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LIF Models


LIF Model


LIF = Leaky Integrate & Fire Model.


Models based on the Membrane
potential.


Different concentration of ions
across the membrane.


Ion channels allow permeability.


Membrane or Action potential evolution
can be simply modelled as a electric
circuit - Lapicque (1907)
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LIF Models: Potential


Basic LIF model


Cm
dV
dt


= −gL(V − VL) + I(t)


1 τm = Cm/gL ≈ 10ms and
VL ≈ −70mV .


2 I(t): the external input current.


3 Firing voltage: threshold value
VF ≈ −50mV .


4 Reset voltage: discharged value
VR ≈ −60mV .
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LIF Models


LIF Models: Synapsis


Stochastic Synapsis Model


I(t) = JE


CE∑
i=1


∑
j


δ(t − ti
Ej)− JI


CI∑
i=1


∑
j


δ(t − ti
Ij)


Parameters


1 Two different Neuron-types: Inhibitory (I) or
Excitatory (E).


2 Strength of the Synapses: J. Number of
presynaptic neurons: C.


3 Spiking times: ti
j = time of the jth-spike coming


from the ith-presynaptic neuron.


4 Stochastic Assumption: Neurons spike
according to a Poisson process with constant
probability of emitting a spike per unit time ν.
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LIF Models


LIF Models: Diffusion Approximation


Mean and Variance of I(t) are given by:


µC = bν with b = CEJE − CIJI and σ2
C = (CEJ2


E + CIJ2
I )ν.


Diffusion Approximation


Several authors (Brunel, Hakim, Renart, Wang, Mattia, del Giudice) propose
to approximate the current by


I(t) dt ≈ µC dt +
√
σC dBt


1 Firing rate: ν = νext + N(t) where N(t) is the mean firing rate of the
network.


2 The value of N(t) is then computed as the flux of probability that
neurons cross the threshold voltage VF per unit time.


3 Average-excitatory (-inhibitory resp.) if b > 0 (b < 0 resp.).
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LIF Models


LIF Model: PDE


Ito’s rule: PDE for the evolution of the probability density p(v, t) ≥ 0 of
finding neurons at a voltage v ∈ (−∞,VF] at a time t ≥ 0.


Final PDE Model:
∂p
∂t


(v, t) +
∂


∂v


[
h
(
v,N(t)


)
p(v, t)


]
− a
(
N(t)


)∂2p
∂v2 (v, t) = δ(v− VR)N(t),


in v ∈ (−∞,VF], with h(v,N(t)) = −V + VL + µc and a(N) = σ2
C/2.


Boundary conditions: p(VF, t) = 0, p(−∞, t) = 0, p(v, 0) = p0(v).


Source by the Mean Firing Rate:


N(t) := −a
(
N(t)


)∂p
∂v


(VF, t) ≥ 0 .


Translating the voltage origin:


h(v,N) = −v + bN, a(N) = a0 + a1N .
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Conductance-based Models


Neuron Network Model


Conductance IF model


dVi


dt
= −(Vi − VR)− Gi(Vi − VE)


dGi


dt
= −Gi + I(t)


1 τm typical leak time.


2 I(t): the external input current.


Diffusion approximation in Cai-Tao-Rangan-McLaughlin (Commun. Math.
Sci. 2006): PDE for the evolution of the probability density ρ(t, v, g) ≥ 0 of
finding neurons at a voltage v ∈ [VR,VF] with conductance g ∈ [0,∞) at a
time t ≥ 0.
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Conductance-based Models


Conductance-based Model


Final PDE Model:
∂tρ(t, v, g) + ∂vJV(t, v, g) + ∂gJG(t, v, g) = 0,


where the fluxes are


JV(t, v, g) = [(VR − v) + g (VE − v)] ρ(t, v, g)


JG(t, v, g) = (ḡE(t)− g)ρ(t, v, g)− σ2
g(t)∂gρ(t, v, g) .


Boundary conditions:


JV(t,VT , g) = JV(t,VR, g) and JG(t, v, 0) = JG(t, v,∞) = 0


Mean Firing Rate: ḡE(t) and σ2
g(t) are affine functions of


mE(t) =


∫ ∞
0


JV(t,VT , g) dg .
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Stationary States


Integrating the PDE


Stationary solutions satisfy


∂


∂v


[
(v− bN)p + a(N)


∂


∂v
p(v) + NH(v− VR)


]
= 0


Using the BC’s:


(v− bN)p + a(N)
∂p
∂v


+ NH(v− VR) = 0


Integrating we conclude


p(v) =
N


a(N)
e−


(v−bN)2


2a


∫ VF


v
e


(w−bN)2


2a H[w− VR]dw
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Stationary States


Set-up of the Quest of Stationary States


Summarizing all solutions of the stationary problem are of that form with N
being any positive solution to


a(N)


N
=


∫ VF


−∞


[
e−


(v−bN)2


2a


∫ VF


max(v,VR)


e
(w−bN)2


2a dw


]
dv .


