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LIF Model

LIF = Leaky Integrate & Fire Model.

@ Models based on the Membrane

potential.
Dendme Axon terminal
@ Different concentration of ions /
across the membrane. XQ «V Fell body
Node of Ranw\z/
@ Jon channels allow permeability. S
jr\gxxon Schwann cell
Membrane or Action potential evolution Nudeus 'V'Ve"" sheath

can be simply modelled as a electric
circuit - Lapicque (1907)
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LIF Models

LIF Models: Potential

Basic LIF model
dav

Cp— = —g.(V=V I(t
. gr( L) +1(1)

Q 7. =C,/gL ~ 10ms and
VL = =T0mV.
@ I(7): the external input current.

© Firing voltage: threshold value
Vi~ —50mV.

© Reset voltage: discharged value
Ve = —60mV.

Vihreshold

Time
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I(t)=Jp Y > ot —1y) J,ZZ& — 1)
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Parameters

@ Two different Neuron-types: Inhibitory (I) or
Excitatory (E).
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LIF Models: Synapsis

Stochastic Synapsis Model

Cg
I(t)=Jp Y > ot —1y) J,ZZ& — 1)
i=1 j J

Parameters

@ Two different Neuron-types: Inhibitory (I) or
Excitatory (E).

@ Strength of the Synapses: J. Number of
presynaptic neurons: C.

@ Spiking times: # = time of the j”-spike coming _/%\ b

from the i"-presynaptic neuron.
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LIF Models: Synapsis

Stochastic Synapsis Model

CEO % WELE LTS

i=1 j i=1

Parameters

@ Two different Neuron-types: Inhibitory (I) or
Excitatory (E).

@ Strength of the Synapses: J. Number of
presynaptic neurons: C.

© Spiking times: £ = time of the j”*-spike comin e
piking : Jj"-sp g

from the i"-presynaptic neuron.

© Stochastic Assumption: Neurons spike
according to a Poisson process with constant
probability of emitting a spike per unit time v.
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Diffusion Approximation

Several authors (Brunel, Hakim, Renart, Wang, Mattia, del Giudice) propose
to approximate the current by

I(I) dt ~ /L(fdl+ v ocdB,

@ Firing rate: v = v, + N(¢) where N(¢) is the mean firing rate of the
network.
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LIF Models: Diffusion Approximation

Mean and Variance of I(¢) are given by:

pe=>bv  with b= Cglr—CiJ; and op = (CeJi+ ClJ})v.

Diffusion Approximation

Several authors (Brunel, Hakim, Renart, Wang, Mattia, del Giudice) propose
to approximate the current by

I(I) dt ~ e dt + \/oc dB;
@ Firing rate: v = v, + N(¢) where N(¢) is the mean firing rate of the

network.

@ The value of N(¢) is then computed as the flux of probability that
neurons cross the threshold voltage Vi per unit time.
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LIF Models: Diffusion Approximation

Mean and Variance of I(¢) are given by:

pe=>bv  with b= Cglr—CiJ; and op = (CeJi+ ClJ})v.

Diffusion Approximation

Several authors (Brunel, Hakim, Renart, Wang, Mattia, del Giudice) propose
to approximate the current by

I(I) dt ~ /L(fdl+ v ocdB,

@ Firing rate: v = v, + N(¢) where N(¢) is the mean firing rate of the
network.

@ The value of N(¢) is then computed as the flux of probability that
neurons cross the threshold voltage Vi per unit time.

© Average-excitatory (-inhibitory resp.) if b > 0 (b < 0 resp.).
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LIF Model: PDE

Ito’s rule: PDE for the evolution of the probability density p(v,¢) > 0 of
finding neurons at a voltage v € (—oo, Vp| at a time r > 0.

Final PDE Model:
%( 1+ dg [h(v,N(1))p(v,1)] —a(N(t ))3 (v, 1) =6(v — Vg)N(1),

inv € (—oo, V|, with A(v,N(t)) = =V + Vi + pi. and a(N) = 02/2.
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Ito’s rule: PDE for the evolution of the probability density p(v,¢) > 0 of
finding neurons at a voltage v € (—oo, Vp| at a time r > 0.

Final PDE Model:
%( 1+ dg [h(v,N(1))p(v,1)] —a(N(t ))3;15 (v, 1) =6(v — VR)N(1),

inv € (—oo, V|, with A(v,N(t)) = =V + Vi + pi. and a(N) = 02/2.

Boundary conditions: p(Vg, 1) = 0, p(—o0,1) = 0, p(v,0) = po(v).
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LIF Model: PDE

Ito’s rule: PDE for the evolution of the probability density p(v,¢) > 0 of
finding neurons at a voltage v € (—oo, Vp| at a time r > 0.

Final PDE Model:
op
ot

000) + 5 NP 00] = 0V 0) FE 0.0) =60 = VN (),

inv € (—oo, V|, with A(v,N(t)) = =V + Vi + pi. and a(N) = 02/2.
Boundary conditions: p(Vg, 1) = 0, p(—o0,1) = 0, p(v,0) = po(v).
Source by the Mean Firing Rate:

N(1) == —a(N(t))g—[:(Vp,t) >0.
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LIF Model: PDE

Ito’s rule: PDE for the evolution of the probability density p(v,¢) > 0 of
finding neurons at a voltage v € (—oo, Vp| at a time r > 0.

Final PDE Model:
%( 1+ dg [h(v,N(1))p(v,1)] —a(N(t ))3;15 (v, 1) =6(v — VR)N(1),

inv € (—oo, V|, with A(v,N(t)) = =V + Vi + pi. and a(N) = 02/2.
Boundary conditions: p(Vg, 1) = 0, p(—o0,1) = 0, p(v,0) = po(v).
Source by the Mean Firing Rate:

N(1) == —a(N(t))g—[:(Vp,t) >0.

Translating the voltage origin:

h(v,N) = —v+ DN, a(N) =ag+ aN.
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Neuron Network Model

Conductance IF model

dv;

= —(V;= V&) = Gi(Vi — V.
o ( ) ( E)
dG;

:7G,' I(t
o +1(1)

@ 7, typical leak time.
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Neuron Network Model

Conductance IF model

dv;

= —(V;= V&) = Gi(Vi — V.
o ( ) ( E)
dG;

:7G,' I(t
o +1(1)

@ 7, typical leak time.

© I(1): the external input current.
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Neuron Network Model

Conductance IF model

dv;

= —(V;= V&) = Gi(Vi — V.
o ( ) ( E)
dG;

:7G,' I(t
o +1(1)

@ 7, typical leak time.

© I(1): the external input current.

Diffusion approximation in Cai-Tao-Rangan-McLaughlin (Commun. Math.
Sci. 2006): PDE for the evolution of the probability density p(z,v, g) > 0 of
finding neurons at a voltage v € [V, V| with conductance g € [0, 00) at a
time ¢t > 0.
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Final PDE Model:
Oip(t, v, 8) + Oy (t,v,8) + 0gJ(t,v,8) = 0,

where the fluxes are
Jv(t,v,8) = [(Ve —v) + & (VE —v)] p(t,v, 8)

Jo(t,v,8) = (8e(t) — g)p(t,v, 8) — 04 (),p(1,v, 8) -
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Conductance-based Model

Final PDE Model:
3[/)(t7 va) + avJV([v Vag) + ag‘]G<t7 V,g) - 07

where the fluxes are
Jv(t,v,8) = [(Ve —v) + & (VE —v)] p(t,v, 8)

Jo(t,v,8) = (8e(t) — g)p(t,v, 8) — 04 (),p(1,v, 8) -

Boundary conditions:

Jv(t,Vr,g) =Jv(t, Vg, g) and Jg(t,v,0) = Js(t,v,00) =0
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Conductance-based Model

Final PDE Model:
3[/)(t7 va) + avJV([v Vag) + ag‘]G<t7 V,g) - 07

where the fluxes are
Jv(t,v,8) = [(Ve —v) + & (VE —v)] p(t,v, 8)

Jo(t,v,8) = (8e(t) — g)p(t,v, 8) — 04 (),p(1,v, 8) -

Boundary conditions:

Jv(t,Vr,g) =Jv(t, Vg, g) and Jg(t,v,0) = Js(t,v,00) =0

Mean Firing Rate: g (1) and o (1) are affine functions of

’nE(t) :/ JV(tv vTag) dg
0
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Stationary States

Integrating the PDE

Stationary solutions satisfy

g (v—bN)p + Cl(N)gp(v) +NH(v—Vg)| =0

ov Ov
Using the BC’s:
op
(V — bN)p + Cl(N)af +NH(V — VR) = 0
1%

Integrating we conclude

N (v—bN)? Ve (w—bN)?
p(v) = e m / e 2 Hw— Vgldw
a(N) ,
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Summarizing all solutions of the stationary problem are of that form with N
being any positive solution to

N —o0 max(v,Vg)
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Set-up of the Quest of Stationary States

Summarizing all solutions of the stationary problem are of that form with N
being any positive solution to

N —o0 max(v,Vg)

Changing variables, this condition is equivalent to

Vi/g — bN

with wg/p =
F/R 2N

wr 2 WF 2
I(N) ::/ |ﬁé / eldu] dz
oo J max(z,wg)
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Stationary States

Set-up of the Quest of Stationary States

Summarizing all solutions of the stationary problem are of that form with N
being any positive solution to

N —o0 max(v,Vg)

Changing variables, this condition is equivalent to

Vi/g — bN

with wg/p =
F/R 2N

wr 2 WF 2
I(N) ::/ |ﬁé / eldu] dz
oo J max(z,wg)

I(N) can also be expressed as

s /2 -
I(N) = / —— ("™ — €M) ds
0 S
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Stationary States
Assume hA(v,N) = bN — v, a(N) = a is constant.

1) For b < 0 and b > 0 small enough there is a unique steady state.
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Stationary States

RENIL

Stationary States
Assume hA(v,N) = bN — v, a(N) = a is constant.
1) For b < 0 and b > 0 small enough there is a unique steady state.

ii) Under either 0 < b < Vp — Vg or 0 < 2ab < (Vi — Vg)?V, then there
exists at least one steady state solution.
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Stationary States

RENIL

Stationary States
Assume hA(v,N) = bN — v, a(N) = a is constant.
1) For b < 0 and b > 0 small enough there is a unique steady state.

ii) Under either 0 < b < Vp — Vg or 0 < 2ab < (Vi — Vg)?V, then there
exists at least one steady state solution.

iii) If both 2ab < (Vp — Vg)*Vg and b > Vp — Vg hold, then there are at
least two steady states.
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Stationary States

RENIL

Stationary States
Assume hA(v,N) = bN — v, a(N) = a is constant.
1) For b < 0 and b > 0 small enough there is a unique steady state.

ii) Under either 0 < b < Vp — Vg or 0 < 2ab < (Vi — Vg)?V, then there
exists at least one steady state solution.

iii) If both 2ab < (Vp — Vg)*Vg and b > Vp — Vg hold, then there are at
least two steady states.

iv) There is no steady state under the high connectivity condition

b > max(Z(VF — VR),2VF I(O))
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Linear Case

General Relative Entropy Principle

Result forb =0

Solutions to the linear equation satisfy, for any smooth convex function
G : RT — R, the inequality

g [ oo (220 -
v o (52) -9 ()~ (et @ (i
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Linear Case

Consequences of GRE

Poincaré Inequality
There exists v > 0 such that

[ () s [ [

for all functions ¢ such -=- € H' (o (v)dv).
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Linear Case

Consequences of GRE

Poincaré Inequality
There exists v > 0 such that

7/V:o Poo(?) QZER))Z = /V; Pool?) Bv (pﬁi))r »

for all functions ¢ such -=- € H' (o (v)dv).

