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Outline

. Modeling high resolution protein complexes
– Protein - protein interface?
– Mining the stability - specificity of interactions

predicting binding affinities
– Understanding solvation properties
– Template based docking

. Modeling large protein assemblies
– Reconstruction by data integration
– Handling uncertainties on protein shapes and positions
– Assessing the reconstruction of fuzzy models

. Algorithms
– Notions on cell complexes
– Delaunay - Voronoi diagrams, α-shapes
– Elementary notions in statistics
– Comparing trees - the Tree Edit Distance
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Structure-to-Function

Docking (and Folding)

Improved predictions

– atomic models (small complexes)

– coarse models (PPI networks)

. Questions

– Modeling protein complexes
– Modeling the flexibility of proteins
– Bridging the gap to

systems biology

. Partial answers from

– Geometric - topological modeling
stability analysis

– Graph theory
matching algorithms

– Statistical testing
– Dimensionality reduction

investigating correlations
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Geometry - Topology versus Biophysics:
A Matter of Correlations

Φ

Ψ

. �Geometry is not everything, but is is the most fundamental thing�
M. Connolly, 1982

. Building (phenomelogical) models: predicting, explaining



Diversity of Protein Assemblies: Quaternary Structure

[J. Janin]

. Molecular mass: from O(100 kDa) up to 120 MDa (mammalian NPC)

. Structures vs sequences: 100,000 (PDB) versus 17,000,000 (NCBI RefSeq)

.Ref: Janin et al; Quarterly reviews of biophysics; 2008

.Ref: http://www.ncbi.nlm.nih.gov/RefSeq

http://www.ncbi.nlm.nih.gov/RefSeq


Diversity of Protein Assemblies: Time Scales

. Biological time-scales

[J. Janin]

. Modeling: integration time step in MD ... femto-second

.Ref: Janin et al; Quarterly reviews of biophysics; 2008



Inferring Hot residues at Protein-Protein Interfaces

. Modeling protein complexes : core questions

– Stability of a complex (binding affinity):
What are the key residues / atoms?

– Specificity of an interaction

. Strategies

Energy Experiments, directed mutagenesis: residues with high ∆∆G ; costly, incomplete

Modeling: free energy calculations (competition enthalpy/entropy (hydrophobic effect)); costly

EvolutionConserved residues: favored by evolution; hot residues tend to be conserved. . .

but may not apply; database dependent; conserved res. not at interface

Structure Shape, size, position of atoms; hot residues tend to be located in the interface core

Various interface models : core-rim, geometric footprint, Voronoi based



Modular Architecture of Protein-protein Interfaces

.Schreiber et al, PNAS, 2005

I System: interface
TEM1-β-lactamase –
β-lactamase inhibitor
protein (TEM1 - BLIP)

I Experiments:
mutagenesis + ∆G
through kinetics

I Modeling tools:
clustering residus to
define modules –based
on atomic contacts

I Insights: Interface is
modular; ∆∆G : neg.
NON additive in a
module; (but add.
between modules)



Inferring Hot residues at Protein-Protein Interfaces

. Conservation vs geometry
(core,rim)
.Ref: Guharoy et al; PNAS, 2005

Protocol
Dissect interface core vs rim:

core: fully buried; rim: partly exposed

Conclusions
Core residues more conserved

Directed mutagenesis

Core residues : tend to exhibit higher ∆∆G

. Conservation vs dryness

.Ref: Lichtarge et al; JMB;

2007

Protocol
Run MD simulations

Measure Water residence times: dryness

Rationale for dryness :

interactions not perturbed by water fluxes

Conclusion
Conservation detects dry� Conservation geom. footprint

. Rmk: statistics (P-values) are global: no assessment on a per-complex basis



Predicting Important Residues:
the Role of Dry Residues

. Important residues for P-P interactions
– geometric footprint over/under predicts the hot residues
– hot spot are known (in general) to be dehydrated
(mutagenesis, dehydron, etc)
– strong interactions : not perturbed by water fluxes
(water might be quiet)

. 2DOR: interface
residues within 7 Å

. 2DOR: interface
residues: using ∆SAS

. 2DOR: dry residues

.Ref: Mihalek, Res, Lichtarge; JMB, 2007



Protein-Protein Interaction Affinity Database
http://bmm.cancerresearchuk.org/~bmmadmin/Affinity/

. Dissociation
constant vs affinity

∆G = −RT ln Kd/c
◦

. NB: prediction
based on unbound
partners bound to
mail for flexible
cases

. 144 protein complexes

. Binding affinity known: ITC, SPR
caveat: order of magnitude matter (pH, ion strength, . . . )

. Crystal structures known: bound complex, unbound partners
induced flexibility upon docking

.Ref: Kastritis et al; Protein Science (20), 2011

http://bmm.cancerresearchuk.org/~bmmadmin/Affinity/


Scoring Functions versus Scoring at Random

. Testing
two prototypical scoring functions vs a random permutation

. Decoys set: cf curve of expected number of successes E(m)
either the scoring functions finds a near-native quickly
or it is not any better than a random permutation

. CAPRI re-ranking:
success in accordance with P-value (!)

.Ref: Feliu et al; Proteins 78 (16); 2010



Classical Tools: Modeling Interfaces

. The core-rim model

a4

a1

a2

a3

a0

. Interface shape - (atom centric) packing density

.Ref: Chakrabarti, Janin; Proteins; 2002

.Ref: Bahadur, Chakrabarti, Rodier, Janin; JMB; 2004
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Linear Cell Complexes: Examples

Simplicial complex:lego of simplices (vertex, edge, triangle, tetrahedron,...)