Changing variables, this condition is equivalent to
1
N


= I(N),


I(N) :=


∫ wF


−∞


[
e−


z2
2


∫ wF


max(z,wR)


e
u2
2 du


]
dz


with wF/R =
VF/R − bN√


a(N)


I(N) can also be expressed as


I(N) =


∫ ∞
0


e−s2/2


s
(es wF − es wR) ds
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Stationary States


Shape of I(N)
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Stationary States


Result


Stationary States


Assume h(v,N) = b N − v, a(N) = a is constant.


i) For b < 0 and b > 0 small enough there is a unique steady state.


ii) Under either 0 < b < VF − VR or 0 < 2ab < (VF − VR)2VR, then there
exists at least one steady state solution.


iii) If both 2ab < (VF − VR)2VR and b > VF − VR hold, then there are at
least two steady states.


iv) There is no steady state under the high connectivity condition


b > max(2(VF − VR), 2VF I(0)).
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Linear Case


General Relative Entropy Principle


Result for b = 0
Solutions to the linear equation satisfy, for any smooth convex function
G : R+ −→ R, the inequality


− ∂
∂t


∫ VF


−∞
p∞(v)G


(
p(v, t)
p∞(v)


)
=


N∞


[
G
(


N(t)
N∞


)
− G


(
p(v, t)
p∞(v)


)
−
(


N(t)
N∞
− p(v, t)


p∞(v)


)
G′
(


p(v, t)
p∞(v)


)]
|VR


+ a
∫ VF


−∞
p∞(v) G′′


(
p(v, t)
p∞(v)


) [
∂


∂v


(
p(v, t)
p∞(v)


)]2


dv ≥ 0.
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Linear Case


Consequences of GRE


Poincaré Inequality


There exists γ > 0 such that


γ


∫ VF


−∞
p∞(v)


(
q(v)


p∞(v)


)2


dv ≤
∫ VF


−∞
p∞(v)


[
∂


∂v


(
q(v)


p∞(v)


)]2


dv


for all functions q such q
p∞
∈ H1


(
p∞(v)dv


)
.


Exponential decay


Solutions to the linear equation satisfy∫ VF


−∞


(p(v, t)− p∞(v))2


p∞(v)
dv ≤ e−2aγt


∫ VF


−∞


(p0(v)− p∞(v))2


p∞(v)
dv .
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Blow-up & Apriori Estimates


Definition of Weak Solution


Weak Solutions


We say that a pair of nonnegative functions (p,N) with


p ∈ L∞
(
R+; L1


+(−∞,VF)
)


N ∈ L1
loc,+(R+)


is a weak solution of the LIF model if for any test function
φ(v, t) ∈ C∞((−∞,VF]× [0,T]) such that v∂φ∂v ∈ L∞((−∞,VF)× (0,T)),
we have


d
dt


∫ VF


−∞
φ(v)p(v, t)dv =


∫ VF


−∞


[
∂φ


∂v
h(v,N) + a


∂2φ


∂v2


]
p(v, t)dv


+ N(t)[φ(VR, t)− φ(VF, t)]


holds in the distributional sense.
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Blow-up & Apriori Estimates


Blow-up Result


Conservation of Mass:∫ VF


−∞
p(v, t) dv =


∫ VF


−∞
p0(v) dv = 1 .


BU for suitable initial data and any b > 0


Assume that the drift and diffusion coefficients satisfy


h(v,N) = bN − v and 0 < am ≤ a(N) .


If the initial data is concentrated enough around v = VF, in the sense that∫ VF


−∞
eµvp0(v) dv is large enough with µ > max(


VF


am
,


2
b


) ,


then no global-in-time weak solutions exist.
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Well-Posedness of Classical Solutions


From Fokker-Planck to Heat


Change of variables: Fokker-Plank to heat equation
y = etv, τ = 1


2 (e2t − 1), p(v, t) = etw
(
etv, 1


2 (e2t − 1)
)


yields


wτ = wyy − bM(τ)α−1(τ)wy + M(τ)δ{y= vR
α(τ)
}


where α(τ) = (2τ + 1)−1/2 = e−t, M(τ) = − ∂w
∂y


∣∣∣
y=0


.