Exponential decay

Solutions to the linear equation satisfy

Y ) =P e [V (o) = pec)
S s ./,oc )






cal Results
[ Jele}

Blow-up & Apriori Estimates

Outline

e Analytical Results

@ Blow-up & Apriori Estimates





Analytical Results
(o] le}

Blow-up & Apriori Estimates

Definition of Weak Solution

Weak Solutions

We say that a pair of nonnegative functions (p, N) with
pc L™ (R+;L}|-(_OO7 VF)) N e Llloc,+(R+)
is a weak solution of the LIF model if for any test function

¢(v,1) € C=((—00, Vg x [0,T]) such that v2% € L®((—o0, Vi) x (0,T)),
we have
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Blow-up & Apriori Estimates

Definition of Weak Solution

Weak Solutions

We say that a pair of nonnegative functions (p, N) with
peL®(RT L, (00, Vp)) N €Ly (RY)

is a weak solution of the LIF model if for any test function
¢(v,1) € C=((—00, Vg x [0,T]) such that v2% € L®((—o0, Vi) x (0,T)),

we have
d Vi ‘ Vi 8(f) ({)20
it | p(v)p(v, t)dv = [x {avh(v,N) +aﬁ p(v,1)dv

+N()[6(Vast) — (V1)

holds in the distributional sense.






Analytical Results
[o]e] ]

Blow-up & Apriori Estimates

Blow-up Result
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Blow-up & Apriori Estimates

Blow-up Result

Conservation of Mass:

/v p(v, 1) dv = /'VF po(v)dv =1.

00 J —oco

BU for suitable initial data and any b > 0

Assume that the drift and diffusion coefficients satisfy

h(v,N) =DbN —v and 0<an<a(N).
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Blow-up & Apriori Estimates

Blow-up Result

Conservation of Mass:

/v p(v, 1) dv = /'VF po(v)dv =1.

00 J —oco

BU for suitable initial data and any b > 0
Assume that the drift and diffusion coefficients satisfy

h(v,N) =DbN —v and 0<an<a(N).

If the initial data is concentrated enough around v = Vp, in the sense that

e . . Vr 2
e"'po(v) dv is large enough with p > max(—, E) ,
— o am

then no global-in-time weak solutions exist.
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Well-Posedness of Classical Solutions

From Fokker-Planck to Heat

@ Change of variables: Fokker-Plank to heat equation

y=eév, 1= %(62’ —1), pl,t)=é€w (e’v, %(ez’ — 1))
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From Fokker-Planck to Heat

@ Change of variables: Fokker-Plank to heat equation

y=ev, 7=131("—1), p1)=ew(ev, (e —1)) yields

wr = wyy — bM (7)o (T)wy + M(T)d (=

a(T)
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@ Change of variables: Get rid of wy term:
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Well-Posedness of Classical Solutions

From Fokker-Planck to Heat

@ Change of variables: Fokker-Plank to heat equation

y=ev, 7=131("—1), p1)=ew(ev, (e —1)) yields

wr = wyy — bM (7)o (T)wy + M(T)d (=

a(T)

where a(7) = 27 +1)"'"2=¢~", M(7)= - &

@ Change of variables: Get rid of wy term:
ulx,7) =w(y,7), x=y—>b [ M(s)a~'(s)ds.
@ Get a free boundary Stefan problem with source

@ Related to a price formation equation (Lasry-Lions,Gonzélez-Gualdani,
Chayes-Gonzalez-Gualdani-Kim, Caffarelli-Markowich-Pietschmann)
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Stefan-like problem

Uy = Uy + M(1)00—g, 1y, x <5(t),1>0,
ot
s(t) = fb/ M(s)a~ ' (s)ds, t>0,
Jo
Ou

M(r) = t>0,

 Ox

x=s(1)

s1(1) = s(1) + SR s 0,

a(r)’
u(—oo,1) =0, u(s(t),r)=0, t>0,
u(x,0) =us(x), x<O0.
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s1(1) = s(1) + SR s 0,

a(r)’
u(—oo,1) =0, u(s(t),r)=0, t>0,
u(x,0) =us(x), x<O0.

@ Conservation of mass: fi(;l u(x,t)dx = [ Eoo up(x)dx

© The flux across the free boundary s, is the jump of the §:
M(1) = —ux(s(1),1) = ue(s1.(5) 7, 1) — ux(s1 (1) ", 1)





Analytical Results
[e]e] lelele)

Well-Posedness of Classical Solutions

Stefan-like problem

Uy = Uy + M(1)00—g, 1y, x <5(t),1>0,
ot
s(t) = fb/ M(s)a~ ' (s)ds, t>0,
Jo
Ou

M(r) = t>0,

 Ox

x=s(1)

s1(1) = s(1) + SR s 0,

a(r)’
u(—oo,1) =0, u(s(t),r)=0, t>0,
u(x,0) =us(x), x<O0.

@ Conservation of mass: fi(;l u(x,t)dx = [ Eoo up(x)dx

© The flux across the free boundary s, is the jump of the §:
M(t) := —uy(s(2), 1) = uc(s1(6) 7, 1) — ue(s1(£) T, 2)

@ Ifb < Oresp. b > 0, the free boundary s(¢) is an increasing resp.
decreasing function of time, and s(¢), s, (¢) never.cross:
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Well-Posedness of Classical Solutions

Integral formulation a la Friedman

@ Green’s function: G(x,t,&,7) = W exp {—Jét_ﬂz) }

@ Duhamel’s formula:

0
u(x, 1) = / G(x,1,&0)ur(€)de

J —oo

homogeneous heat equation
of t
- / M(7)G(x,1,s(7),7)dT+ | M(7)G(x,t,5(T), T)dT
0 0

Takes care of free boundary Delta function at s, (1)
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Well-Posedness of Classical Solutions

Integral formula for M

M(1) = Oywu(s(r),1)

0
_ /ﬁ‘ Gs(0). €, 0)u(€) d

+2 | M(T)Gy(s(1),1,s(T), T)dT
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Well-Posedness of Classical Solutions

Integral formula for M

M(1) = Oywu(s(r),1)

0
=-2 /7‘ ‘G(s(t),t,f,O)u}(ﬁ) d¢
+2 | M(T)Gy(s(1),1,s(T), T)dT

-2 ; M(T)Gy(s(2), 8,81 (T), T)dT

— O(M)(1)

Fixed point argument: © : C,,, — C, ., Where
Com:={M € C([0,0]) : [M]| < m}
[M]| := supy<,<, [M(1)]
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Well-Posedness of Classical Solutions

Integral formula for M

M(1) = Oywu(s(r),1)

0
=-2 /7‘ ‘G(s(t),t,f,O)u}(ﬁ) d¢
+2 | M(T)Gy(s(1),1,s(T), T)dT

-2 ; M(T)Gy(s(2), 8,81 (T), T)dT

— O(M)(1)

Fixed point argument: © : C,,, — C, ., Where
Com 1= IM € C([0,0]) : [ M]| < m}
IM]] = supyc,, M)

Contraction for o small, where o = o (||uj]|)
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Well-Posedness of Classical Solutions

Global existence (b < 0) & Blow up when b > 0

Criterium

Solution exists up to time 7%, where T* = sup{r > 0 : M(t) < co}.

Lemma - no break up time for b < 0
Je > 0 small enough such that, for any #y > 0, if

sup lux(x, 20 — €)] < o0,
x€(—o0,s(tg—¢)]

then also
sup  M(t) < co.

th—e<t<liy

Here ¢ is independent of #,.

Theorem (b < 0)

There exists a unique regular solution « for all # > 0.
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LIF Model
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LIF Model

Firing Rates
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LIF Model

No Steady State, b = 3






LIF Model

Blow-up, b = 1.5
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9 Numerics

@ Conductance-based model





Conductance-based model
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Conclusions

Concluding Remarks

@ Simple Stochastic Models of Neuron networks lead to nonstandard
boundary value problems for Fokker-Planck like equations.

@ The stability of stationary states in the nonlinear problem is still an
open problem.

@ Understanding the blow-up mechanism and its relation to
synchronization.

@ Conductance-Based: no analytical results are available, strange
boundary conditions, no control on the firing rate.

@ Periodic solutions? How to show their existence?

@ Numerics: Incorporate inhibitory neurons at the conductance level
model, incorporate space.
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Spike train statistics and Gibbs distributions





Characterizing spike trains statistics

Figure: Raster plot/spike train.
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probability p.





Characterizing spike trains statistics

Figure: Raster plot/spike train.

Assume that spike trains statistics is distributed according to an hidden
probability p.
Can one have a reasonable idea of what p is in a neural network model ?





Raster plot

“spiking state”

1 if Jte€ln—1,n such that V(&) >6;

wk(n) =

otherwise.

Figure: Raster plot.

Spike pattern

w(n) = (wk(n)e s

Spike block
wl ={w(mw(m+1)...w(n)}

Raster plot

def
w=wty






The Generalized Integrate and Fire Model Rudolph-Destexhe,2006

dVi

Ck g

N
= —gLk (Vi — EL) — ngj(taw) (Vi — Ej) + Ik(2),

8kj(t,w) = Gijoug (t,w)
aij (t,w) = Zakjt—r wj(r)

r<t

(mV;
20

Surnmiation-EPSP- PSP

Figure: PostSynaptic Potential. From F. Grammont, Lecture in Les Houches,
2009.





The Generalized Integrate and Fire Model Rudolph-Destexhe,2006

dv,

N
N (Vk — EL) — ngj(t7w) (Vi — Ej) + I(2),

j=1

8kj(t,w) = Gyjoy; (t,w)

ay (t,w) Zakj (t = r) w(r)

r<t

Ck ——

Synaptic response

Pt
ayj (t) = o H(t)
J






The Generalized Integrate and Fire Model Rudolph-Destexhe,2006

dV,

N
kgy = 8Lk (Vi — Er) —ngj(t,w) (Vi — E)) +ike"t)(t) + o8&k (t),
=1

gij(t,w) = Gyjou (t,w)

Canonical equations
dVy

G~ T ek (t.w) Vie = ik(t, w),
N
i(tw) = gL EL+ Y Wigag (t,w) + i (t) + oé(t),
i1

Wi = Ej Gy






Flow given a raster

dVi

CkWJrgk(f w) Vi = ik(t,w), J

t2 d
rk(t17t27 )_ e Ck gk(uw) du

1 t .
Vi(t, ) = Ta(s, £ ) Vi(s) + c/ M (81, £, ) ik (t1,w) dta.
k Js





Last reset time

If Vi(t) > 6, neuron k fires.

v, ®

(2]

P

lu _A_A_.‘_.«A:":::

[

Trerr

to

[t

+1]

Tsep

to+1

Real time t

Integer “spike" time n

Figure: From Cessac, J. Math. Neuro. 2011.

Spike time

1

Vk(taw) = rk(’Tk(t,W), t,W) Vreset + a

Delayed reset to a
random value Vieset.
v

Spikes are registered

at integer times (in a

time unit that can be
arbitrary small).

Ci(t, t,w) i (tr,w) dty.





Explicit form of the membrane potential given a raster

1 t .
Vi(t,w) = Ti(7x(t,w), t,w) Vieser + Ck/ Me(tr, t,w) ig(t,w) diy.
T

k(tvw)

ik(t,w) = gLk EL + Z Wig g (£,0) + i7(2) + oséi(t).
j=1

Vk(t,w) _ V;SdEt)( )_|_ V(no:se)( 7w).