0-cell, 1-cell, 2-cell, 3-cell

Cubical complex:lego of hyper-cubes



Curved Cell Complexes: Examples

Curved 2D cell complex: cells are points, circle arcs, spherical polygons

Curved 3D cell complex

SO=1

SO=1
SO=3



Voronoi diagrams in Science and Growth Processes: Gallery

http://forum.woodenboat.com/showthread.php?112363-Voronoi-Diagrams-in-Nature

http://en.wikipedia.org/wiki/Giant’s_Causeway

http://forum.woodenboat.com/showthread.php?112363-Voronoi-Diagrams-in-Nature
http://en.wikipedia.org/wiki/Giant's_Causeway


Euclidean Voronoi diagram and α-complex

. Voronoi diagram of S = {xi}
– Voronoi region Vor(xi ):
{p | d(p, xi ) < d(p, xj), i 6= j}

. Dual complex K(S)
– Delaunay triangulation (Euclidean case)
– Simplex ∆: dual of

T
xi∈∆ Vor(xi ) 6= ∅

. α-complex Kα(S)
– Grown spheres:

Si,α = Si (xi , α)
– Restricted Voronoi region:

Ri,α = Si,α ∩ Vor(xi )
– ∆ ∈ Kα(S):T

xi∈∆ Ri,α 6= ∅

. α-complex: topological changes
induced by a growth process

x1 x2

x1 x2

x3

x3

x1 x2

x3

x1 x2

x3



α-shapes: Demo

VIDEO/ashape-two-cc-cycle-video.mpeg

α-shapes : building a simplicial complex encoding the topology of the shape



On the Volume of Union of Balls

. Context: discriminating native vs non-native states
– Describing the packing properties of atoms : surfaces and volumes
– Application: scoring functions

Voronoi region of atoms Restricted Voronoi region

a1

a2

a3

. STAR
– Monte Carlo estimates: slow
– Fixed precisions floating-point calculations: not robust

.Ref: Gerstein, Richards; Crystallography Int’l Tables; 2002

.Ref: McConkey, Sobolev, Edelman; Bioinformatics; 2002

.Ref: McConkey, Sobolev, Edelman; PNAS 100; 2003



On the Volume of Union of Balls Cont’d

. Strategy developed: certified volume calculation
– Proved a simple formula for computing the volume of a restriction
– Analyzed the predicates and constructions involved
– Interval arithmetic implementation: certified range [V−i ,V

+
i ] 3 Vi

. Observation: Robustness requires
mastering the sign of expressions

a + b
√
γ1 + c

√
γ2 + d

√
γ1γ2

with γ1 6= γ2 algebraic extensions.

. Assessment

– 1st certified algorithm for volumes/surfaces of balls and restrictions
– certified volume estimates (versus crude estimates)
– (correct classification of atoms (exposed, buried; cf misclassification))

– 10x overhead w.r.t. to calculations using doubles

.Ref: Cazals, Loriot, Machado, Teillaud; The 3dSK; CGAL 3.5; 2009

.Ref: Cazals, Kanhere, Loriot; ACM Trans. Math. Software; 2011



Molecular Surfaces and Volumes: VORLUME and contenders

a1
a2

a3

a4

a5

a6

a7

t1

t2

. Relative error computation r

t̃ = [t−, t+]: VORLUME ’s interval
e: estimate from contender

if e < t−, then r = (t− − e)/t−

if t− ≤ e ≤ t+, then r = 0
if e > t+, then r = (t+ − e)/t+

. Assessment: {S:surface, V:volume}× {G:global; R: per restriction }
on a representative set from the PDB, of size 4405

r = 0 r ∈ (0, 0.25] r > 0.25 rmax

Naccess, SG 12.26 85.15 2.60 0.88
McC-et-al, SG 27.33 72.67 0 0.10
Voidoo,VG 9.58 90.42 0 3.43e-3
McC-et-al,VG 0 99.98 0.02 0.29

.Ref: Hubbard and Thornton; UCL Tech report; 1993 (Naccess)

.Ref: Kleywegt and Jones; Acta Crystallographica D; 1994(Voidoo)

.Ref: McConkey et al; Bioinformatics 18; 2002 (McC-et-al)



Geometry versus Topology:
The Theorem of Classification of Closed Surfaces in R3

A topological torus: a genus 1 surface

A topological sphere: a genus 0 surface



Homology Theory
. Homology: counting k-dimensional cycles which do not bound (bound voids),
regardless of their thickness

a1 a2

a5a4

a6

a3

. Betti numbers count homology generators: examples in 3D

β0: #cc β1: # tunnels β2: # voids

. Connexion to the Euler characteristic

χ =
X

i=0,...,d

(−1)iβi =
X

i=0,...,d

(−1)i (#i − dimensional cells)



Golf Courses Again

. Mr Euler playing golf

Euler characteristic?
Pitfall: index-1 saddles

. Funnels on energy landscapes. . .

Native state?
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Modeling the Interface of Macro-molecular Complexes

. Key questions: predicting the . . .
stability of interfaces

plasticity of complexes, dynamics of networks
and their specificity

. Shape - topology:
– # connected components, holes, voids / cavities [Homology]
– morphology: fat, skinny, dumbbell-like

. Shape - geometry:
– privileged contacts (pairs, triples, quadruples,...)
– packing properties
– accessibility (exposed vs buried atoms)
– curvature information

. Correlations with bio-physical quantities
– conservation of amino-acids
– biochemical properties



About Interface Models

. Distance threshold
(geometric footprint)

partner A

partner B

d

. Loss of solvent accessibility
(cf core and rim models)

a4

a1

a2

a3

a0

. The Voronoi interface model

– A parameter free interface model
– Singles out a single layer of atoms
– Is amenable to geometric and topological calculations

. Applications

– Wet biology: complex analysis and optimization — directed mutagenesis
– Structural modeling: scoring functions for docking
– Systems biology: mining contacts, mating orphan molecules, . . .