Change of variables: Get rid of wy term:


u(x, τ) = w(y, τ), x = y− b
∫ τ


0 M(s)α−1(s) ds.


Get a free boundary Stefan problem with source


Related to a price formation equation (Lasry-Lions,González-Gualdani,
Chayes-González-Gualdani-Kim, Caffarelli-Markowich-Pietschmann)
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Well-Posedness of Classical Solutions


Stefan-like problem


(P)





ut = uxx + M(t)δx=s1(t), x < s(t), t > 0,


s(t) = −b
∫ t


0
M(s)α−1(s) ds, t > 0,


M(t) = − ∂u
∂x


∣∣∣∣
x=s(t)


, t > 0,


s1(t) = s(t) +
vR


α(t)
, t > 0,


u(−∞, t) = 0, u(s(t), t) = 0, t > 0,
u(x, 0) = uI(x), x < 0.


1 Conservation of mass:
∫ s(t)
−∞ u(x, t) dx =


∫ 0
−∞ uI(x)dx


2 The flux across the free boundary s1 is the jump of the δ:
M(t) := −ux(s(t), t) = ux(s1(t)−, t)− ux(s1(t)+, t)


3 If b < 0 resp. b > 0, the free boundary s(t) is an increasing resp.
decreasing function of time, and s(t), s1(t) never cross.
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Well-Posedness of Classical Solutions


Integral formulation a la Friedman


Green’s function: G(x, t, ξ, τ) = 1
[4π(t−τ)]1/2 exp


{
− |x−ξ|


2


4(t−τ)


}
Duhamel’s formula:


u(x, t) =


∫ 0


−∞
G(x, t, ξ, 0)uI(ξ)dξ︸ ︷︷ ︸


homogeneous heat equation


−
∫ t


0
M(τ)G(x, t, s(τ), τ)dτ︸ ︷︷ ︸


Takes care of free boundary


+


∫ t


0
M(τ)G(x, t, s1(τ), τ)dτ︸ ︷︷ ︸
Delta function at s1(t)
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[4π(t−τ)]1/2 exp


{
− |x−ξ|


2


4(t−τ)


}
Duhamel’s formula:


u(x, t) =


∫ 0


−∞
G(x, t, ξ, 0)uI(ξ)dξ︸ ︷︷ ︸


homogeneous heat equation


−
∫ t


0
M(τ)G(x, t, s(τ), τ)dτ︸ ︷︷ ︸


Takes care of free boundary


+


∫ t


0
M(τ)G(x, t, s1(τ), τ)dτ︸ ︷︷ ︸
Delta function at s1(t)







icreauab


Neuron Network Models Analytical Results Numerics Conclusions


Well-Posedness of Classical Solutions


Integral formula for M


M(t) = ∂xu(s(t), t)


= −2
∫ 0


−∞
G(s(t), t, ξ, 0)u′I(ξ) dξ


+ 2
∫ t


0
M(τ)Gx(s(t), t, s(τ), τ)dτ


− 2
∫ t


0
M(τ)Gx(s(t), t, s1(τ), τ)dτ


=: Θ(M)(t)


Fixed point argument: Θ : Cσ,m → Cσ,m, where
Cσ,m := {M ∈ C([0, σ]) : ‖M‖ ≤ m}
‖M‖ := sup0≤t≤σ |M(t)|


Contraction for σ small, where σ = σ (‖u′I‖)
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Well-Posedness of Classical Solutions


Global existence (b < 0) & Blow up when b > 0


Criterium


Solution exists up to time T∗, where T∗ = sup{t > 0 : M(t) <∞}.


Lemma - no break up time for b < 0


∃ε > 0 small enough such that, for any t0 > 0, if


sup
x∈(−∞,s(t0−ε)]


|ux(x, t0 − ε)| <∞,


then also
sup


t0−ε<t<t0
M(t) <∞.


Here ε is independent of t0.


Theorem (b < 0)


There exists a unique regular solution u for all t > 0.
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LIF Model


One Stationary State
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LIF Model


Firing Rates
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LIF Model


No Steady State, b = 3
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LIF Model


Blow-up, b = 1.5
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Conductance-based model


Bistability
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Conductance-based model


Periodicity
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Concluding Remarks


Simple Stochastic Models of Neuron networks lead to nonstandard
boundary value problems for Fokker-Planck like equations.