Deterministic part

VI (¢, w) = VI (t,w) + V(¢ w)

Synaptic contribution

e = 3y [ oo

T (t,w

External + leak contribution

E [t 1ot x
VED(r 0y = L Mt tw)dt + = / () (1, 1, w)dtr,
TLk Jr(t,w) Chk ()

def C,
where 7 4 = g
L,






Stochastic part

VISnOiSE)(Tk(t7w)’ t,w) = rk(Tk(t,w), t, w) Vieset + VIEB)(Tk(t, w)a t, w)

with

t
VB (£, w) = “CB/ Mo (81, £ ) dBi(tr).
k Jre(tw)

Gaussian process with mean zero and variance:

OB

2t
Ulz((taw) = ri(Tk(taw)a t7w) (712? + (Ck) / ri(tl, t,w) dt;.

k(tvw)






Conditional probability

Proposition

The probability of w(n) conditionally to w"! is given by:

where

and






Gibbs potential

Set: u
¢(nw)=> ¢k (nw)

k=1

¢k (naw) =
wi(n) logm (Xk(n — 1,w)) + (1L —wk(n)) log (1 — 7 (Xk(n — 1,w))),
so that
Py [w(n) ‘wﬁ;] = ef(nw),

Then:

Conditional probability of blocks given the past

Py [wh, |wT;ol] — o Xm (W)






Gibbs measure

Theorem, Cessac 2011, J. Math. Neuro.

For each choice of parameters the gIlF model has a unique Gibbs
distribution with potential ¢.

Explicit Gibbs potential.
Explicit dependence in parameters.

Holds for a time-dependent stimulus (non stationarity).





Markovian approximations.

The Gibbs potential has infinite range (non Markovian).

Markovian approximations with memory depth D approaches the exact
statistics with a Kullback-Leibler divergence converging exponentially fast
to 0 as D — oo.





Markovian approximations.

Polynomial expansion.

L
$ PN wi_p) =Y N(n) i(wp_p),
1=0

where:

¢i(wn-p) =wi(t1) .. wi(ta), i €{1l,....N}, tye{n=D,...





The maximal entropy principle

o Consider the stationary case.

L
P (w2p) = > Nan(wlp),
/=0

@ Variational principle and topological pressure.

L
P (qb(D)) = sup {h(V) + Z)‘/V [61(2 )] }
=0

VeMinv
@ Therefore, the monomials ¢; constitute a canonical basis for
constraints while the \;'s are conjugated parameters.

@ The \/'s depend explicitly on network parameters (synaptic weights,
stimulus).





Statistical Models hierarchy

@ Bernoulli D = 0. Memoryless. Neurons are independent.

@ “Ising” (Schneidman et al, nature 2006) D = 0. Memoryless.
Neurons are spatially correlated but time-independent.

@ Polynomial expansion (Marre et al, 2009; Vasquez et al 2011)

@ Infinite range





Linear response in chaotic neural networks.
(Cessac-Sepulchre, 2004, 2006)





A “firing rate” model.

7
firing rate
membrane potential of ’; ;s; :” at Stimulus/input.
of neuron i at ’
time t+1.
Synapses.

Fully connected network,
Quenched random synapses
(uncorrelated).






Ruelle Takens Transition to chaos by quasi-periodicity
(Doyon et al, 1994; Cessac, 1995).

Increasing g.

g=1.55, limit cycle.
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Signal transmission.





Signal transmission.

Superimpose a weak signal upon the
background activity of some neuron

di(t+ 1) = I Jiif (@5(8)) + &, 6(0)]





Signal transmission.

Superimpose a weak signal upon the
background activity of some neuron

di(t+ 1) = I Jiif (@5(8)) + &, 6(0)]

Global dynamics.

it + 1) = G [a(t)] + £ [t, u(t)] = G [a(t)]





Amplification






Saturation











Complex interplay between topology and
dynamics.

How can we characterize / measure the
effects of this interplay ?

How can we measure the action of a weak
signal superimposed upon a chaotic
background ?

“Butterfly effect !





SRB measure.

Let u be an initial state (a.c. probability measure on Q).

The SRB measure is given by: p Z lim Gy
t——+4o00

It is a “natural” probability measure, carried by the attractor.
* Ergodic in a strong sense:

Jim o —Z @ [GHX)] " =" | o (X)p(dX)

* Gibbs state and equilibrium state.

* Robust to noise.





Out of equilibrium SRB state
(Ruelle, 99).

pe=p+&p= Iim Gi...Gi_ppu

n—+oo

® [@(2)] = & [u(t)]+V 4y P.6u(t)+0(]|su(t)|?)

t—1
o= Y / p(dw)DGE 1, [G™H(w)] .V, _1)@+NL

T=—00





Linear response theory
(Ruelle, 99).

51l ®] = Y (Roty—o-1 G 1 ®)

ag

Set:

X=¢oG!

Then:

[ p(du)DGEX(1).V (@ if o>0
0 if o <0 (causality).

{ (ko X|®P)
Ko X





Average effect on I of a perturbation applied at |
(Cessac-Sepulchre, 2004).

$b(u) =u;

&(t) = &;(t)e; \

sipl®] = Y [ p(dw)DGE(, gj(t-0—1)

@) = [ ptaDGEGH = Y Ty, (1 ,0-10)
1=1

7;(0) I=1










m(t+1)

0,50 |

g=3.5,%,=0.158

0,00 —

-0.50 -

-1,00 —

m(t)

1. 808

500 | | | |
2,00 -1,50 -1,00 -0,50 0,00 0,50





Unstable-Stable manifold
decomposition (ruelle, 99).

By locally projecting X on the stable and unstable direction one
can write :

(ko X|®) = (k5 X|®) + (k2X|P)
where
(55X |®) = [ p(du)DGEX3(1).V (o)

(kg X|®) = p [(P o G7)(—div'X")]—p [®] p [-div*XY]





Linear response and resonances.






Linear response and resonances.
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Linear response and resonances.
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Correlation function

Linear response.





Synaptic network

(Cessac

-Sepulchre, 2006).
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Correlations versus responses.
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Transmitting a signal hidden in the chaotic background.
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Cellular and circuit mechanisms
maintain low spike co-variability
and enhance population coding

Cheng Ly * ", Jason Middleton# ", Brent Doiron ™"

*Department of Mathematics, University of Pittsburgh.
#Department of Otolaryngology, University of Pittsburgh Medical Center.
Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University.
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Quantifying Experimental Data

ﬁ J i firing rate= # spikes
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Quantifying Experimental Data

m J I “ 1) = total # spikes

0 | | | _ dt*M
-_& 7| ] Firing Rate

I\ /V(t)

I I I X, Y = random spike counts in a window

30 ms
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Quantifying Experimental Data

m J I “ 1) = total # spikes
I __dt'™
-7& 7| ] Firing Rate

I\ /V(t)

I I I X, Y = random spike counts in a window

Cov(X,Y)
I I I I P= \/Var YVar(Y) = (_171)
30 ms

Correlation
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Why is co-variability important?

Table 1 Summary of studies measuring spike count correlations in primates

Firing rate Duration State (task,
Reference number Area (spikes per s) (ms) anesthesia, etc.) rsc
12* V1 ~25 2,560 Anesthetized 0.2
267 V1 ~8 1,280 Anesthetized 0.16
23 V1 1,894 Anesthetized 0.25
31 V1 Anesthetized 0.26
13~ V1 ~b0 1,860 Fixation 0.25
28* V1 ~3 500 Fixation 0.01
82 V1 400 Tracing 0.18
83* V1 30 1,000 Discrimination 0.1
A. Zandvakili and A.K., V2 5 1,000 Anesthetized 0.11
unpublished data*
M. Smith and \Z 5.2 1,000 Fixation 0.05
M. Sommer (University
of Pittsburgh), personal
communication®
7* V4 21 200 Attention/detection 0.04
task
8* V4 >5, ~20 800 Attention/tracking 0.05
task
A.B.G. Graf (New York MT ~10 300 Anesthetized 0.09
University), personal
communication®
29* MT ~20 500 Fixation 0.1
15* MT 28.5 500 Discrimination 0.13
6/22*% MT ~20 1,000 Discrimination 0.15
84 Perirhinal ~12 200-500 Fixation/matching 0.02
task
85 Supp motor area 66 or 200 Serial reaching 0.013
27 Supp motor area ~15 200 Reaching 0.02
86 Premotor areas ~5 400 Grasping/imagery 0.02
task
87 M1 ~20 600 Reaching 0.1-0.2
25 Motor/parietal; areas 2/5 ~5 1,000 Reaching 0.02-0.04
88 Substantia nigra 58 500 Cue matching ]0.01-0.04
89 FEF ~50  Afewhundred  Visual search | 0.05-0.2 Cohen & Kohn,
90 FEF ~20 ~200 Visual search 0.09 .
24 Prefrontal ~5 3,000  Delayed saccade tas  0.08 Nature Neurosci. Rev. '11
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The somatosensory system
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The somatosensory system
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Neurons in a 'barrel'
respond to a whisker tweak

1 spikes/ms

10 ms
Pinto et al. '03

0
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The somatosensory system
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Woolsey & van Der Loos '70
Layer 4
iStockphoto / Peta Curnow . . .
We have paired recordings in layer 2/3

(input from layer 4)

Neurons in a 'barrel'
respond to a whisker tweak

1 spikes/ms

10 ms
Pinto et al. '03

0

Cerebral Cortex Cover; Jan '08
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Our Experimental Results
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Our Experlmental Results
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Our Experlmental Results
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Our Experlmental Results
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Correlation between neural spike trains increases with firing rate.
de la Rocha, Doiron, et al., Nature 2007.
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Previous Results
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Correlation between neural spike trains increases with firing rate.
de la Rocha, Doiron, et al., Nature 2007.
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Previous Results
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pr = S(v)c
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Input correlation ¢
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Correlation between neural spike trains increases with firing rate.
de la Rocha, Doiron, et al., Nature 2007.

1 Quiet

NO! ¢>0
Gentet et al. Neuron, '10

Maybe c=07?

V, cross-correlation
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time (ms)
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Spiking Network Model with
Feedforward Inhibition

Leaky integrate-and-fire (LIF) model: 55//{///}?@ Votiage
% 0.1 02
Time (s)
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Spiking Network Model with
Feedforward Inhibition

z?ejaky integrate-and-fire (LIF) model: Jk A :A: :A e cells
Tm—> = —v; — gS1(t)(v; — Er) + Stim(t) 24204
dt Stlmulus\
+0 (\/ 1 —cn; () + \ﬁn(t)) (Trial locked) §7;/
® .‘ \
|- ceIIs .. o®
Background

(Trial variable)
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Spiking Network Model with
Feedforward Inhibition

Ziaky integrate-and-fire (LIF) model: Jk A :A: :A e cells
T~ = —v; — gS1(t)(v; — Er) + Stim(t ) \ 442
imulus
+0 (\/ 1 —cn; () + \ﬁn(t)) (Trial locked) §7;/
® ‘.

