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Neurons are either quiescent or spiking at a 
rate f.  q is the quiescent state and a the 
activated state, where q + a = 1, thus q and 
a are the proportions of cells in each state. 
Finally α is the rate at which activated cells 
become quiescent.

A simple Markov model of collective neural 
activation
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The function f is derived by 
looking at a population of 
integrate and fire neurons 
with fluctuating thresholds, 
and computing the fraction of 
neurons receiving at least 
threshold excitation IRH. f =

∫ IRH

−∞

P (I)dI

f ′
= σ2

RH
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We can then write a master equation that involves the state 
transitions in a time Δt, which takes the form (for a homogeneous 
population of N excitatory neurons with all-to-all connections):

where n is the spiking rate, and P(n,t)

A neural master equation

is the probability that n spikes/unit time occur at time t, w0 is 
the total net excitatory weight per neuron, h is an external 
stimulus.

E+1n = n + 1, E−1n = n − 1,

∂P (n, t)

∂t
= α(E−1

− 1)nP (n, t) + (E+1
− 1)(N − n)f [

w0

N
n + h]P (n, t)



From the master equation to the statistics of 
large-scale activity
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Using techniques developed in quantum field theory and 
statistical mechanics we can transform the master 
equation into the following form:

where

∂P (ϕ, t)

∂t
= H(ϕ∗, ϕ)P (ϕ, t)

H(ϕ∗, ϕ) =

∫
ddx [αϕ∗ϕ − ϕ∗(ρ − ϕcl)f [w $ (ϕ∗ϕ + ϕ) + αϕ∗h]]

ϕ is a complex quantity associated with n(x,t)
ϕ
∗ is associated with fluctuations of n(x,t)

ϕcl is the mean field or classical value of    .ϕ



From the master equation to a path integral

• We first replace the one-step operators E+1 and E-1 by 
the raising and lowering operators of the appropriate Lie 
algebra

• We then use the Schwinger decomposition to replace 
such operators by creation and annihilation operators 
using bosonic commutation rules

• Finally we replace these operators by coherent states built 
from them. 

• Thus                                                      where

• We then convert the resulting master equation to a path 
integral using standard methods
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|ϕ〉 = e
(ϕψ†

−ϕ!ψ)|0〉

E±1
→ Λ

±1
→ ψ†ψ → ϕ!ϕ



• The quantity            is the quasi-Hamiltonian of neural 
activity and the equation it satisfies is the analog of 
the diffusion equation in the theory of random walks, 
or the Schrödinger equation of quantum mechanics.

• To calculate statistics associated with such neural 
activity we form the quantity:                                                                                       

H(ϕ∗
, ϕ)

S(ϕ,ϕ ∗) =

∫

∞

−∞

dt

[
∫

ddxϕ∗(x, t)
∂ϕ(x, t)

∂t
+ H(ϕ∗(x, t), ϕ(x, t))

]

• This quantity is called the neural action. It can be used  
to generate equations for all statistical moments of the 
neural activity.  



• In particular it generates the first moment or 
mean-field equation:                                  
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∂ϕcl(x, t)

∂t
= −αϕcl + (ρ − ϕcl)f [w % ϕcl + hcl]

Wilson & Cowan (1972, 1973).

• This equation has been the basis for many 
investigations of neural dynamics. But it does 
not include the effects of intrinsic neural noise, 
or of correlations in neural activity.



in case h=0.  
〈ϕ(p, t)ϕ∗(p, t′)〉 = exp [−(α − f ′ · ŵ(p))(t − t′)]Θ( t − t′)

But as              the Green’s function or propagator                  
approximates the propagator for the
diffusion limit of a random walk, or Brownian motion.  

At long time scales neural activity is effectively 
analogous to a system of diffusing chemical reactions.

t → ∞

G0(p, t − t′)

From the linearized part of the neural action it is 
easy to calculate the Green’s function for the network 
dynamics from the path integral.  In Fourier space it 
takes the simple form:
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The power spectrum of spontaneous activity

Near a critical point,             the propagator for our 
field theory takes the form (in Fourier space):

From this formula we can compute the power 
spectrum, which is proportional to

[

(α − f ′w0 +
1

2
f ′w2p

2)2 + ω2

]−1

Thus the cr it ical spectrum for the spatial ly 
homogeneous mode, p = 0, is proportional to ω