Voronoi Interface : Definition
(Power Diagram Based Interface Definition)

a3a2

a1

a4

. Interface : bicolor edges in 0-complex

Lemma. Any atom with ∆ASA > 0 is an interface atom.

Attention. Converse is FALSE : cf 13% of interf. atoms missed by
previous studies

Importance.
Such atoms are nearest neighbors (wrt to the power distance)

Voronoi interface: balance between geom. footprint and ∆ASA
.Ref: Cazals, Proust, Bahadur, Janin; Protein Science; 2006



Voronoi Interfaces : Illustrations
(An integrated model from the atomic to the interface scale)

. Role of strutural water –antobody-antigen

. Curvature –protease-inhbitor
. Multi-patch structure –signal
transduction

.Ref: Cazals, Proust, Bahadur, Janin; Protein Science; 2006
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Shelling the Voronoi Interface: Illustration

.Ref: Bouvier, Gruenberg, Nilges, Cazals; Proteins 76 2009



Voronoi Shelling Order: Definition

V SO = 1 V SO = 2 V SO = 3

1
4

3
2

1
3

1

1

2

1

3

4

5

5

6

6

1

2

4

2

3

6

4

5 6

. Three stages

I select bicolor Delaunay edges in the 0-complex

I walking over the dual Voronoi facets/tiles

I pulling back values onto the atoms



Testing Statistical Hypothesis: P-value and Errors
are two probability distributions p and q identical?

. Null hypothesis and its alternative
– H0 (the belief): p = q
– Ha (alternative): p 6= q

. Testing H0
– design a test statistic S
– compute it from samples, say s0

– p-value for H0: P(S > s0)
– reject H0 if P(S > s0) < α(= 0.05)

or if so 6∈ acceptance region

. Type I error: H0 erroneously rejected
α upper bounds the proba. of the type I error

. Type II error: H0 erroneously accepted
– power of S for p 6= q: type II error
– the statistic is called consistent if it

the type II error converges to 0
(when the # samples increases)

. Acceptance region:

1− α quantile of the null distributions
hatched area



Receiver Operating Characteristic (ROC) curves
. Continuous variable t versus binary attribute {+, -}:

prediction of {+, -} based on position of t relative to a threshold t0

sensitivity=hit rate =
true+

true+ + false−
, false alert rate = 1-specificity =

false+

true− + false+

. Varying the threshold yields the ROC curve. Ideal situation:

0
0

1

1
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h
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te
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t = opt
t = 0

Area Under the Curve

AUC

. p-value calculation for a particular value AUC0:

AUC0 vs. distribution of areas over all permutations of + and -



Predicting Important Residues:
the Role of Dry Residues

. Important residues for P-P interactions
– geometric footprint over/under predicts the hot residues
– hot spot are known (in general) to be dehydrated
(mutagenesis, dehydron, etc)
– strong interactions : not perturbed by water fluxes
(water might be quiet)

. 2DOR: interface
residues within 7 Å

. 2DOR: interface
residues: using ∆SAS

. 2DOR: dry residues

.Ref: Mihalek, Res, Lichtarge; JMB, 2007



Water Traffic and Conservation of Residues
at Protein - Protein Interfaces

. Dry A.A. tend to be more important

. Protocol: MD simulation; A.A. s.t.
∆ASA > 0
. Traffic intensity for A.A. i : Ii = 1

T

∑
w

1
τw

. Dry residue w.r.t.traffic intensity:
– Ii ≤ 0.005ps−2 for homodimers
– Ii ≤ 0.01ps−2 for heterodimers

. 2DOR: dry
residues

. Assessment with ROC curves:

conservation predicts dryness versus conservation predicts geom. footprint

. Conclusions:
– 3 conservations methods perform equally
– AUC(conserv. → dryness) � AUC(conserv. → geom. footprint)

.Ref: Mihalek, Res, Lichtarge;

JMB, 2007



VSO versus Dryness – 2DOR

. VSO: facets and atoms

. Conservation, dryness, polarity



VSO, Dryness, Conservation:
Statistical Significance of Predictions / Methodology

. Protocol for each set of complexes (36 homos, 18 heteros)

ability of a continuous parameter to predict a binary attribute

. Four predictions for the two datasets:

VSO [cont.]→ dryness [threshold] conserv. [cont.] → dryness [threshold]

conserv. [cont.]→ VSO [threshold] VSO [cont.] → unpolar [bin.]

. Statistical assessment

Per complex:
AUC, p-value for null hypothesis

Per dataset (homos, heteros):
Combined p-value for k tests / Fisher’s inverse Chi-square:
X 2 = −2

∑
i=1...k log pi follows a chi-square with 2k dof

. Summary for a given prediction
– per complex: AUC + p-value
– per data set: average AUC + combined p-value



VSO, Dryness, Conservation:
Statistical Significance of Predictions / Results

. 18 Heterodimers

PDB Id. VSO→dryness conserv.→dryness conserv.→VSO VSO→unpolar
AUC P-value AUC P-value AUC P-value AUC P-value

. . .
Reject H0 18/18 8/18 8/18 11/18
Global 0.81 6e-74 0.64 3e-14 0.65 2e-09 0.63 1e-21

. 36 homodimers

PDB Id. VSO→dryness conserv.→dryness conserv.→VSO VSO→unpolar
AUC P-value AUC P-value AUC P-value AUC P-value

. . .
Reject H0 36/36 25/36 14/36 27/36
Global 0.84 2e-265 0.63 2e-43 0.62 4e-20 0.64 2e-63