MM
(% (t) Z Uth, Uj (Tref + t) — Ureset - Ce||S ‘ Se \

Tref = OINS Ba_ckgr_ound
(Trial variable)
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Spiking Network Model with
Feedforward Inhibition

Z?ejaky integrate-and-fire (LIF) model: J\ A :A: :A e cells
Tm—> = —vj — gS1(t)(v; — Er) + Stim(t) 24204
dt Stlmulus\
+0 (\/ 1 —cn; () + \ﬁn(t)) (Trial locked) ,CV‘_/
o:.“.o W
U (t) > Uth, Uj (Tref + t) — VUreset I-cells" : ® LT
Tref — 5 1mS Background
(Trial variable)
dn;
Tnd—tj — —773 + \/Tngj (t)
(&(t) =0

(&5()&; (1)) = 6(t — 1)
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Spiking Network Model with
Feedforward Inhibition

Leaky integrate-and-fire (LIF) model: AA, A
dv; asga E-cells
de—; = —Uj — gS](t)(Uj — E[) + Stim(t)s \ AAAAA:A
timulus
1 — cn. (8) + / (Trial locked) N g
—|—J<\/ cn;(t) + ven( )) rial locke . 7‘_/ VC\
S B .o".‘. M
U (t) = Uth, Uj (Tref + t) — VUreset I-cells“:’ W
Tref — 5 1mS Background
(Trial variable)
dn; —
Tn% — —773 + Tngj(t)

*Heterogeneity in the thresholds
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Model Matches Data
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Model Matches Data
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Model Matches Data
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Model Matches Data
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Model Matches Data
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Results hold for various velocities

Smooth

5mm

9000 :

0 Rough [
L b l
8000 30 100

— oy 0 Smooth O)

[»)
Y @

6000

5000 ¢

4000 -

3000 ¢

Peak Abs Velocity (deg/sec)

2000 - e

£pT0 @ Q
1000 @Fa4 ™ © © = g ]

Rise Time (ms)

Ritt et al. Neuron, '08

Thursday, September 29, 2011





Results hold for various velocities

Poisson Input
Rate from L4
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Results hold for various velocities
With Inhibition  No Inhibition
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Results hold for various velocities
With Inhibition  No Inhibition
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Results hold for various velocities
With Inhibition  No Inhibition
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Why is correlation consistently low?
Reduced binary network
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(1 :spiked
: no spike

E neuron=
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|0
(1 if input > 0
| 0 ,if input < 0g
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Why is correlation consistently low?
Reduced binary network

1 ,if input > 0;

(1 :spiked _
E neuron= « I'neuron { 0 . if input < 6;

: no spike
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(1 if input > 0
| 0 ,if input < 0g
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Why is correlation consistently low?
Reduced binary network

1 ,if input > 0;

_ (1 : spiked [ neuron — { f 3

E neuron= <\ 0 :no spike 0 . if input < 6;
B <r 1 ,if input > 0g Noisy Input
: ) O 71f IHPUt S HE XT I Prob. of firing

0
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Why is correlation consistently low?
Reduced binary network

1 ,if input > 0;

_ (1 : spiked [ neuron — { f 3
E neuron=19 o . __ spike 0 ,if input < 6;
B <r 1 ,if input > 0g Noisy Input
: ) O 71f IHPUt S HE Xf I Prob. of firing
§)

Spontaneous (V=0) Intermediate velocity (V=0.5) High velocity (V=1)
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Why is correlation consistently low?

Reduced binary network

_J 1 :spiked [ neuron :{
E neuron=« 0 :no spike

B <’ 1 ,if input > 0 Comant

|1 0 ,if input < 0g

0

Spontaneous (V=0)

Intermediate velocity (V=0.5)

1
0

,if input > 0;
,1f input < 6;

XT l Prob. of firing

High velocity (V=1)

V/veE/I\
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Binary Network
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Binary Network Motivates Analysis
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Binary Network Motivates Analysis
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Binary Network Motivates Analysis
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Binary Network Motivates Analysis

0.26 |

020 | Small sub-network for tractability:

== . With inhibition

m— (.. Without inhibition g=0
0.02
background
0.01
0 ' ' ' ' ' 01
0.2 0.6 1 G dz dy.
Velocity / / / / ? v
Or O +g Or

o0 o0 0r o0 o’e 00
(/ / / +/ / / ) Gz dx dyy dy2,
0 JOg J—o0 Or+g JOE+g JOr

\\

AN

Thursday, September 29, 2011





Binary Network Motivates Analysis
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Asymptotic Analysis:

Assume c << 1,9 << 1:
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Asymptotic Analysis:

Assume c << 1,9 << 1:

Covgg ~ S(QE)COVin(Ca g)
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Asymptotic Analysis:

Assume c << 1,9 << 1:

S(Op) = <

_9%
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Asymptotic Analysis:

Assume c << 1,9 << 1: |Covgg ~ S(8g)Coviu(c, g)
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Asymptotic Analysis:

Assume c << 1,9 << 1:
S(O0E) =

Covin(c, 9,0m,01) = ¢+ 20°va—=T77) — 2cq (wzuE +

No Inhibition
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Asymptotic Analysis:

Assume c << 1,9 << 1: |Covgg ~ S(8g)Coviu(c, g)

2
27T

S(0g) = ©
o=\

Covin(c,g,0p,07) = c+ W — 2cg (21/1(91«7 + Vﬁ )

No Inhibition Covi, = ¢ 0.2 Total Cov

0.25.
@ 0.16 -

Wl < i — °
background B ~
| O 02 %

L
> -
o A1
A4 Background (¢) © | e
0.028) | .eee Cov,.
0.15 0.02
0 Velocity 1 0 Velocity 1

*Correlation increases with firing rate (velocity).
de la Rocha, Doiron, et al., Nature 2007.

Thursday, September 29, 2011





Covgg ~ S(HE)COVin(Ca g)

S(@E) _ 6—29%

27 7

Covin = ¢+ 2¢°vr(1 — vg)
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Uncorr. Inhibition 0.22
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Inhibition can synchronize and shape rhythmes.

van Vreeswijk, Abbott, Ermentrout, JCNS '94; Cardin et al., Nature '09
Whittington, Traub, Kopell, et al., IJ Psychophys. '00; Borgers & Kopell, '03.

Wang & Buzsaki, J Neurosci. '96
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Validate theory with full spiking model:

=== Background Current (c)
Inhibitiory Current (g)
== Total Current (c+g)
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Validate theory with tull spiking model:

== Background Current (c)

Inhibitiory Current (g)
== Total Current (c+g) Background (c)
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Validate theory with tull spiking model:

== Background Current (c) 5
Inhibitiory Current (g) x10
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Validate theory with tull spiking model:
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Inhibitiory Current (g)
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Validate theory with tull spiking model:
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Validate theory with tull spiking model:
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Validate theory with tull spiking model:

=== Background Current (c)
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Are 'c' and 'g' necessarily large?
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Are 'c' and 'g' necessarily large?
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Are 'c' and 'g' necessarily large?

0.8; CovEE=O
0.6
> 0.4
0 Velocity 1
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Are 'c' and 'g' necessarily large?

0.8; Cov_.=0
0.6/ e
> 0.4/
0 Velocity 1
0.2] )
0 01 ., 02 03
0 Velocity 1
Model prediction:

- The I-E correlation decreases in the evoked state.
- The width of the I-E correlation histogram decreases in the
evoked state.
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Model Prediction Confirmed:

LIF Simulations Experimental Data
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Model Prediction Confirmed:

LIF Simulations
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How does this scheme fit in with other work?
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How does this scheme fit in with other work?
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Geometric mean output rate Vv, (spikes s

[No coupling]

Correlation between neural spike trains increases with firing rate.
de la Rocha, Doiron, et al., Nature 2007.
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How does this scheme fit in with other work?
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[No coupling]

Correlation between neural spike trains increases with firing rate.
de la Rocha, Doiron, et al., Nature 2007.

The Asynchronous State in Cortical Circuits.
Renart, et al., Science 2010.
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How does this scheme fit in with other work?
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Correlation between neural spike trains increases with firing rate.

de la Rocha, Doiron, et al., Nature 2007.

Cancellation of input correlation:

C =Cggr+ Cr1 +2¢Cgg
= =
>0 >0 <0

The Asynchronous State in Cortical Circuits.
Renart, et al., Science 2010.
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How does this scheme fit in with other work?
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Correlation between neural spike trains increases with firing rate.
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The Asynchronous State in Cortical Circuits.
Renart, et al., Science 2010.
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Low correlation enhances coding
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Low correlation enhances coding

Without inhibition

With inhibition
1500, 13 g8 N
d'=1.15 20001 d'=0.29

«»1000¢ »
: § Code = E w; R; (1)

I 1000;

>0 mv-05 i—1
v=1
% 50 100 050 50 100
Summed E-cell spikes in a trial Summed E-cell spikes in a trial
|11 — fio.5]

d =
(61 4+ 00.5)/2

Thursday, September 29, 2011





Low correlation enhances coding
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Low correlation enhances coding
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Conclusions

® Analyzed statistics of dual recordings of excitatory & inhibitory neurons
in spontaneous and evoked states (and modeling different velocities).
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® Analyzed statistics of dual recordings of excitatory & inhibitory neurons
in spontaneous and evoked states (and modeling different velocities).

® With a reduced model, dissected the underlying mechanism for low
correlation (feedforward inhibition). Validated reduced theory with full
spiking model.
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Conclusions

® Analyzed statistics of dual recordings of excitatory & inhibitory neurons
in spontaneous and evoked states (and modeling different velocities).

® With a reduced model, dissected the underlying mechanism for low
correlation (feedforward inhibition). Validated reduced theory with full
spiking model.

® Have a better understanding of how neural networks encode information
efficiently to higher layers.
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Large Binary Network
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Phase models
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Synaptic coupling
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Liouville
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Liouville
6; = £:(0,1) 0= {6,,05,...,0n}

Probability conservation
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Py(6,60') = Py (0)Py(0) + —Cs(6,6)
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Py(6,60') = P,(8')P,(6) + %02(9, 9

apl(e) 0 / / /
o +N%/d9 £(8,0")P,(8))Py(0) =

_9
00

/ o' £(0,0)Cx(6, )
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Py(6,60') = P,(8')P,(6) + %02(9, 9

8135159) + N% / do' f(6,6')Pr(0')P1(6) @dﬁ’f@ﬁ’)(f@

Finite size effects
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Py(6,60') = P,(8')P,(6) + %02(9, 9

813575(9) + N% / do' f(6,6')Pr(0')P1(6) @dﬁ’ﬂﬁ,@’)(f@

Finite size effects

o) O / 40’ £(0,6')P1(6') P1.(6) = 0

ot 00

Mean field theory
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Py(6,60') = P,(8')P,(6) + %02(9, 9

813575(9) + N% / do' f(6,6')Pr(0')P1(6) @dﬁ’ﬂﬁ,@’)(f@

Finite size effects

OPy(0) | O / do' f(0,0")P,(0")Py(0) =

ot 00

Mean field theory
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Py(6,60') = P,(8')P,(6) + %02(9, 9

813575(9) + N% / do' f(6,6')Pr(0')P1(6) @dﬁ’ﬂﬁ,@’)(f@

Finite size effects

aPl(e) , 7 / / / . 1 0°
e N%/de f(60.0)Pi(0")P1(0) = 5D Pi(6)
White noise

Mean field theory
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Py(6,60') = P,(8')P,(6) + %02(9, 9

813575(9) + N% / do' f(6,6')Pr(0')P1(6) @dﬁ’f@ﬁ’)(f@

Finite size effects

On0) , O / 10 (60,0) Py (0)P(0) = 202 py(0)

ot 00 27 062
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Py(6,60') = P,(8')P,(6) + %02(9, 9

813575(9) + N% / do' f(6,6')Pr(0')P1(6) @dﬁ’ﬂﬁ,@’)(f@

Finite size effects

ot 00 27 062

McKean-Vlasov equation
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aP; (0 % A 1 92
5; ). N@/de f(60,0)P(0')Pr(0) = 5D P (0)

McKean-Vlasov equation
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OPy (0) i, L1 92 .

o = aeifz’PN(e) | zﬁeiaejgikgjkPN( )

The Fokker-Planck equation

On0) , O / 10 (60,0) Py (0)P(0) = 202 py(0)

ot 00 27 062

McKean-Vlasov equation
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BBGKY Hierarchy

OPLO) | O [ e in o o [ |
575( ) | N%/de fz'(@,@)P1(9 )P1(6’) — —N@/dé’ fi(9,9)02(6’,9)






BBGKY Hierarchy

OPLO) | O [ e in o o [ |
575( ) | N%/de fz'(@,@)P1(9 )P1(6’) — —N@/dé’ fi(9,9)02(6’,9)

(> depends on (3 and so on






BBGKY Hierarchy

OPLO) | O [ e in o o [ |
575( ) | N%/de fz'(@,@)P1(9 )P1(6’) — —N@/dé’ fi(9,9)02(6’,9)