−2

G(p, t − t′) = exp

[

−(α − f ′w0 +
1

2
f ′w2p

2)(t − t′)

]

Θ(t − t′)
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α = f ′w0



P o w e r s p e c t r a o f 
s pon t aneous a c t i v i t y 
derived from the field 
theory propagator
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The nonlinear spike model

In more realistic neural models the firing rate
function (or probability of spike generation) is
nonlinear.  We therefore approximate f(s) as
                       

The action is no longer quadratic and must be
c a l c u l a t e d b y p e r t u r b a t i o n m e t h o d s . 
Renormalization group methods can be used to 
solve this problem.

f(s) = f(s0) + f ′(s0)(s − s0) +
f ′′(s0)

2!
(s − s0)

2 + · · ·
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Renormalization

The problem is that in nonlinear systems the effects of multiple 
time and space scales need to be represented and addressed.  
When this is done the action is modified so that it correctly 
represents the dynamics on slow time scales and at long length 
scales.  Such a renormalized neural Hamiltonian takes the form:
 

where 

and g are renormalized constants. and

D = f ′

∫
ddxx2w(x) = f ′w2

µ

H(ϕ,ϕ ∗) =

∫

ddx
{

µϕ∗ϕ − Dϕ∗
∇

2ϕ + g · [ϕ2ϕ∗
− ϕ∗2ϕ]

}

.
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Reggeon field theory

But the renormalized action is exactly that of Reggeon field 
theory, introduced by Gribov to model some aspects of high 
energy particle physics.  It was shown about a decade ago by 
Cardy and Sugar that it corresponds to a system with both 
branching and aggregation, called directed percolation. If the 
dynamics is critical, as in the neural case when                , Cardy 
and Sugar showed that such a system has a universal non-
equilibrium phase transition, i.e., a directed percolation (DP) 
phase transition. 

α = f ′w0
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DP neural phase transitions

Thus the dynamically balanced equilibrium states of neural 
nets should exhibit a DP phase transition when such 
states are destabilized, either spontaneously or by the 
action of applied currents. In such a case large fluctuations 
and long-range spatio-temporal correlations should appear.  
Well away from such states, mean field behavior without 
correlations should occur.
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Directed Percolation
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A Ginzburg condition for the emergence 
of directed percolation

We can derive a condition for the emergence of
the DP phase transition. It takes the form:

where is the “diffusion”

length for the spread of the activity and A is a
renormalization constant. If this condition holds
then critical branching without aggregation occurs.

(
w2

w0

)2 ! ζ
|f ′′|w0A

f ′
L4−d

d

Ld =

√

f ′w2

2(α − f ′w0)
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Critical exponents for DP
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What is the effective dimensionality d of the neocortex?

where k is the number of contacts per neuron.  We take k 
to be between 4000 and 10000, whence  

d ≈ log2k

d ≈ 12



Critical exponents: neural case

• Because of the high degree of neural connectivity it is likely 
that the neural phase transition is mean field DP.  Thus the 
renormalized propagators reduce to the following: 

• (a) subcritical:

• (b) critical:

• (c) supercritical:
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G(x − x′, t − t′) ∝ (t − t′)−2 exp[−
(x − x′)2

4(t − t′)
− µ(t − t′)]

G(x − x′, t − t′) ∝ µ2Θ[
√

|µ|(t − t′) − |x − x′|]

G(x − x′, t − t′) ∝ (t − t′)−2 exp[−
(x − x′)2

4(t − t′)
]
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The slightly subcritical state
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Contrast decreases wave 
spread and magnitude

Decrease in magnitude

Decrease in space constant

Nauhaus, Busse, Carandini, & Ringach, Nature Neurosci, 
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Lampl, Reichova & Ferster  Neuron 

Strong correlation among 
pairs of cells
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Effect of contrast on correlation 
between LFPs

Nauhaus, Busse, Carandini, & Ringach, Nature Neurosci, 
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Avalanche size distribution 

Spontaneous activity

Noise driven neural 
activity has scale-free 
properties (Beggs-Plenz)



Critical branching
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In addition, as long as the weighting function w(x,x’) is 
spatially homogeneous, i.e. is of the form w(x-x’) the action 
given above exactly represents a branching process with 
branching rate

w0 =

∫
d

d
xw(x)

and decay rate    . Thus when critical branching α α = f ′w0

should be observed.