. Conclusions

VSO→dryness
universal correlation—valid on ALL individual cases

conserv.→dryness (cf Lichtarge et al, JMB 369, 2007) [no p-values]
conserv.→VSO (cf Chakrabarti et al, PNAS 102, 2005) [combined p-values only]
VSO→unpolar

global trend . . . but prediction often fails on an individual basis
binary core/rim interface models do not account for the subtlety of distributions of conservation/polarity
VSO provides a continuous parameterization of the interface

.Ref: Bouvier, Gruenberg, Nilges, Cazals; Proteins, 2009
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On the Morphology of Binding Patches

. Current binding patch models : not designed for quantitative processing
– Pro: used to mine correlations with biological - biophysical properties
– Cons: core rim model : dissection based on solvent accessibility: binary model

. Global pairwise comparison for docking - clustering:
– Pro: useful algorithms for rigid docking
– Cons: not amenable to local comparisons
– Cons: no decomposability of binding patches

. Understanding the morphology of binding patches
→ simple geometric - topological model amenable to both types of studies

(a) Core-rim model [Janin et al, 2003-2009]
(b) Clustering into modules [Schreiber et al, PNAS, 2005]



Comparing Binding Patches:
Quasi-isometric Subsets and Reduction to Max Clique

. Distance between two atoms i , j of M1: d1
i,j ; likewise for M2

. Root Mean Square Deviation of Internal Distances
Given 2 sets of atoms S1 and S2 having the same size n

and a one-to-one mapping m between them

RMSDd(S1, S2) =
qP

i<j |d1
i,j − d2

m(i),m(j)|2/
`
n
2

´
. Goal for two molecules M1 and M2: find the largest S1 ⊂ M1

and S2 ⊂ M2, and the corresponding mapping m(), such that RMSDd(S1, S2) ≤ ε

. Reduction to Max Clique :
Match atoms i , j of M1 and k, l of M2 iff |d1

i.j − d2
k.l | ≤ ε

Therefore, M1

T
M2 = Size of maximum clique

i
j

v w

n1

n2

Atoms of n2

A
to

m
s

of
n1

An edge in matching

If condition is satsified

Maximal clique



Shelling a Cell Complex

. Input

Cell complex say D dimensional
Cells - dimension D
Facets - dimension D-1
Pivots - dimension D-2

Example : 2D Alpha shape
Triangles are cells, edges are facets
and vertices are pivots

. Output

. Shelling by pivoting

. Shelling by face connectivity



Shelling a Binding Patch yields a Topological Encoding

. From the complex: Voronoi-based identification of interface atom

. For each partner
compute the boundary of the union of balls into a Half-edge Data Structure:

spherical caps - circle arc - vertices
shell the HDS – as a cell complex

. Convert the output into an Atom Shelling Tree

1 36

2 39

3 35

4 26

5 1 6 2



Ordered Tree Edit Distance (TED)

. Editing T1 into T2 is based on 3 operations:
node insertion | deletion | morphing

. Semantics of the 3 operations: problem dependent

. Complexity, using dynamic programming: time: O(n3); space: O(n2)

.Ref: Bille; TCS; 337 (205)



Application 1: Topological Comparison of Patches

. Input: the trees T1 and T2 encoding 2 binding patches

. Straight TED:
cost of insertion - deletion: node size;
cost of morphing shell s1 into shell s2: max(| s1 |, | s2 |)−min(| s1 |, | s2 |)

. The TED calculation delivers an Ordered Edit Distance Mapping:
M ⊂ Vertices(T1)× Vertices(T2) s.t. (v1, v2) ∈ M and (w1,w2) ∈ M, one has:

(i) v1 = w1 iff v2 = w2, or
(ii) v1 is an ancestor of w1 iff v2 is an ancestor of w2, or
(iii) or v1 is to the left of w1 iff v2 is to the left of w2.

. Atoms matched meet (i,ii,iii): they are called isotopologic:
SIMt(T1,T2): number of atoms matched
TEDt(T1,T2) =| T1 | + | T2 | −2 SIMt(T1,T2)

. Corresponding dissimilarity ∈ 0..1
DISt(T1,T2) = TEDt(T1,T2)/(| T1 | + | T2 |)

i

j

F_1

k

l

F_2

i

F_1

k

F_2

j

l

i

F_1

k

F_2

j

lA) B) C)



Application 2: Geometric Comparison of Patches

. Restrict the Max-Clique calculation to shells

. Atoms matched are called isotopologic:
SIMg (T1,T2): number of atoms matched
TEDg (T1,T2) =| T1 | + | T2 | −2 SIMg (T1,T2)

. Corresponding dissimilarity ∈ 0..1:
DISg (T1,T2) = TEDg (T1,T2)/(| T1 | + | T2 |)

. Properties:
RMSDd upper-bounded at the shell but NOT binding patch level
Topology versus geometry

similarity: SIMg (T1,T2) ≤ SIMt(T1,T2)
dissimilarity: DISg (T1,T2) ≥ DISt(T1,T2)



Binging Patches: Typical Morphologies

. Number of atoms as a function of the number of shells
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Similar Topology, Dissimilar Geometry
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Symmetry of Patches and Homogeneity of Families

. Anisotropic vs tubular . Identification favors the family
rather than the complement

DB decomposition:

P = p ∪ P\p ∪ P ∪ Pc

Family (=P) (P,P) vs (P,P) vs

(P,P) (P,PC )
AA Carb R 3.76e-06 3.02e-07
AA Carb L 5.15e-11 1.27e-13
AA Chem R 1.42e-08 1.30e-08
AA Chem L 3.44e-14 5.78e-17
AA Pept R 1.80e-17 1.31e-27
AA Pept L 9.47e-69 9.78e-70
AA Prot R 7.25e-04 3.93e-38
AA Prot L 2.86e-56 9.73e-49
PI U L 2.76e-23 6.25e-20
PI U R 7.10e-06 1.14e-14