(> depends on (3 and so on

N coupled PDEs






BBGKY Hierarchy

AP (6 9 5
575( Ly 90 / do" fi(0,0")PL(0') P1(0) = —N o5 / o’ £(6,0)C5(6,0")

(> depends on (3 and so on

N coupled PDEs Need to truncate
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Klimontovich






Klimontovich

Begin with exchange symmetry






Klimontovich

Begin with exchange symmetry

N neurons in 1P
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Klimontovich

Begin with exchange symmetry

N neurons in 1P

Tuesday, October 4, 2011





Klimontovich

Begin with exchange symmetry

N neurons in 1P

density n(0,u,t) = — > (60— 6;(t))
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Oscillator dynamics: 0 = I(t)+ ault)
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Oscillator dynamics: 0 = I(t)+ ault)

Synaptic dynamics:
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Oscillator dynamics: 0 = I(t)+ ault)

Synaptic dynamics: u+ fu = P
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Oscillator dynamics: 6 = I(t) + au(t)
Synaptic dynamics: u+ fu = P

Firing rate:
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Oscillator dynamics: 6 = I(t) + au(t)
Synaptic dynamics: u+ fu = P

Firing rate: v = % Z o(t —t3)
j
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Oscillator dynamics: 6 = I(t) + au(t)
Synaptic dynamics: u+ fu = P

Firing rate: v = % Z o(t —t3)
j

5(t —t%) = 05(m — 0(t))
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Oscillator dynamics: 6 = I(t) + au(t)
Synaptic dynamics: u+ fu = P

Firing rate: v = % Z o(t —t3)
j

5(t —t%) = 66(m — 6(t))






Klimontovich

e.g. Hildebrand, Buice, Chow, PRL 98.054101, 2007

Oscillator conservation

Oy + 0 [(1(t) + au(t))n] =0






Klimontovich

e.g. Hildebrand, Buice, Chow, PRL 98.054101, 2007

Oscillator conservation

Oy + 0 [(1(t) + au(t))n] =0

u+ fu = B






Klimontovich

e.g. Hildebrand, Buice, Chow, PRL 98.054101, 2007

Oscillator conservation

Oy + 0 [(1(t) + au(t))n] =0

u+ fu = B

but # is not differentiable
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Average over initial data

smooth by
averaging

/0(97 t) — <77(‘97 t)>
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Average over initial data

u(t) = —Bu(t) + B I(t)n + aun)






Average over initial data

(a(t) = —Bu(t) + B I(t)n + aun) )






Average over initial data

to(t) = —Puo(t) + B I(t)p + alun)
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On + g [1(t)n + aun| =0






Average over initial data
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(8 + 85 [L(t)n + aun] = 0)
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(Oru(t) + Bu(t) — BI(t)n + aun]) =0
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to(t) = —Puo(t) + B I(t)p + alun)
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Average over initial data

to(t) = —Puo(t) + B I(t)p + alun)

Orp + O [1(t)p + a{un)] = 0
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Average over initial data

to(t) = —Puo(t) + B I(t)p + alun)

Orp + O [1(t)p + a{un)] = 0

(1 (@ru(t) + Bu(t) — B[I(t)n + ous]) = 0 )
(nun)






Average over initial data

to(t) = —Puo(t) + B I(t)p + alun)

Orp + O [1(t)p + a{un)] = 0

(1 (@ru(t) + Bu(t) — B[I(t)n + ous]) = 0 )
(nun)

BBGKY moment hierarchy






Average over initial data

to(t) = —Puo(t) + B I(t)p + alun)

Dup+ 0 [1(E)p + — 0

(1 (@ru(t) + Bu(t) — B[I(t)n + ous]) = 0 )
(nun)

BBGKY moment hierarchy






Average over initial data

o (t) = —Buo(t) + B 1(t)p +
p + 0 [1(1)p + _

(1 (@ru(t) + Bu(t) — B[I(t)n + ous]) = 0 )
(nun)

BBGKY moment hierarchy






Mean field theory

<U77> — Upp Ncuv






Mean field theory

(un) = ugp M)






Mean field theory

(un) = ugp M}

lgnore correlations






Mean field theory

to(t) = —Puo(t) + Br(t)
v(t) = (I1(t) + aue(t))p(m, t)

Oep + Op [(1(t) + aug(t))p] =0






Mean field theory

to(t) = —Buo(t) + Br(t)
v(t) = (I(t) + aug(t))p(m, t)
Oep + Op [(1(t) + aug(t))p] =0

Previous work went straight to mean field theory

e.g. Desai and Zwanzig, 1978; Strogatz and Mirollo, 1 990;
Treves 1993; Abbott and Van Vreeswijk, 1993; ...
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Density functional

e.g. Buice and Chow, PRE, 76.0311 18,2007
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Density functional
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Liouville Klimontovich
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Density functional

e.g. Buice and Chow, PRE, 76.0311 18,2007

Liouville Klimontovich
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Density functional

e.g. Buice and Chow, PRE, 76.0311 18,2007

Liouville Klimontovich
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Density functional

e.g. Buice and Chow, PRE, 76.0311 18,2007

Liouville Klimontovich
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Density functional

e.g. Buice and Chow, PRE, 76.0311 18,2007

Liouville Klimontovich
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Density functional

e.g. Buice and Chow, PRE, 76.0311 18,2007

Liouville Klimontovich
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Liouville

Density functional

e.g. Buice and Chow, PRE, 76.0311 18,2007

—

0(t; t2)

Klimontovich
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Liouville

Density functional

e.g. Buice and Chow, PRE, 76.0311 18,2007

—

0(t; t2)

Klimontovich
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Liouville

Density functional

e.g. Buice and Chow, PRE, 76.0311 18,2007

—

0(t; t2)

Klimontovich
n(0,t;t3)
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Liouville

Density functional

e.g. Buice and Chow, PRE, 76.0311 18,2007

—

0(t; t2)

Klimontovich
n(0,t;t3)
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Liouville

0>

Density functional

e.g. Buice and Chow, PRE, 76.0311 18,2007

A(t; th)

—

(t;t5)

Klimontovich
n(0,t;t3)
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Density functional

e.g. Buice and Chow, PRE, 76.0311 18,2007

Liouville Klimontovich
n(0,t;t3)
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Density functional

e.g. Buice and Chow, PRE, 76.0311 18,2007

Liouville Klimontovich
n(0,t;t7)
On Ot;to)  (t: 12)
92 // «—>
n(0,t;t;)
0; 0

Ensemble of initial data
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Density functional

e.g. Buice and Chow, PRE, 76.0311 18,2007

Liouville Klimontovich
n(0,t;t3)
O(tito)  G(t: 12)
92 <>
n(0,t;tg)
0; 0

Ensemble of initial data
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Density functional

e.g. Buice and Chow, PRE, 76.0311 18,2007

n(0,t;t3)

0 0

Ensemble of initial data = Ensemble of systems
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Density functional

e.g. Buice and Chow, PRE, 76.0311 18,2007

Pln(0,1)]
n(0,t;t3) /
On O(tito)  G(t: 12)
92 <>
n(0,t;t5)
Pn(0,1)
0; 0

Ensemble of initial data
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Density functional

e.g. Buice and Chow, PRE, 76.0311 18,2007

Pin(0,t
o) n(0,1)] ,
On O(tito)  G(t: 12) /
92 <>
n(0,t;t5)
Pn(0,1)
0; 0

Ensemble of initial data = Density of densities

Tuesday, October 4, 2011





Density functional

e.g. Buice and Chow, PRE, 76.031118,2007

Oy + 0o [(L(t) + au(t))n] = 0

u+ pu = B(I+ au)n(r,t)






Density functional
e.g. Buice and Chow, PRE, 76.031118,2007
O + g [(1(1) + au(t))n] =0
u+ pu = B(I+ au)n(r,t)

1n(0,t0) = n0(0)






Density functional
e.g. Buice and Chow, PRE, 76.031118,2007
O + g [(1(1) + au(t))n] =0
u+ pu = B(I+ au)n(r,t)

n(0,to) = no(0) u(to) = uo






Density functional

e.g. Buice and Chow, PRE, 76.031118,2007

Oy + Op [(1(t) + au(t))n] =0
u+ pu = B(I+ au)n(r,t)

n(0,to) = no(0) u(to) = uo

)

L(u,n)






Density functional

e.g. Buice and Chow, PRE, 76.031118,2007

Oy + 9 [(I(t) + au(t))n] =0

u+ Pu = GBI + au)n(m,t) }

(0, t0) = no(0) u(to) = uo J

Plu,n| o< §[L(u,v) = 0]

L(u,n)






Density functional

e.g. Buice and Chow, PRE, 76.031118,2007

Oy + 9 [(I(t) + au(t))n] =0

u+ Pu = GBI + au)n(m,t) }

(0, t0) = no(0) u(to) = uo J

Plu,n| o< §[L(u,v) = 0]

Density of the density

L(u,n)






0(z) = / e dk
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5(z) = /eikxdk

Plu,n| = 6[L(u,v) = 0] x /D@pﬁ o~ S0, 7]
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0(x) = / e"% d;

Action

Plu,n| = 0[L(u,v) = 0] x / DuDij e Sl
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0(x) = / e dk

Action

/

Plu,n| = 6[L(u,v) = 0] x /Dal)ﬁ o~ S0, 7]

Path or functional integral
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0(x) = / e dk

Action

/

Plu,n| = 6[L(u,v) = 0] x /Dal)ﬁ o~ S0, 7]

Path or functional integral

Slu, w,n,n| = N/dtd@ n(0,t) (¢ + Og|(I + au)n)|)
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0(x) = / e dk

Action

/

Plu,n| = 6[L(u,v) = 0] x /Dal)ﬁ o~ S0, 7]

Path or functional integral

Slu, w,n,n| = N/dtd@ n(0,t) (¢ + Og|(I + au)n)|)

+ / dt i (i + Bu — BIT + ol (. 1))
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0(x) = / e dk

Action

/

Plu,n| = 6[L(u,v) = 0] x /Dal)ﬁ o~ S0, 7]

Path or functional integral

Slu, w,n,n| = N/dtd@ n(0,t) (¢ + Og|(I + au)n)|)

+/dtﬂ(u+ﬁu—5[I+ozu]77(7r,t)) —In Z
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e.g.
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N B ~ A —1 ~3 |, 1~ 2
eg. (v) = /Dva p2e~ NV J dwbA T vtatT+bv
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N B ~ A —1 ~3 3~ 2
eg. (v°) = /Dvav e~V J dzdA T vtat +bv

Steepest descent expansion in //N
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N B ~ A —1 ~3 3~ 2
eg. (v°) = /Dvav e~V J dzdA T vtat +bv

Steepest descent expansion in //N

= /D@Dv e~ N oA w2 / dz[l + av® + bvv? + - -]
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N B ~ A —1 ~3 3~ 2
eg. (v°) = /Dvav e~V J dzdA T vtat +bv

Steepest descent expansion in //N

= /D@Dv e~ N oA w2 / dz[l + av® + bvv? + - -]

Moments in terms of combinations of A’s
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Linear Response

An(t;t') = {ou(t)u(t’))
AY(50,) = (du(t)p(0', 1))
A0, 6:1) = (b0, a,t)a(t))

AVO,40,t) = (0,690, 1))
@%(6’ t (0, t)e 1% — p(g, )






Linear Response

dt

d
(4 +5) AL = Bolm, DAY - AL + amA

O Ay + Og (I + au) Ay + dgpA,

(i + 5) Ay — Bp(m, t) Ay — B + au)Ay,

QY + 0y | (T +am)AY] +0ppAY

P(0,t) = n(0,t)e” "5 —p(0,1)

eM0:t) 1

(0, )
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Linear Response

A, =

AZ _ —s ¢ ¢ o o o
A;LZ — NI P—
Aw — EEERE EEEEE






Steady state

u=—pu+ B(I+ au)p(r,1)