A field theory calculation
The avalanche size distribution P(s) can be expressed as:

P (s) = sα, α = −

[

1 +
β

ν(4 + z) − β

]

The mean-field exponents for DP are:

β = 1, ν =
1

2
, z = 2

whence: α = −

3

2
.



A field theory of canonical microcircuits comprising 
both excitatory and inhibitory neural populations

• In 1991 Douglas & 
Martin introduced the 
canonical microcircuit 
as a model of the local 
modular neocortical 
circuit.

    Smooth 
      Cells

    Spiny 
    Cells

Py: 2+3, 5+6

St: 4

Thalamus
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Reducing the E-I renormalized action 
to the RFT action

The renormalized E-I action can be written in the 
form:
∫ ∫

ddxdt
[

s̃1(∂t + µ1 − D1∇
2)s1 − g12s2 − g1s̃1(s1 − s̃1)s1

+s̃2(∂t + µ2 − D2∇
2)s2 + g21s1 − g2s̃2(s2 − s̃2)s2

+1/2(s̃1h12 + s̃2h21)s1s2 + · · ·]

The linear part of this action is:
∫ ∫

ddxdt
[

s̃1(∂t + µ1 − D1∇
2)s1 − g12s2 +s̃2(∂t + µ2 − D2∇

2)s2 − g21s1

]
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This gives rise to the eigenvalue problem
(

µ1 + D1p
2

−g12

g21 µ2 + D2p
2

) (

ŝ1

ŝ2

)

=

(

λ1 ·

· λ2

) (

ŝ1

ŝ2

)

DetA ≤
1

4
Tr

2
A

DetA >
1

4
Tr

2
A

with solution
λ± =

1

2

(

TrA ±

√

Tr
2
A − 4DetA

)

where A is the matrix
(

µ1 + D1p
2

−g12

g21 µ2 + D2p
2

)

Evidently the eigenvalues are real iff 
and complex iff .   These conditions

together with                 define a stable node and a
stable focus.  However if           a stable limit cycle 
emerges.   

TrA < 0

TrA = 0



Analogy with stochastic Lotka-Volterra 
equations on a lattice
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Avalanche formation
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Population oscillation formation



Limit cycle formation
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We now introduce two mechanisms for reducing the 
renormalized E-I action to the RFT action:

(a) The neural analog of predator extinction in
     stochastic Lotka-Volterra dynamics
(b) Balanced excitation and inhibition

In case (a) examination of the eigenvalue equation indicates 
that the coupling coefficents        determine the transition 
from node to focus to limit cycle.  As               , s1 and s2 
become uncoupled so that             and               and we 

gαβ

gαβ → 0

s2 → 0 s1 → s
!

1

 end up with the RFT action   
∫ ∫

ddxdt
[

s̃2(∂t + µ2 − D2∇
2)s2 + g2s̃2(s2 − s̃2)s2

]



 (b) Balanced excitation and inhibition

We next look at a special (symmetric) case of the 
renormalized E-I action:

µ1 = µ2 = µ;D1 = D2 = D;

g1 = g2 = g; g12 = g21;h12 + h21 = 2g

and let

s1 + s2 = s, s1 − s2 = c; s̃1 + s̃2 = 2s̃, s̃1 − s̃2 = 2c̃

This is essentially the same transformation used in 
Benayoun et al (2010).  The E-I balance condition
             then implies                        , and once again the
E-I action reduces to the RFT action. But note that in such a 
case                                        .        
        

s1 = s2 c = 0, c̃ = 0

s = s1 + s2 = 2s1 = 2s2
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Critical behavior of the E-I system

• The condition E-I << E+I underlies the generation 
of avalanches about a stable node.

• This condition generates the DP phase transition 
even in coupled E-I populations

• Avalanches can occur close to but below criticality

• Population oscillations and limit cycles can also 
occur at stable attractors close to but below 
criticality
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Criticality and the E/I balance

• If wE < wI; subcritical, inhibition dominated

• If wE = wI; slightly subcritical, balanced

• If wE = wI + α/f ’; critical, lightly excited

• If wE > wI + α/f ’; supercritical, excitation dominated
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Conclusions

• It is possible to construct a neural field theory 
which predicts the existence of a neural non-
equilibrium phase transition in the same 
universality class as directed percolation.  This 
has a variety of experimental consequences.
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