Flexibility Upon Docking:
Rigid, Flexible,and Topo-rigid patches

. Patch vs. prepatch on unbound partner
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. Topologically rigid patches:
a third tier

. Rigid, topo-rigid, flexible



Affinity Benchmark: Predicting Binding Affinities

Pearson Spearman Maximal Information
Parameter CPea p-value CSpe p-value CMIC p-value
IPL 0.31 1.3e−4 0.43 7.6e−8 0.35 7.6e−4

#Atoms 0.27 1.2e−3 0.37 4.7e−6 0.24
Depth 0.29 4.8e−4 0.35 1.5e−5 0.26
∆ASA 0.22 8.9e−3 0.33 6.6e−5 0.25
Firedock score -0.17 4.2e−2 0.20 1.8e−2 0.23
I RMSD -0.11 2.0e−1 0.17 4.3e−2 0.24
#Shells 0.092 2.7e−1 -0.16 5.4e−2 0.16
DISg 0.16 5.8e−2 -0.14 8.5e−2 0.24
Assymetry 0.045 5.9e−1 -0.094 2.6e−1 0.19
DISt 0.029 7.2e−1 -0.089 2.9e−1 0.20

The Internal Path Length yields the best against (− ln Kd ).

∆ASA #Atoms Depth IPL
I-RMSD (Å) CSpe p-value CSpe p-value CSpe p-value CSpe p-value

< 1 Å 0.52 3.5e−6 0.58 1.4e−7 0.54 9.0e−7 0.59 5.9e−8

in [1Å,1.5Å[ 0.18 2.7e−1 0.11 5.0e−1 0.054 7.5e−1 0.23 1.7e−1

≥ 1.5Å 0.26 1.2e−1 0.34 4.7e−2 0.34 4.2e−2 0.41 1.5e−2

Spearman’s correlation coefficient as a function of the docking induced flexibility.

.Ref: Kastritis et al, Journal of proteome Research, 9 (5); 2010

.Ref: Kastritis et al; Protein Science (20), 2011



Modeling Protein Interfaces

. Voronoi models of protein interfaces
F. Cazals and F. Proust and R. Bahadur and J. Janin
Protein Science 15 (9), 2006

. Shelling Voronoi interfaces
B. Bouvier and R. Grunberg and M. Nilges and F. Cazals
Proteins 76 (3), 2009

. Voronoi interfaces: algorithms
F. Cazals
Int’l Conference on Pattern Recognition, 2010

. Modeling protein interfaces with Intervor

S. Loriot and F. Cazals
Bioinformatics 26 (7), 2010

. Shape Matching by Localized Calculations of Quasi-isometric Subsets
F. Cazals and N. Malod-Dognin
Int’l Conference on Pattern Recognition, 2011

. Characterizing the Morphology of Protein Binding Patches
F. Cazals and and A. Bansal and N. Malod-Dognin
Proteins 80 (12), 2012

. Computing the Volume of Union of Balls: a Certified Algorithm
F. Cazals and H. Kanhere and S. Loriot
ACM Trans. on Math. Software 38 (1), 2011



Sotware: Modeling Protein Interfaces

. intervor: modeling
protein - protein interfaces

http://cgal.inria.fr/abs/Intervor;

Bioinformatics; 26 2010

. vorlume: certified
molecular surfaces and volumes

http://cgal.inria.fr/abs/Vorlume;

ACM Trans. Math Softw.; 2011

. vorpatch: topological
encoding of binding patches

. compatch: comparing
binding patches

1 36

2 39

3 35

4 26

5 1 6 2

http://cgal.inria.fr/abs/Intervor
http://cgal.inria.fr/abs/Vorlume
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Voronoi diagrams in Science and Growth Processes: Gallery

http://forum.woodenboat.com/showthread.php?112363-Voronoi-Diagrams-in-Nature

http://en.wikipedia.org/wiki/Giant’s_Causeway

http://forum.woodenboat.com/showthread.php?112363-Voronoi-Diagrams-in-Nature
http://en.wikipedia.org/wiki/Giant's_Causeway


The Zoo of curved Voronoi diagrams

. Power diagram:
d(S(c, r), p) = ‖c−p‖2−r 2

. Mobius diagram:
d(S(c, µ, α), p) = µ‖c − p‖2 − α2

. Apollonius diagram:
d(S(c, r), p) = ‖c − p‖ − r

V or(B7)

V or(B5)

V or(B6)

V or(B2)
V or(B4)

V or(B3)

V or(B1)

c1

c3

c4

c2

c6

c5

c7

. Compoundly Weighted Voronoi diagram:
d(S(c, µ, α), p) = µ‖c − p‖ − α

.Ref: Boissonnat, Wormser, Yvinec; Effective Comp. Geom.; 2006

.Ref: Cazals, Dreyfus; Symposium on Geometry Processing; 2010
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Structural Dynamics of Macromolecular Processes
Reconstructing Large Macro-molecular Assemblies

rotary propeller

Bacterial flagellum

nucleocytoplasmic transport

Nuclear Pore Complex Branched actin filaments

muscle contraction, cell division

Chaperonin cavity

protein folding

Maturing virion

HIV-1 core assembly

ATP synthase

synthesis of ATP

in mitoch. and chloroplasts

– Molecular motors
– NPC
– Actin filaments
– Chaperonins
– Virions
– ATP synthase