Orp = —0p |(I(t) + au(t))p)






Steady state

u=—pu+ B+ au)p(m,t) =0

Orp = —0p |(I(t) + au(t))p)






Steady state

uw=—pu—+ B+ au)p(mw,t) =0

Oip =~y [(I(1) + au(t))p] =0






Steady state

uw=—pu—+ B+ au)p(mw,t) =0

Oup =~y [(I(H) + au(®))p] =0
_ _ 1 o\ 1
= % = o (1 27’(’)






Steady state

uw=—pu—+ B+ au)p(mw,t) =0

Oup =~y [(I(H) + au(®))p] =0
_ _ 1 o\ 1
= % = o (1 27’(’)






Drive Correlations
(Ou(t)du(t’))
— B/dt” (I + au(t")) A¥(t, t"VAY (', m, " p(m, o, t") + (t < )

(ZJZ ; / 40 A (2, ) / d0AY (¢, ')






Drive Correlations
(Su(t)su(t’))

= 6 [t (T+ault") ALt )AL m ) p(m, o) + (o 1)

1






Drive Correlations
(Su(t)su(t’))

= 6 [t (T+ault") ALt )AL m ) p(m, o) + (o 1)

1

\

A /






Input Correlations

2 _——— — — —
(du(t)?) = ~ I;:O (1 25;{,0) — (I + aug)
o o—BIAL, [1 B —255(t—t0—Atk)} H(t — to — Aty)

_i (1 _ 6—55(75 to))






Input Correlations

(bu(t)?) = %Z (1 — %%,o) % (I + o)

o o—BIAL, [1 B 6—255(t—t0—Atk)} H(t — to — Aly)

_%E(Q) (1 _ 6—55(75—%))2 /

Firing times of
a ‘fictitious neuron’
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Transients

0-18 T T T T 0.25 T T T T
P! e e alpha=1.0
0.16 — Theory
0.14 0.20
0.12
0.15]
0.10 ’
O O
0.08
0.10
0.06
0.04f 0.05
0.02 8
O.OO0 1 > 3 7 5 0.00
time time
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Asymptotic state

C(t)






Asymptotic state

| 1
Cy | N






Firing rate fluctuations






Firing rate fluctuations






Firing rate fluctuations






Firing rate fluctuations






Firing rate fluctuations






Firing rate fluctuations

(v(t) —a) (v(t') =) = (I +au)” (n(m, t)n(r, 1)

Ndt

Poisson ansatz
e.g.VanV and §,
Brunel and Hakim






Firing rate fluctuations

Ndt

Poisson ansatz
e.g.VanV and §,
Brunel and Hakim






Firing rate fluctuations

v(t) = (1(t) + au(t))n(m, t)

w(t)) = (I(t) + ault))p

U

Ndt N
Poisson ansatz

e.g.VanV and §,
Brunel and Hakim






Firing rate fluctuations

v(t) = (1(t) + au(t))n(m, t)

(w(t) = (L) + au(t))p = u
(v(t) —a) (v(t') —a)) = (I+au) (n(r,t)n(m,t))
- Ndi E N
Poisson ansatz .
Initial state

e.g.VanV and §,

. sampling correction
Brunel and Hakim piing






Phase Model
0.0025 . . :

0.0020

—~ 0.0015
3

=
< 0.0010} _
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. 0.00
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Phase Model
0.0025 . . :

0.0020

—~ 0.0015
3

=
< 0.0010} _

0.0005 ]

0.0000; 55 20 60 80 100

0.05f

—~ 0.00

R I Ul ’

= (RILEL U L L L] R 1 INRLLIAMED ”.\H \‘1,||1‘|\Jml 1]
= _0.05 “'V ‘H n {1 l " ST P ‘||1] 11”'””! rHI ” ]‘

—0.10

I=1.00 8=0.10 a=1.00
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Phase Model
0.0025 . . :

0.0020

i

—~ 0.0015
3

=
< 0.0010} _

0.0005{ ]

0'00000 20 40 60 80 100

0.05f

—~ 0.00

h Deviation from
A [l . A R R L IR [l T IR LI T 0 L Il
= —oos|iMVITITY T “m“'r""r"“l\'l Wi Poisson

—0.10

—0.15 20 40 60 0 100

I=1.00 8=0.10 a=1.00
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Theta Model






Theta Model

Qz(t) — 1 — cos (92(75) + (IZ(t) -+ OéZU(t))(l -+ COS (92(?5))

w; + Pu; = %25(75—75;)
j

S = Slu(t),u(t)] + S[p(0,1),0(0,1),






Theta Model

Qz(t) — 1 — cos (92(75) + (IZ(t) -+ OéZU(t))(l -+ COS (92(?5))
iLi +6u7; — %25(15—?5;)
S = Slu(t),u(t)] + S[p(0,1),0(0,1),

Slp, 0] = N/dtd&’ ©(0,t) [0rp(0,t) + Op |1 — cos b
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Theta Model
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Steady state

po(0) = VI tio

-~ m(1 —cos8 4 (I + aug)(1 + cosh))

Uy = \/I+auo

Vv = l\/I%—auo
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Firing rate fluctuations






Firing rate fluctuations
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Firing rate fluctuations

Poisson ansatz






Firing rate fluctuations

— / dodQddo dSY (W (x ) (7))

Poisson ansatz

Anomalous finite size effects






Firing rate fluctuations

Poisson ansatz
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Anomalous finite size effects

not in phase model






Simulations
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Simulations

Theta Model
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Neuronal Variability and Co-variability in
sensory cortices.

Jaime de la Rocha

Mean-field methods and multiscale analysis of neuronal populations
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Outline

Intro: cortical variability and co-variability and the effect
of sensory stimulation.

Mechanisms producing single neuronal variability and
pair-wise correlations.

Asynchronous state in a recurrent randomly connected
network.

Mean field model of a competitive network.
Spiking simulations.
Conclusions.





WMeural responses show trial-totrial variability
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Spike Count n;
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WMeural responses are correlated
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Structure of correlations across the network

MT behaving monkey (Bair et al 2001) _
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Impact of stimulus on single neuronal variability
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Impact of stimulus on pair-wise correlations

V1 anesthetized monkey

A Pair 1 Pair 2 C Population Average
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Kohn & Smith, 2005; Nahaus et al 2008.





Impact of stimulus on pair-wise correlations

V1 anesthetized cat. Vm cross-correlation
c unfiltered filter > 20 Hz
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Outline

* Mechanisms producing single neuronal variability and
pair-wise correlations.





Mechanisms behind neuronal variability:
balanced state

A van Vreeswijk & Sompolinsky 1996
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Feed-forward network: 1= et

shared pool
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Shared input causes correlations.

Can correlations produced by shared
inputs in a previous layer have an
impact on output correlations?

Postsynaptic neurons
(40% shareg E & I Inputs)
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Outline

* Asynchronous state in a recurrent randomly connected
network.





M00¢l of a recurrent network.

1) Neurons are binary: g=0 (inactive), 1 (active).
Analytically tractable.

2) Network is randomly and densely connected
(connection probability does not decrease with N).

3) Neurons are strongly coupled: only a small
fraction of a neuron’s inputs are enough to make it
fire: synaptic couplings scale as 1/sqrt(N).






Recurrent balanced network is aspnchronous

If inhibition is not too weak or slow,...

1. the network is BALANCED 2. the network is ASYNCHRONOUS:
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Correlation decreases at fixed p (avg. shared fraction).

Renart et al ‘10





Tracking of spontaneous E and | activity fluctuations
generates strong El correlations

= Ae M,(1)
ml(t) = AI mX(t)

z-scored activity

Very fast and strong negative feedback!





Current correlation
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Self-consistent Aspnchronous state

Asynchronous firing: r ~ O(1/N)
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The sources of heterogeneity in the correlation are
larger than the mean

-0.03 0 0.03
Firing correlation r

o)
The distribution of ris ‘wide’, meaning L >>]

A
This implies that around half of the pairs have r<0





Correlations in spontaneous activity during Activated states.

Cortical Activation:
anesthetized rats; auditory and somatosensory cortices

WA AU A A As predicted, r distribution is wide:
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Correlations during the Activated state.

LIF simulations
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Question:

* What kind of network mechanisms can
generates large positive and negative slow
correlations with a near-zero average?
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VII. AMPLIFICATION OF FLUCTUATIONS
NEAR A BIFURCATION POINT

One of the main consequences of the above results is
concerned with the behavior of the correlations near a bi-
furcation point. This occurs when the parameters of the
system are such that the real part of one of the eigen-
values of J becomes close to 1. Our analysis shows that
in this case, the system will exhibit anomalously large
fluctuations about the (stable) fixed point and the fluc-
tuations will have an anomalously long correlation time.





Correlations via Hopf Bifurcations
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This fast oscillatory states have a small impact on individual
and pair wise statistics over large window sizes.

Brunel & Hakim 1999; Hansel & Mato 2002; Brunel & Wang 2003, Mazzoni et al, 2008





Shaddle-node bifurcations and correlations:

see Mr. Roxin tomorrow i.g.a.0





Outline

* Mean field model of a competitive network.





Competitive networks

Jee(1+w)

E1






Dynamics in competitive networks






Work in progress

* Reduce the spiking network to Wilson-Cowan equations
with additive noise.

* The magnitude and time-scale of the fluctuations of the
rate variables is a proxy of the correlations across pairs
within spiking network.

* Assumption: the asynchronous state is not perturbed by
the addition of the competitive structure (needs to be
proven).
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Wong & Wang ‘06, Wong et al ‘07; Roxin & Ledberg '08; Marti et al 2008; Albantakis & Deco 2011.





Mean-field equations.

00— 1)+ B(n(0)
QO
2 = n@teme) 2@ = T Ge
T dr;t(t) —rr(t) + @r(hs(t))
hy = Jepl(l+w)ri+ (1 —w)rs] — Jgrrr + 11 + op(V1 — &1 + V/c&,)
he = Jep[(l—w)ri+ (14+w)rs] — Jgrrr + Is + op(V1 — ¢ + Vc&,)

hs = Jip(ri+re) — Jrrr + 1





Supercritical Pitchfork Bifurcation
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Supercritical Pitchfork Bifurcation

Roxin & Ledberg '08:
E(X)=a(l,- 1,)X - b(l - 1;)X*+X* o






Slow competitive dynamics close to the bifurcation.
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oW competfitive dynamics close to the bifurcation.
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mpact of common noise on global fluctuations.
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Impact of common noise on global fluctuations.
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Impact of an asymmetric stimulus: 1.>1,
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Impact of an asymmetric stimulus: 1.>1,
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Impact of an asymmetric stimulus: 1.>1,

I.  Slow fluctuations

decreased.
. ii. E1 population couples
051 more strongly with |
0 and shows a more
0.8 | | - oscillatory behavior.
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Outline

* Spiking simulations.





Impact of an stimulus on correlations
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Impact of an stimulus on correlations

Symmetric: I,=1,

CCG

Asymmetric: 1,>0, 1,=0

-100 0 100

Time lag (ms)





Spontaneous activity near the bifurcation.
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Unbiased stimuli increase competition.
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Asymmetric stimuli decrease competition...
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...and an “asynchronous” state, like in the El network, is
recovered.
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Competitive interactions broaden the distribution of Spike
Count Corr. Coefs. r; without affecting the mean.
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Competitive interactions in sensory cortex during

matrix of spike count
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Conclusions

*Recurrent balanced network dynamics generate near-zero average
correlations despite large amounts of shared input. This is caused
by an active decorrelation of synaptic inputs arising from tracking of
E and [ fluctuations which occurs in the balance state.

*Noise correlations in sensory cortices could be reflecting
competitive dynamics between similarly ‘tuned’ populations which
interact via inhibition. This explains why signal and noise
correlations are positively correlated.

