the Lys-Ile16 peptide bond releases a -NH₃⁺ that can interact with Asp194 at the active site, triggering a major **conformation change**. The protein becomes fully ordered, a substrate binding site forms, and the enzyme becomes active
- **BPTI** binding induces the same change
- > addition of the *lleVal* dipeptide also !

Allosteric interaction: BPTI binding raises the affinity of trypsinogen for *lleVal* by > 5 orders of magnitude.

Conclusion (3)

What is new in the structure/affinity benchmark?

Reliable K_d values for $\approx 80\%$ of the complexes in the Docking Benchmark and built the first version of a database

- > Along with the complexes, it contains **unbound structures**
- Nine entries represent cognate/non-cognate pairs of complexes,
- Many proteins are allosteric (trypsinogen, G-proteins, receptors etc...)
- > Many displays large conformation changes ...
- > Empirical models must account for their free energy cost !

http://bmm.cancerresearchuk.org/~bmmadmin/Affinity

Kastritis et al. (2011) Protein Sci. 20:482

Fitting ΔG with one parameter: rigid-body recognition

48 of the 145 complexes (33%) display small changes at the interface $(\Sigma \, \delta x^2 < 35 \, \text{\AA}^2, \, \text{I}_\text{rmsd} \, \text{below} \approx 1 \, \text{\AA})$

For 46 of them, ΔG_d correlates well with the interface size: the *BSA* accounts for $\approx 1/3$ of the variance

The outliers

2ptc (trypsin/BPTI) *electrostatics*? 1z0k (Rab4/rabenosyn-5) *poor packing*?

Fitting ΔG : the cost of conformation changes

27 of the 145 complexes (20%) display very large movements and/or disorder-to-order transitions

 $(\Sigma \ \delta x^2 > 165 \ \text{\AA}^2, \ \text{I}_{\text{rmsd}} = 1.5 \text{ to } 9 \ \text{\AA})$

They all yield $\Delta G_{calc} > \Delta G_{obs}$

except 1jiw (UEV/ubiquitin), which has a Zn metal bond at the interface.

Taking $\Delta G_{calc} - \Delta G_{obs}$ to be an estimate of the free energy cost of the conformation changes, the maximum is 34 kcal/mol and the mean:

$$<\Delta G_{conf} > = 4.7 \text{ kcal/mol}$$

Fitting observed ΔG 's with protein-protein docking potentials

Vreven, Hwang, Pierce & Weng (2012) Protein Sci. 21:396

I-rmsd	<1Å	1-2Å	>2Å	All
Conformation changes	small	medium	large	
Potential	r (correla	tion coefficie	nt to observed	ΔG)
AffinityScore (Audie 2009)	0.46	0.07	0.28	0.25
PyDock (Cheng, Blundell, Fernandez-Recio 2007)	0.21	0.42	0.06	0.26
Rosetta (Gray et al., Baker 2003)	0.61	0.24	0.36	0.41
ZRANK (Pierce & Weng 2007)	0.51	0.11	0.20	0.22
new ZAPP (Vreven et al 2012)	0.66	0.61	0.62	0.63

A multi-parameter fit of ΔG

Vreven et al. (2012) Protein Sci. 21:396

r = 0.63 rms [$\Delta G_{calc} - \Delta G_{obs}$] = 2.25 kcal/mol

Kinetics of rigid-body protein-protein recognition

 $\mathbf{k}_{on} = \kappa \mathbf{q}_t \mathbf{q}_r \mathbf{p}_r \mathbf{k}_{coll}$

$$\mathbf{p}_{\mathbf{r}} = \pi / 16 \ \delta \alpha^2 \ \delta \beta^2 \ \delta \chi$$
$$\approx 10^{-4} \quad \text{for} \ \delta \alpha \approx \delta \beta \approx \delta \chi \approx 20^{\circ}$$

Janin (1997) Proteins 28:153

 $\kappa \approx 0.5$ transmission coefficient $k_{coll} \approx 6.6.10^9 \text{ M}^{-1}.\text{s}^{-1}$ (Einstein-Schmoluchowski, 300 K in water)

For many **antibody-antigen** (including lysozyme-HyHEL5) and **protease-inhibitor** complexes, electrostatics play a minor part:

 $k_{on} = 10^5 \text{--} 10^6 \, \text{M}^{-1} \text{.s}^{-1}$

with $q_t \approx q_r \approx 1$, $p_r = 10^{-4} \cdot 10^{-5}$

In **barnase-barstar**, electrostatic steering is important at low/moderate ionic strength:

 $q_t q_r = 10^3 - 10^6$ $k_{on} = 10^7 - 10^{10} M^{-1} . s^{-1}$ (Schreiber & Fersht, 1998)

Modeling the rigid-body association reaction

Janin (1997) Proteins 28:153

Northup & Erickson (1992) PNAS 89:3338
 Zhou (1993) Biophys. J. 64:1711
 Gabdoulline &Wade (2001) JMB 306:1139

$\mathbf{k}_{a} = \kappa \mathbf{q}_{ir} \mathbf{p}_{r} \mathbf{k}_{coll}$

- κ transmission coefficient
- $k_{coll} \approx 10^{10} \, \text{M}^{-1}.\text{s}^{-1}$ collision rate (Einstein-Smoluchowski)
- pr probability of the correct orientation
- **Q**el long-range electrostatics

predicts

$$k_a = 10^5 - 10^6 \, \text{M}^{-1} \cdot \text{s}^{-1}$$

assuming

- efficient conversion of the transition state to
 - the product complex ($\kappa \approx 0.5$)
- > weak long-range interactions ($q_{lr} \approx 1$)
- ➤ that in the transition state, the subunit orientation is determined to within 15-20° $(p_r \approx 10^{-4} 10^{-5})$

Modeling long-range electrostatics effects on ka

Schreiber, Haran & Zhou (2009) Chem. Rev. 109:839

At moderate ionic strength (0.2 M),

long-range effects change k_a by a

- factor $q_{lr} < 20$.
- They are modeled accurately by Debye-Hückel screening

The association rate constants of wild-type and mutant TEM1-BLIP complexes at different salt concentrations.

Flexible recognition:

Conformer selection vs. Induced fit

Conformer selection

- > the free protein is in equilibrium between two or more conformations
- only bound-like conformers can make productive collisions; if they form a

fraction α (probably <<1) of the population

 \blacktriangleright the association rate becomes $\alpha k_a \ll k_a$

Induced fit

Koshland (1958, *PNAS* 44:98)

- > the free protein is in the **unbound** conformation
- interactions made in the transition state induce a change to the bound conformation;
- > the change has a high probability β to be occur before the transition state dissociates; the transmission coefficient becomes $\beta \kappa$
- ▶ the association rate becomes βk_a (possibly ≈ k_a)

Rate constants in the structure/affinity benchmark

Moal & Bates (2012) PLOS Comp Biol 8:e1002351

Kinetic data are available for 44 out of the 144 complexes of the structure/affinity benchmark.

 k_a is in the range 10⁴-10⁷ M⁻¹s⁻¹ for 72% of the complexes fast binders

k_d is in the range 10⁻⁵-10⁻² s⁻¹ for 70% "

Fitting observed rate constants

Moal & Bates (2012) PLOS Comp Biol 8:e1002351

- 23 descriptors for 44 k_a and 44 k_d values.
- models evaluated on all 144 K_d values (= k_d/k_a) of the structure/affinity benchmark.

Molecular descriptors with a high correlation to log ka			
Descriptor	r		
BSA	0.24		
DFIRE_EBU	-0.47	Energy change btween bound and unbound (DFIRE)	
OPUS_PSP_EBU	-0.40	id. (OPUS force field)	
NUM_HB	0.39	Number of interface H-bonds	
H_BOND_ENS ROS_HBOND_UB	-0.35 -0.35	H-bonding potential (FireDock) id. (PyRosetta)	
ATOM_P	0.39	Fraction of polar atoms at interface	

EBU (from DFIRE of OPUS) represents the energy cost of conformation changes. Its high

correlation to log k_a suggests a predominance of conformer selection.

A model with only 3 parameters (the two descriptors DFIRE_EBU and NUM_HB and a constant) **predicts log k**_a to within 0.8 RMS.

Conclusion (4)

Rigid-body recognition:

- a simple geometric model of translational/rotational diffusion accounts for observed rates of association; except at low ionic strength, long-range electrostatics plays only a minor role. Thus:
- > The rate of dissociation largely determines K_d ;
- Short-range interactions govern affinity and specificity.

Flexible recognition:

slow binding is the exception, either:

- > the conformation changes are fast (induced fit mechanism), or
- the competent species are highly populated (conformer selection)
- > the correlation with EBU suggests that the second mechanism may be rather common