. Difficulties

Modularity
Flexibility

. Core questions

Reconstruction / animation
Integration of (various) experimental data

Coherence model vs experimental data

.Ref: Russel et al, Current Opinion in Cell Biology, 2009



Reconstructing Large Assemblies:
a NMR-like Data Integration Process

. Four ingredients
– Experimental data
– Model: collection of balls
– Scoring function: sum of restraints

restraint : function measuring the agreement
�model vs exp. data�

– Optimization method (simulated annealing,. . . )

. Restraints, experimental data and . . . ambiguities:

Assembly : shape cryo-EM fuzzy envelopes
Assembly : symmetry cryo-EM idem
Complexes: : interactions TAP (Y2H, overlay assays) stoichiometry
Instance: : shape Ultra-centrifugation rough shape (ellipsoids)
Instances: : locations Immuno-EM positional uncertainties

.Ref: Alber et al, Ann. Rev. Biochem. 2008 + Structure 2005



The Nuclear Pore Complex: Structure and Reconstruction
. NPC: overview

Lumen

98nm

38nm

37nm

30nm 30nm

θ = 1

θ = 2

s = 1
s = 2

s = 8

s = 7

– Eight-fold axial + planar symmetry
– 456 protein instances of 30 protein types (456 = 8× (28 + 29))

. Reconstruction results: N = 1000 optimized structures (balls):
(i) blending the balls of all the instances of one type over the N structures:

one 3D probability density map per protein type
(ii) superimposing these maps provides a global fuzzy model

. Qualitative results:
Our map is sufficient to determine the relative positions within NPC
...limited precision; not to be mistaken with the density map from EM
The localization volumes . . . allow a visual interpretation of proximities

.Ref: Alber et al; Nature; 450; 2007



NPC: Example Density Maps
Stoichiometry vs number of connected components

. Two types of problems:
number of connected components vs stoichiometry
volume of each connected component vs. volume estimated from the sequence

. Cases: equal (Nup157); larger (Sec13)

. Cases: smaller (Nup170, Pom152)

.Ref: Alber et al; Nature; 450; 2007



Uncertainties of the Density Maps

. Volume of connected components of non empty voxels vs.
reference volume (estimated from the sequence)

V (cci ) = Vol(cci )/Volref (P), for i = 1, . . . , p.

Probability density maps sorted by molecular weight



Putative Models of Sub-complexes: the Y-complex

. Symmetric core of the NPC
Pom52,Pom34,Ndc1

Nup133,Nup84,Nup145C

Sec13,Nup120,Nup85,Seh1

Nic96,Nup192,Nup188,Nup157,Nup170

Nsp1,Nup49,Nup57

Pore membrane

Coat nups

Adapter nups

Channel nups

.Ref: Blobel et al; Cell; 2007

. The Y-complex: pairwise contacts
Nup120

Sec13

Nup145C

Nup85

Seh1

Nup84

Nup133

.Ref: Blobel et al; Nature SMB;

2009

. Y-based head-to-tail ring vs. upward-downward pointing

Cytoplasm

Nucleus

Spoke

Half-spoke

.Ref: Seo et al; PNAS; 2009

.Ref: Brohawn, Schwarz; Nature MSB; 2009

⇒ Bridging the gap between both classes of models?



Prologue; I; II; III-a; III-b; III-c; Epilogue

Reconstruction of large assemblies:
global - qualitative models

versus
local - atomic-resolution models

Nup120

Sec13

Nup145C

Nup85

Seh1

Nup84

Nup133

Alber et al; Nature; 450; 2007 Blobel et al; Nature SMB; 2009
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Prologue; I; II; III-a; III-b; III-c; Epilogue

Building toleranced models
(Embracing the geometric noise.)



A Toleranced Ball

r−

r+

VIDEO/tol-ball-animation.html

VIDEO/tol-ball-animation.html


Uncertain Data and Toleranced Models:
the Example of Molecular Probability Density Maps

. Probability Density Map of a Flexible Complex:
– Each point of the probability density map:

probability of being covered by a conformation

. Question:
accommodating high/low density regions?

. Toleranced ball Si

– Two concentric balls of radius r−i < r+
i :

inner ball Si [r
−
i ]: high confidence region

outer ball Si [r
+
i ]: low confidence region

. Space-filling diagram Fλ: a continuum of models
– Radius interpolation: ri (λ) = r−i + λ(r+

i − r−i )

. Multiplicative weights required

.Ref: Cazals, Dreyfus; Symp. Geom. Processing; 2010

p1

p3

p2

P1

P3

P2

ri(λ) ri(λ) = r−i + λ(r+i − r−i )



Toleranced Models for the NPC

. Input: 30 probability density maps from Sali et al.

. Output: 456 toleranced proteins

. Rationale:
→ assign protein instances to pronounced local maxima of the maps

. Geometry of instances:
– four canonical shapes
– controlling r+

i − r−i : w.r.t volume estimated from the sequence

Sec13

Pom152

Nup84

(i) Canonical shapes (ii) NPC at λ = 0 (iii) NPC at λ = 1



Prologue; I; II; III-a; III-b; III-c; Epilogue

Growing toleranced models and
enumerating

their finite set of topologies
(Spotting stable structures.)