*Stimuli can impact the competition and therefore modulate the
magnitude and time-scale of correlations.

*The correlations observed in the cortex are most likely not about
shared-inputs, but reflect the the dynamics of intrinsic cortical states
and their interaction with external stimuli.
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Two or three things | know about mean field
methods in neuroscience

Olivier Faugeras
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CIRM Workshop on
Mean-field methods and multiscale analysis of neuronal
populations
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The neuronal activity in V1: from Ecker et al., Science
2010

» Recording neurons in V1






The neuronal activity in V1: from Ecker et al., Science
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The neuronal activity in V1: from Ecker et al., Science
2010

> |Is this a network effect?

> |Is this related to the stochastic nature of neuronal
computation?





Spin glasses

» N spins x' in interaction in a potential U (keeps spin values
bounded).

» Weights of interaction: J;;. Assume J;; # J;i.

» Weights are i.i.d. N(0,1).

Single spin dynamics:

{ X1 = VUK + To 30 dyd + €

Law of x = Mg@N

» Limit, when N — oo, of the dynamics?





Which limit?

> Let PAV(J) be the law of the solution to the N spin equations.
» If we anneal it by taking the expectation over the weights:
Qév =E [PéV(J)} we can obtain two theorems.

Theorem (Ben Arous-Guionnet)
The law of the empirical measure fiN = % Z,N:l d,i under Qg’
converges to 4.
Theorem (Ben Arous-Guionnet)
Q is the law of the solution to the following nonlinear stochastic
differential equation:

dXi_L = —VU(Xt)dt+ dBt

dB, - th+ﬁ2(f0 (t,s) dB)d

Law of xg = o





Which limit?

W is a Q-Brownian motion, the function f is given by
2
exp {62 [; (G2)° duf
2
oo (a2)" ]

and GtQ is a centered Gaussian process, independent of @, and
with the same covariance:

f(t,s)=E |GG

Y

E [GSQGtQ} = /Xth dQ(x)





The results of Sompolinsky and Zippelius

» S.-Z. studied the same spin-glass equation, up to minor
details.

Theorem (Sompolinsky-Zippelius)

The annealed mean-field equation in the thermodynamic limit is

dxt = —VU(x¢)dt + ®}dt
Law of xg = g

®F is a Gaussian process with zero mean and whose
autocorrelation C writes

C(t,s) = E[dXdX] = 6(t — s) + B2 /Xth dQ(x) =

6(t —5) + BB | 6267





Are these two results the same?

Proposition (Faugeras)

If the function f in the Ben Arous-Guionnet theorem is continuous
in [0, T]?, the stochastic differential equation

dB; = dW;+ B2 (Jy f(¢,5)dB;) dt
By = 0

has a unique solution defined for all t € [0, T] by

t
dB; = dW, + ( / F(t,s)dWs> dt,
0

s) = Zg,—(t, s),
i=1

where

and .
gnia(t,s) = B2 / F(t.7)gn(r s)dr n>1, g = BF
S





Are these two results the same?

» Rewrite the Ben Arous-Guionnet mean-field equation as

dxy = —VU(x¢)dt + Vidt
Law of xg = o ’
where "y .
\U;’f = t —|—/ F(t, U) qu
dt 0

» The process dclﬁ/f is interpreted as “Gaussian white noise”.

» WX is a Gaussian process with zero mean and autocorrelation
tAs
B[] = 6(t — s) +/ F(t, u) (s, u) du
0

» Since in general

tAs

/ [(t, ) (s, u) du # G2E [GSQGtQ] :
0

the two results may be contradictory!





From spin glasses to firing rate neurons

> In 1988, Sompolinsky, Crisanti and Sommers generalized the
spin glass equations to firing rate neurons:

X = —VUK) + Zo 37 iS(d) + ¢
Law of xg = ;Lé@N

> S is the "usual” sigmoid function.
» They proposed the following mean-field equation:

dxy = —VU(x¢)dt + &fdt + Idt
Law of xg = o

®¥ is a zero mean Gaussian process whose autocorrelation C
writes

C(t,5) = B [0305] = 6(t — 5) + 2 / S(x)S(x) dQ(x) =

5(t —s) + B°F [S(GSQ)S(GS’)}





From spin glasses to firing rate neurons

>

In 2009, Faugeras, Touboul and Cessac generalized the
S.-C.-S. equation to the case of several populations.

The weights are i.i.d. and Jj =~ N <J,{7§, \J/OI‘Vi)
]

They proposed an annealed mean-field equation inspired from
that of S.-C.-S. and proved the equation had a unique
solution in finite time.

The solution is Gaussian, but non-Markov.

The mean satisfies a first-order differential equation.
The covariance function satisfies an integral equation.
Both equations are nonlinearly coupled.

Studying the solution turned out to be a formidable task (see
part of Geoffroy Hermann's PhD thesis)

From the discussion on spin glasses one may wonder whether
this equation is the “correct” one.





From spin glasses to firing rate neurons

The mean process is coupled through the variance C(t, t)

d;:igt) _ _M(Tt) n j/IRs (X\/m-i-,u(t)) Dx+
I(t)





From spin glasses to firing rate neurons

The mean process is coupled through the variance C(t,t)

-3 [ k) o
I(t)





From spin glasses to firing rate neurons

To the non-Markovian covariance

2
C(t,s) = e (HF)/7 [C(0,0) + Text (ez(ms)/f - 1)

2
t ps
//e(“J“’)/TA(u,v)dudv}
o Jo

(|

_|_





From spin glasses to firing rate neurons

To the non-Markovian covariance
2

C(t,s) = e (F)/7 [C(0,0) + U‘;‘t (ez(ms)/T - 1)

t ps
+ ._// / et/ A (u, v)dudv}
0 JO






From spin glasses to firing rate neurons

To the non-Markovian covariance

2
C(t,s) = e (F)/7 [C(0,0) + Text (ez(ms)/T - 1)

2
_ptogs
—I-J/ / e(”+")/TA(u,v)dudv}
0 JO

A(t,s) = E[S(xt)S(xs)]





Questions, open problems

» The neuron models are deceptively simple: can we do better?

» The synaptic connection models are deceptively simple: can
we improve them?

» The completely connected graph model is too restrictive: can
we develop a theory for different graphs?

» The i.i.d. model for the synaptic weights is not compatible
with biological evidence: can we include correlations?





Networks of continuous spiking neurons

» Hodgkin-Huxley model or one of its 2D reductions.
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Networks of continuous spiking neurons

» Hodgkin-Huxley model or one of its 2D reductions.

» Chemical and electric noisy synapses (conductance-based
models)

» Synaptic weights are dynamically changing over time.





Fitzhugh Nagumo model

Stochastic Differential Equation (SDE):

dVe = (Ve — % — we + 19(t)) dt + 0exe AW
th = a(b Vt — Wt) dt

Takes into account external current noise.





Synapses

Synaptic current from the jth to the ith neuron:

I = gy () (VF — V]

rev)

Chemical conductance:

gi(t) = Jy(t)y’(t)

The function y denotes the fraction of open channels:

(1) = d (V)L - ¥(1) - ay/(0),

The function S: -
J' _ max
SV = e





Synapses

Taking noise into account:
dyl = (a;S(V))(1 = ¥/ (1)) — aay/ (1)) dt +a(V,y)) aW}”

Keeping y/ between 0 and 1:

o(V9,y7) = /2 S(VI)(L — y0) + agyix(y)





Synaptic weights

The synaptic weights are affected by dynamical random variations:

Jile) = 3+ 2

. simplicity

o dB]

I,
N N dt’

Advantage





Synaptic weights

The synaptic weights are affected by dynamical random variations

_/ g
Jij(t) = 5 + € (1)
. simplicity
Disadvantage :

o dB]

I,
N N dt’

Advantage

an increase of the noise level increases the

probability that the sign of Jj;(t) is different from
that of J.

It can be fixed (technical)





Putting everything together

Each neuron is represented by a state vector of dimension 3:

avi = (Vt" M iy /(t)) dt+
(% > (Vi - Vrev)yi) dt+
5 (Syo(Vi = Vienlyi ) dBi+
Oext thI
dw, =a (b Vi— Wtf) dt
dyi = (a:S(Vi)(1 — yi) — aayi) dt + o(V{, y})dW}”






Putting everything together

The full dynamics of the neuron i can be described compactly by
i i i dW{
dX{ = f(t,X{) dt + g(t, X{) [ th,-fy } +
1 .
N > b(Xi, X)) dt+
J
1 Ui i
5 28X Xt)dBy
J
This very general equation applies to all continuous spiking neuron
models.





Putting everything together

Questions:
» What happens when N — c0?

» Can we “summarize” the mean network activity with a few
equations?
» What is co?





Answer to points 1 and 2

In the limit N — oo (thermodynamic limit), given independent
initial conditions

1. All neurons become independent (propagation of chaos) .





Answer to points 1 and 2

In the limit N — oo (thermodynamic limit), given independent
initial conditions

1. All neurons become independent (propagation of chaos) .

2. All neurons have asymptotically the same probability
distribution





Answer to points 1 and 2

True under the following assumptions:

(H1). Locally Lipschitz dynamics: The functions f and g are
uniformly locally Lipschitz-continuous with respect to the
second variable.

(H2). Lipschitz interactions: The functions b and /3 are
Lipschitz-continuous

(H3). Monotonous growth of the dynamics: We assume that f
and g satisfy the following monotonous condition:

1
xTF(tx) + S et ) < K (1+ X))





Answer to points 1 and 2

» The equation:

dX; = f(t, X;) dt + Es[b(Xs, Z;)] dt + g(t, X;) dW;
+Ez[8(X:, Z;)] dB;
Z is a process independent of X that has the same law, and Es

denotes the expectation under the law of Z.
Note that we had to “guess” the equation





Answer to points 1 and 2

» Note p(t, z) the PDF of X.

» Rewrite the equations as:

ax = (e %) dt + [ 6% 2)ple.2) )
]Rd

g(t, X¢) dW; + (/]Rd B(Xt, z)p(t, z)) dB;





Comments

» The equation is “unsurprising”
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» It is complicated: “non-local” and the populations are
independent but functionnally coupled (McKean-Vlasov
equation)

» A “non-local” Fokker-Planck equations can be written:

Bep(t, x) =

—aiv (£t + [ b plen) o) p(en)
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+ 5 1m(Dij (x)p(t,x)),

i,j=





Comments

» The equation is “unsurprising”

» It is complicated: “non-local” and the populations are
independent but functionnally coupled (McKean-Vlasov
equation)

» A “non-local” Fokker-Planck equations can be written:

Bep(t, x) =

—aiv (£t + [ b plen) o) p(en)
. dlajngwg(xmt,x)),

i,j=

D(x) = Ez [8(x, Z)] EZ [8(x, )]





Main result |

Theorem (Well-posedness)

Under the previous assumptions, there exists a unique solution to
the mean-field equation on [0, T] for any T > 0.

Proof: Use a fixed point argument.





Main result |

» Express the solution of the mean field equation as the solution
of x = F(x)

> x is a measure and F a mapping from the set of measures
into itself
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Main result |

» Express the solution of the mean field equation as the solution
of x = F(x)

> x is a measure and F a mapping from the set of measures
into itself

» The proof involves Martingale inequalities and Gronwall
lemma





Main result Il

Theorem
Under the previous assumptions the following holds true:

» Convergence: For each neuron i, the law of the
multidimensional process XN converges towards the law of
the solution of the mean-field equation, namely X.

> Propagation of chaos: For any k € N*, and any k-uplet
(i,..., i), the law p(t,z1,--- ,zx) of the process
(XN XNt < T) converges towards
p(t,z1) ® ... R p(t,z), i.e. the asymptotic processes have
the law of the solution of the mean-field equations and are all
independent.