The stability of stationary states in the nonlinear problem is still an
open problem.


Understanding the blow-up mechanism and its relation to
synchronization.


Conductance-Based: no analytical results are available, strange
boundary conditions, no control on the firing rate.


Periodic solutions? How to show their existence?


Numerics: Incorporate inhibitory neurons at the conductance level
model, incorporate space.
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Spike train statistics and Gibbs distributions







Characterizing spike trains statistics


Figure: Raster plot/spike train.
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Figure: Raster plot/spike train.


Assume that spike trains statistics is distributed according to an hidden


probability µ.







Characterizing spike trains statistics


Figure: Raster plot/spike train.


Assume that spike trains statistics is distributed according to an hidden


probability µ.


Can one have a reasonable idea of what µ is in a neural network model ?







Raster plot


�spiking state�


ωk(n) =











1 if ∃t ∈]n − 1, n] such that Vk(t) ≥ θ;


0 otherwise.


Figure: Raster plot.


Spike pattern


ω(n) = (ωk(n))
N
k=1


Spike block


ωnm = {ω(m) ω(m + 1) . . . ω(n) }


Raster plot


ω
def
= ω+∞


−∞







The Generalized Integrate and Fire Model Rudolph-Destexhe,2006


Ck
dVk


dt
= −gL,k (Vk − EL) −


N
∑


j=1


gkj(t, ω) (Vk − Ej) + Ik(t),


gkj(t, ω) = Gkjαkj (t, ω)


αkj (t, ω) =
∑


r<t


αkj (t − r) ωj(r)


Figure: PostSynaptic Potential. From F. Grammont, Lecture in Les Houches,
2009.







The Generalized Integrate and Fire Model Rudolph-Destexhe,2006


Ck
dVk


dt
= −gL,k (Vk − EL) −


N
∑


j=1


gkj(t, ω) (Vk − Ej) + Ik(t),


gkj(t, ω) = Gkjαkj (t, ω)


αkj (t, ω) =
∑


r<t


αkj (t − r) ωj(r)


Synaptic response


αkj (t) =
t


τkj
e
−


t
τkj H(t)







The Generalized Integrate and Fire Model Rudolph-Destexhe,2006


Ck
dVk


dt
= −gL,k (Vk −EL) −


N
∑


j=1


gkj(t, ω) (Vk −Ej) + i
(ext)
k (t) + σBξk(t),


gkj(t, ω) = Gkjαkj (t, ω)


Canonical equations


Ck
dVk


dt
+ gk (t, ω)Vk = ik(t, ω),


ik(t, ω) = gL,k EL +


N
∑


j=1


Wkj αkj (t, ω) + i
(ext)
k (t) + σBξk(t),


Wkj = Ej Gkj







Flow given a raster


Ck
dVk


dt
+ gk (t, ω)Vk = ik(t, ω),


Γk(t1, t2, ω) = e
−


1
Ck


R t2
t1


gk(u,ω) du
.


Vk(t, ω) = Γk(s, t, ω)Vk(s) +
1


Ck


∫ t


s


Γk(t1, t, ω) ik(t1, ω) dt1.







Last reset time


If Vk(t) ≥ θ, neuron k �res.


Figure: From Cessac, J. Math. Neuro. 2011.


Delayed reset to a


random value Vreset .


Spikes are registered


at integer times (in a


time unit that can be


arbitrary small).


Vk(t, ω) = Γk(τk(t, ω), t, ω)Vreset +
1


Ck


∫ t


τk(t,ω)
Γk(t1, t, ω) ik(t1, ω) dt1.







Explicit form of the membrane potential given a raster


Vk(t, ω) = Γk(τk(t, ω), t, ω)Vreset +
1


Ck


∫ t


τk(t,ω)
Γk(t1, t, ω) ik(t1, ω) dt1.


ik(t, ω) = gL,k EL +
N


∑


j=1


Wkj αkj (t, ω) + i
(ext)
k (t) + σBξk(t).


Vk(t, ω) = V
(det)
k (t, ω) + V


(noise)
k (t, ω).