VIDEO/ashape-two-cc-cycle-video.mpeg



Multi-scale Analysis of Toleranced Models:
Finite Set of Topologies and Hasse Diagram

p1[λ]

p3[λ]

p2[λ]

(i) (ii)

(iii)

iA iBiC

p1[λ]

p1[λ]

p2[λ]

p2[λ]

p3[λ]

p3[λ]

λ = 0

λC ∼ .9

λB ∼ .4

p1 p2 p3

λA ∼ .1

(iC)

(iB)

(iA)

λ = 1

λ

p1 p2

p3

p1 p2

p3

p1 p2

Skeleton graphs

p1 p3

. Red-blue bicolor setting: red proteins are types singled out (e.g. TAP)

. Complexes and skeleton graphs: Hasse diagram

. Finite set of topologies: encoded into a Hasse diagram
– Birth and death of a complex
– Topological stability of a complex s(c) = λd(C)− λb(C)

. Computation: via intersection of Voronoi restrictions



Density maps and local maxima
Building occupancy volumes

Building a Toleranced Model
Inferring the Hasse diagram encoding protein

contacts

VIDEO/voratom-y-complex.mpeg
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Prologue; I; II; III-a; III-b; III-c; Epilogue

Proeminent contact frequencies out of the(
30
2

)
+ 30 = 465

pairs of protein types

– Contact frequency:
fraction of the 1000 models with ≥ one contact
between instances of these types

– Freq. split into 3 classes, a = 0.25, b = 0.65:
F1 : fij ≤ a; F2 : a < fij < b; F3 : b ≤ fij

– Limitations:
contact can be shallow
stoichiometry missing



Over- and Under-represented pairs for a = 0.1 and b = 0.9

. Over-represented pair:
Nup84− Nup60 :

fij = 0.07, p
(4)
ij = p

(1)
ij = 1

. Under-represented pair:
Nup192−Pom152 : fij = 0.98, p

(1)
ij = 0

Contact fij p
(1)
ij λmax

Nup59 Nup59 0 1 0
Pom34 Pom34 0.02 1 0
Nsp1 Nsp1 0.02 1 0
Nup60 Nup145N 0.03 1 0
Nup60 Pom34 0.03 1 0
Nup145N Nup49 0.04 1 0
Nup1 Nup145N 0.05 1 0
Nup60 Ndc1 0.06 1 0
Nup84 Nup60 0.07 1 0
Nsp1 Nup145N 0.07 1 0
Nup145C Nup60 0.08 1 0
Sec13 Nup159 0.08 1 0
Nsp1 Nup60 0.08 1 0
Nup49 Nup116 0.08 1 0
Nup57 Nup145N 0.08 1 0
Nsp1 Nup42 0.09 1 0
Nup60 Nup59 0.09 1 0
Nup42 Nup116 0.09 1 0
Nup57 Nup116 0.09 1 0
Sec13 Nup145N 0.1 1 0
Nup59 Pom34 0.03 0.9 0.15
Seh1 Nup60 0.06 0.9 0.18
Gle2 Nup57 0.08 0.9 0.21

Contacts fij p
(1)
ij λmax

Nup192 Pom152 0.98 0 1
Nup170 Ndc1 0.91 0.1 0.35
Nup188 Nic96 1 0.1 0.32
Pom152 Pom34 1 0.1 0.28



Contact Probabilities: Sharpening the Contact Frequencies

. Toleranced model (TM) is a continuum:
→ contact probability analogous to frequency

. Contact probability for types pi , pj and stoichio. k:
– If k contacts at λ(pi , pj)

contact probability: p
(k)
ij = 1− λ(pi , pj)/λmax

– Else i.e. strictly less than k contacts: p
(k)
ij = 0

– Note: p
(k)
ij strictly increasing with λmax

. Partitioning of all pairs into 3 classes:

P
(k)
1 : p

(k)
ij ≤ a; P

(k)
2 : a < p

(k)
ij < b; P

(k)
3 : b ≤ p

(k)
ij

. Over-represented pairs in the TM:

(pi , pj) ∈ F1 but ∈ P
(1)
3

. Under-represented pairs in the TM:

(pi , pj) ∈ F3 but ∈ P
(1)
1

. Pairs in F1 vs P
(1)
i :

. Pairs in F3 vs P
(1)
i :



Prologue; I; II; III-a; III-b; III-c; Epilogue

Assessing a toleranced model
w.r.t. a set of protein types

Nup120

Sec13

Nup145C

Nup85

Seh1

Nup84

Nup133

Y -complex : protein types Y -complex : instance



Assessment w.r.t. a Set of Protein Types: Isolated Copies
Geometry, Topology, Biochemistry

. Input:
– Toleranced model
– T : set of proteins types, the red proteins (TAP, types involved in sub-complex)

. Output, overall assembly:
– number of isolated copies: symmetry analysis
– their topological stability: death date - birth date (cf α-shape demo)

. B: closure of the 2 rings; C: painting Nup133 in blue



Closure of the Two Rings Involving Y -complexes:
Pairwise Contacts

. The TOM supports Blobel’s hypothesis

λ = 0

λ = 0.66

Events accounting for the closure

9 (Nup133, Nup85) λ ∈ [0.09, 0.70]
5 (Nup84, Nup85) λ ∈ [0.52, 0.69]
1 (Nup133, Nup120) λ = 0
1 (Nup84, Nup120) λ = 0.06

Nup85 involved in 14 / 16 contacts
. Inner structure of the Y-complexes into two sub-units

Density maps: contour plot; Hasse diagram per sub-unit

(Nup84, Nup145C, Nup133)(Nup120, Nup85, Seh1)



Prologue; I; II; III-a; III-b; III-c; Epilogue

Assessing a toleranced model w.r.t
a high-resolution structural model

Assembly Complex: skeleton graph

Nup120

Sec13

Nup145C

Nup85

Seh1

Nup84

Nup133

Template: skeleton graph



Comparing a Skeleton Graph against a Template: Matchings

Nup120

Nup85

Seh1

Sec13

Nup145C

Nup84

Nup133

Nup120

Nup85

Seh1

Sec13

Nup145C

Nup84

Nup133

Nup120

Nup85

Seh1

Sec13

Nup145C

Nup84

Nup133

λ λ λ
11 6

3432 3 3 52 3 2 2 2 2

11

1

1

1

1

111

Depleted matchings:

• missing nodes. . .