Proof: Use Sznitman coupling argument (1989), first proposed by
Dobrushin (1970)





Numerical validation of the propagation of chaos

» The propagation of chaos effect appears for small populations:
compatible with biology.
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Numerical validation of the propagation of chaos

» The propagation of chaos effect appears for small populations
compatible with biology.
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Numerical validation of the propagation of chaos

> It goes beyond decorrelation
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> It goes beyond decorrelation

2000 Monte Carlo simulations, N = 2, delta_t = 0.3

2000 Monte Carlo simulations, N = 10, delta_t = 0.3

Numerical validation of the propagation of chaos

2000 Monte cCarlo simulations, N = 100, delta t = 0.3
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Connection with information theory
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Connection with information theory

5
< (re)=0.12
. g 4 (ry=0.01
» The propagation of chaos 2 o
. - o
property implies that the =
cortex behaves optimally in i
_ . . g
terms of information coding. 5
> It looks as if neurons were - :
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COdIng pl’Obablhty IaWS Number of neurons
from Ecker et al., Science 2010
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Finite size effects

Here is a movie





Discussion and caveats

Comments

Assumptions > Fine

» Realistic model of neurons,
synapses.





Discussion and caveats

Comments

Assumptions > Fine

» Fine, but plasticity is (very)
important

» Realistic model of neurons,
synapses.

» Somewhat realistic models
of synaptic weights (not
including plasticity)





Discussion and caveats

Assumptions

» Realistic model of neurons,
synapses.

» Somewhat realistic models
of synaptic weights (not
including plasticity)

» Fully connected network

Comments

» Fine

» Fine, but plasticity is (very)
important

» The results (probably) hold
if the number of neighbours
is o(N), e.g., log N (Ben
Arous and Zeitouni 1999)





Discussion and caveats

Assumptions

» Realistic model of neurons,
synapses.

» Somewhat realistic models
of synaptic weights (not
including plasticity)

» Fully connected network

> Independence of noise
sources

Comments

>

>

Fine

Fine, but plasticity is (very)
important

The results (probably) hold
if the number of neighbours
is o(N), e.g., log N (Ben
Arous and Zeitouni 1999)
Should look at correlated

noise sources (probably very
hard)





Discussion and caveats

Assumptions

>

Realistic model of neurons,
synapses.

Somewhat realistic models
of synaptic weights (not
including plasticity)

Fully connected network

Independence of noise
sources

Accurate description for
infinitely large populations.

Comments

>

>

Fine

Fine, but plasticity is (very)
important

The results (probably) hold
if the number of neighbours
is o(N), e.g., log N (Ben
Arous and Zeitouni 1999)
Should look at correlated

noise sources (probably very
hard)

Finite size effects seem to be
small and can be
characterized
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Comparison between the static and dynamic randomness
approaches

Static randomness

» Mean field equation is part Dynamic randomness

of the large deviations » Mean field equation must be
technique guessed

> Mean field process is » Markov property is preserved
non-Markov

» Generalization to correlated noise/synaptic weights is possible

» Generalization to other types of connectivity is possible
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From stochastic resonance to stationary
measures of McKean-Vlasov type equations

S. Herrmann

Institut de Mathématiques de Bourgogne
joint work with
P. Imkeller (Berlin - D),
D. Peithmann (Berlin - D),
J. Tugaut (Bielefeld - D)

October 6, 2011
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Introduction

Outline

Introduction : link between exit problem and stochastic resonance

Exit time for a self-stabilizing process (McKean-Vlasov) living in a
convex landscape: the inertia of a particular process attracted by its
own law...

Exit time for a self-stabilizing diffusion in a double-well landscape

S. Herrmann (IMB) University of Burgundy, Dijon





Introduction

The stochastic resonance framework ™ to understand how a weak

deterministic and periodic input of a given dynamical system can be
amplified by noisy perturbations.

In particular, there exists an optimal relation between the period log(T)
(deterministic input) and the noise intensity € so that the stochastic paths

look like the most periodic as possible (quality measures are needed)
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Introduction

The stochastic resonance framework = to understand how a weak
deterministic and periodic input of a given dynamical system can be
amplified by noisy perturbations.

In particular, there exists an optimal relation between the period log(T)
(deterministic input) and the noise intensity € so that the stochastic paths
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Introduction

The stochastic resonance framework ™ to understand how a weak

deterministic and periodic input of a given dynamical system can be
amplified by noisy perturbations.

In particular, there exists an optimal relation between the period log(T)
(deterministic input) and the noise intensity € so that the stochastic paths

look like the most periodic as possible (quality measures are needed)
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Introduction

The stochastic resonance framework ™ to understand how a weak

deterministic and periodic input of a given dynamical system can be
amplified by noisy perturbations.

In particular, there exists an optimal relation between the period log(T)
(deterministic input) and the noise intensity € so that the stochastic paths
look like the most periodic as possible (quality measures are needed)

A

‘% /! \ \'” Hly

“(K (| ( w [ J
where (W;, t > 0) is a Brownien motion, | “ | / “ w‘ M \
the diffusion coefficient is constant and V is ‘

1N T I \_H\l
a double-well potential. HN’I, | M’f W‘ |

dXe = VedW,—V'(X;)dt+Aq cos(2rt/ T)dt

Study of the exit problem (from one well): joint work with P. Imkeller and
D. Peithmann.

S. Herrmann (IMB) University of Burgundy, Dijon October 6, 2011 3/15





Several physicists (Jung, Behn, Pantazelou, Moss '92) introduced the
stochastic resonance phenomenon for globally coupled systems (N
individuals in interaction, for instance, neural networks):

N
. : : 1 . .
dX! = JedW! — V'(X])dt — N > FI(Xi = X{)dt + Ag cos(2rt/ T)dt,
j=1
where W' are indep. BM, V is a double-well potential, F’ is linear. The

quality measures used in practice depends on invariant measures of
simplified systems. = Difficulties if € is small and N large (mean field).

Propagation of chaos

.. 1 N .
The empirical measure ijl 5X{ converges towards u; which

corresponds to the distribution of the McKean-Vlasov solution:
dXg = edW; — V/(X5)dt — [g F'(Xf — x)dug(x) dt + Ag cos(2mt/ T )dk.

References: Sznitman '91, Dawson & Girtner '87, McKean '66 '67, Stroock &
Varadhan '79, Oelschldger '85, Funaki '84, Tamura '84 '87, Benachour,
Roynette, Talay & Vallois '98, Benachour, Roynette & Vallois '98

October 6, 2011 6 / 15





Introduction

In order to analyse stochastic resonance for the limit process, it suffices to
describe the exit problem (transitions between the metastables states of
the dynamical system) for the nonlinear stochastic process:

dXE = \JedW, — V/(XE)dt — / F(XE — x)duf(x) dt + Ao cos(2rt/ T)dk.
R

First step: asymptotic behavior as ¢ << 1 without the periodic
perturbation.

Difficulties:

m the process is nonlinear
m the drift term depends on the time (non homogeneous)

m the drift term depends on the small parameter e.

The study concerns a fonction V' which represents:
m either a convex landscape
m or a double-well landscape
Assumption: V & F loc. Lipschitz, even with polyn. growth.
October 6, 2011 7 / 15





Convexe case

2. Exit problem: self-stabilizing process living in a convex landscape

dXf = /edW, — V'(X§)dt — be(t, X5) dt,
B (£, x) = / F/(x — y)dui(y) dt = E[F/(x — X))
R

Asymptotic behaviour of the exit time (¢ — 0): Find the Large Deviations
Principle associated to X€ on the time interval [0, T], then study on R.

Convergence & Large Deviations

The self-stabilising process starting from xo converges in distribution
towards the solution: ¥y = —V/(¢¢), 1o = xo.
X€ satisfies LDP in (C([O, T]), | - lloc) with the associated rate function:

1T .
) =5 [ 1ot Vg + Flo—wa)lde, s g H,

S. Herrmann (IMB) University of Burgundy, Dijon October 6, 2011 8 /15





Convexe case

If the SDE is observed on [s,s + T] then the LDP is associated with
Ir(p) = 3 Jo e+ V' () + Flpe = s e ()P .

v Exit time for diffusions in convex landscapes.

Intuitive idea: splitting the real axis in large time intervals of length L.

7 denotes the exit time of D which con- DD e oo P

tains the stable point of V : Xgaple - o .

On each interval time dependent LDP describing the probability to
exit the domain D in this interval.

After a large number of intervals: the exit probability is close to a
particular p associated with

1t
) =5 [ e Vi) + F o~ xaanie) P

Minimal cost £°° = inf{/2°() : ¢ cont., Yo = Xstable, ot € D, t > 0}
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Double-well case

® The convexity is essential : what happens in a double-well landscape ?

Self-stabilizing process in a double-well landscape V

dX;{ = —V’(Xf)dt—/ F'(Xf — x)dut(x) dt + /edW,.
R
The minima of V are reached at x = —a and a.

» Aim: to describe the transitions in the small noise limit.

®» Simplification: stationary regime.
We replace uf by an invariant v®.

Invariant measures and asymptotic behavior as ¢ — 0

In order to find an invariant measure we solve

C00 + (00V0) + Fx ) =0
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Each invariant measure takes the exponential form

A(lue) exp [_i </OX F' 5 ue(y)dy + V(X)>:| — Au.).

We have to solve a fixed point problem associated with the application A
= simplification in the particular linear F'(x) = ax.

ue(x) =

Linear case
If F/(x) = ax and V" convex, there exist exactly:
B one symmetric invariant measure

m two asymmetric measures close to 0, et 0_,

If m is the mean of the invariant measure then m = W (m) with
Jg xexp [—% (V(x)—l—aé—amx)] dx
\Ile(m) - fRexp[—%(V(x)—&-a%—amx)] dx
There exist exactly 3 solutions corresponding to 3 invariant measures.
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Double-well case

0 is an obvious solution (symmetric measure). The asymptotic behavior of
the corresponding measure is emphasized by the Laplace method:
ut(x) = ZE exp —f{ V(x)+ C“sz}
= /€ converges towards a limit measure (¢ — 0) whose support belongs
to the set of solutions of axp + V/(x0) = 0.
m if > —V"(0) then u — 0
m if a < —V"(0) then uf — 30, + 30—,

Generalization to polynomial interaction functions

If V" and F” are both convex functions (+ suitable weak conditions),
then there exist exactly three invariant measures: one is symmetric and
two are asymmetric close to §, and d,. The symmetric one converges
(e — 0) towards 35_, + 16, with

V/(x0) + 1F/(2x0) = 0 and V/(x) + F-QE(20) > g

If F(0) > —V/(0) then xo = 0 otherwise the support contains 2 points.
We use the Schauder’s fixed point theorem in order to solve u¢ = A(u¢).
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dX§ = —V/(X{)dt— [ F'(Xf — x)dug(x) dt + \/edW,.

Exit problem

For any 6 > 0, |in2)[P>X(e(£<>0+5)/€ >7> e(goo_5)/e) -1
e—

and lim eInE[7] = £=.
e—0

Here £ =inf{I$(¢) : ¢ cont., o = Xstable, o7 € D, T > 0} with

1 /7
B =5 [ 1oe+ Vg ool d

where ® represents one of the following functions:
®(x) = F'(x) if uc is symmetric and F”(0) > —V"(0)
1F/(x = x0) + 3F'(x + xo) if ue is symmetric and F”(0) < —V"(0)
F'(x — a) (resp. F'(x + a)) if u. converges towards d, (resp. d_,).

w Open questions: What's about the domain of attraction for these
invariant measures ? What happens if we add a deterministic periodic
perturbation 7 Can we describe stochastic resonance ?
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Outline

- Correlations in networks and linear response

- Distinct impact of inputs on membrane voltage and spiking
correlations
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