• problems on edges

Complete matchings:

• all nodes. . .

• problems on edges

Exact matchings:

• missing nodes. . .

• but edges perfect for these nodes

. Application: recovering the 16 copies of the Y: De. = 10+2; Co.: 4; Ex. : 0



Assessment w.r.t. a High-resolution Structural Model:
Contact Analysis

. Input: two skeleton graphs
– template Gt , the red proteins : contacts within an atomic resolution model
– complex GC : skeleton graph of a complex of a node of the Hasse diagram

. Output: graph comparison, complex GC versus template Gt :
(common/missing/extra) × (proteins/contacts)

(p2, c2)
(p4, c4)

(p3, c3)

(p2, c2)

(p1, c1)

A

(p4, c4)
(p3, c3)

Matching

Missing Contacts

Extra Contacts

A A

(p3, c3)
(p4, c4)
(p2, c2)

(p3, c3) (p4, c4)
(p2, c2)(p1, c1)

(c1, c3)

(p1, p2)

(p1, c1) (p2, c2)

A

Exact matching:

A

(p1, c1)

∅

∅

(p2, c2)

Depleted matching: Complete matching:

GC

Gt|C

GC

Gt|C

GC

Gt|C

A

c1 c2

c3

c4

c1
c2

c3

c4

Matching Contacts ↔ p2 p3c2 c3, ,

↔ p1 p4c1 c4, ,( ) ( )

↔ p2 p3c2 c3, ,( ) ( )↔ p3 p4c3 c4, ,( ) ( ) ↔c1 c2,( )
p1 p2,( )

( ) ( )

c1 ∅ c3

V ∼

V −

E∼

E−

E+

Matching Matchings
Signature Signature Signature

Matching Protein
Types
Missing Protein
Types

Missing Contacts

Extra Contacts

V ∼

V −

E∼

E−

E+

Matching Protein
Types
Missing Protein
Types

Missing Contacts

Extra Contacts

V ∼

V −

E∼

E−

E+

Matching Protein
Types
Missing Protein
Types

Matching Contacts Matching Contacts

p1

p2

p2 p4,( )

c5

p5

(p5, c5)

(p5, c5)

c3 c5,( )

↔ p4 p5c4 c5, ,( ) ( )

p2

p3

p4

p1

↔ p3 p4c3 c4, ,( ) ( )

p3

c3

p1

p2

p3

p4

V − 6= ∅ and (E− 6= ∅ or E+ 6= ∅)

(p1, c1) (p3, c3)

A′

A′

(p1, c1)
(p3, c3)

c2

↔c1 c3,( )
p1 p3,( )

∅

∅

V − = ∅ and (E− 6= ∅ or E+ 6= ∅) V − 6= ∅ and (E− = ∅ and E+ = ∅)

p1

p3

c1 c2

p2

(A) (B) (C)

.Ref: Cazals, Karande; Theoretical Computer Science; 349 (3), 2005

.Ref: Koch; Theoretical Computer Science; 250 (1-2), 2001



Coarse Graining and Toleranced Model Building

. Coarse graining: the example a complete immunoglobulin
Atomic versus coarse grain model: 12533 atoms to 100 balls
Strategy: geometric version of max-k-cover, a NP-complete problem

. TOM building
Morse theoretical analysis of density maps
Geometric max-k-cover

.Ref: F. Cazals and T. Dreyfus and S. Sachdeva and N. Shah;

About to be submitted



Toleranced Models for Large Assemblies: Positioning

. Methodology: modeling with uncertainties
– Toleranced models: continuum of shapes vs fixed shapes
– Topological and geometric stability assessment (curved α-shapes)

. Applications to toleranced complexes
– Protein types (contact probabilities)
– Protein complexes (morphology, contacts)

h
t
t
p
:
/
/
t
e
a
m
.
i
n
r
i
a
.
f
r
/
a
b
s

• Assessment with TOM

– For Protein types

– For Protein complexes

• Model selection

Data processing

• Stoichiometry determination

• Connectivity inference

• Interface modeling

• Approximating complex shapes

• Mining density maps

• . . .
Experimental data

• Mass spectrometry

• TAP, Y2H, etc

• Collision X section

• Cryo-EM

• High-res. structures

• Immuno-EM

• dots

Fuzzy models

• Qualitative results

• Not mechanistical

Reconstruction

• IMP

• Bayesian
approaches

• . . .

http://team.inria.fr/abs


Outlook

. A new class of modeling problems
O(1) chains: classical (pairwise) docking
O(10) chains: docking crystal structures within cryo-EM envelopes
O(100) chains: reconstruction by data integration

. Toleranced models: a modeling paradigm to incorporate uncertainties
– Density maps in general: cryo-EM, probability density maps, etc
– Positional uncertainties - soft docking
– Atomic models: temperature factors

. A triple model assessment, local and global
– Geometric : volume computation, symmetry analysis
– Topological: stability, pairwise contacts
– Biochemical: contacts and location of proteins

. Applications to coherence analysis and model selection
→ getting the best out of global models obtained from data integration

. Compoundly weighted Voronoi diagram
– Complicated ... yet encodes important features of the toleranced model
– Incremental construction – in progress



Publications and Software

. Papers available from http://team.inria.fr/abs/publications

Toleranced Models, applications
Proteins 2012, Submission 2012

Toleranced Models, theory
Symp. on Geometry Processing 2010

Collections of balls
ACM Trans. on Math. Soft. 2010, ACM IEEE Trans. CBB 2011

Graphs
Theoretical Computer Science 2005 + 2008

Mass spectrometry
Submissions 2012

. Software available from http://team.inria.fr/abs/software

http://team.inria.fr/abs/publications
http://team.inria.fr/abs/software
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