Deterministic part


V
(det)
k (t, ω) = V


(syn)
k (t, ω) + V


(ext)
k (t, ω)


Synaptic contribution


V
(syn)
k (t, ω) =


1


Ck


N
∑


j=1


Wkj


∫ t


τk(t,ω)
Γk(t1, t, ω)αkj (t1, ω) dt1,


External + leak contribution


V
(ext)
k (t, ω) =


EL


τL,k


∫ t


τk (t,ω)


Γk(t1, t, ω)dt1 +
1


Ck


∫ t


τk (t,ω)


i
(ext)
k (t1)Γk(t1, t, ω)dt1,


where τL,k
def
= Ck


gL,k


.







Stochastic part


V
(noise)
k (τk(t, ω), t, ω) = Γk(τk(t, ω), t, ω)Vreset + V


(B)
k (τk(t, ω), t, ω)


with


V
(B)
k (t, ω) =


σB


Ck


∫ t


τk(t,ω)
Γk(t1, t, ω)dBk(t1).


Gaussian process with mean zero and variance:


σ2
k(t, ω) = Γ2k(τk(t, ω), t, ω)σ2


R +


(


σB


Ck


)2 ∫ t


τk(t,ω)
Γ2k(t1, t, ω) dt1.







Conditional probability


Proposition


The probability of ω(n) conditionally to ωn−1
−∞ is given by:


Pn


[


ω(n)
∣


∣ ωn−1
−∞


]


=


N
∏


k=1


Pn


[


ωk(n)
∣


∣ ωn−1
−∞


]


,


with Pn


[


ωk(n)
∣


∣ ωn−1
−∞


]


=


ωk(n)π (Xk(n − 1, ω)) + (1− ωk(n)) (1− π (Xk(n − 1, ω))) ,


where


Xk(n − 1, ω) =
θ − V


(det)
k (n − 1, ω)


σk(n − 1, ω)
,


and


π(x) =
1√
2π


∫ +∞


x


e−
u2


2 du.







Gibbs potential


Set:


φ (n, ω) =
N


∑


k=1


φk (n, ω)


φk (n, ω) =


ωk(n) log π (Xk(n − 1, ω)) + (1− ωk(n)) log (1− π (Xk(n − 1, ω))) ,


so that


Pn
[


ω(n)
∣


∣ ωn−1
−∞


]


= eφ(n,ω).


Then:


Conditional probability of blocks given the past


Pn
[


ωn
m


∣


∣ ωm−1
−∞


]


= e
Pn


l=m φ(l ,ω).







Gibbs measure


Theorem, Cessac 2011, J. Math. Neuro.


For each choice of parameters the gIF model has a unique Gibbs


distribution with potential φ.


Explicit Gibbs potential.


Explicit dependence in parameters.


Holds for a time-dependent stimulus (non stationarity).







Markovian approximations.


The Gibbs potential has in�nite range (non Markovian).


Markovian approximations with memory depth D approaches the exact


statistics with a Kullback-Leibler divergence converging exponentially fast


to 0 as D → ∞.







Markovian approximations.


Polynomial expansion.


φ(D)(ωn
n−D) =


L
∑


l=0


λl (n) φl (ω
n
n−D),


where:


φl (ω
n
n−D) = ωi1(t1) . . . ωin(tn), il ∈ { 1, . . . ,N } , tl ∈ { n − D, . . . , n } .







The maximal entropy principle


Consider the stationary case.


φ(D)(ω0
−D) =


L
∑


l=0


λl φl (ω
0
−D),


Variational principle and topological pressure.


P
(


φ(D)
)


= sup
ν∈Minv


{


h(ν) +
L


∑


l=0


λl ν
[


φl (ω
0
−D)


]


}


.


Therefore, the monomials φl constitute a canonical basis for


constraints while the λl 's are conjugated parameters.


The λl 's depend explicitly on network parameters (synaptic weights,


stimulus).







Statistical Models hierarchy


Bernoulli D = 0. Memoryless. Neurons are independent.


�Ising� (Schneidman et al, nature 2006) D = 0. Memoryless.


Neurons are spatially correlated but time-independent.


Polynomial expansion (Marre et al, 2009; Vasquez et al 2011)


In�nite range







Linear response in chaotic neural networks.
(Cessac-Sepulchre, 2004, 2006)
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Why is co-variability important?
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This relationship is illustrated with a simple simulation shown 
in Figure 2 (similar to ref. 34). We simulated correlated membrane 
potentials by picking values for each of two neurons from a bivari-
ate Gaussian distribution. The membrane potential produces a spike 
response defined by the nonlinearity. The shape of the nonlinearity is 
not critical; ours was chosen so that the variance of the spiking response 
is nearly the same as the mean for both weak and strong responses39.


We set the membrane potential correlation to 0.2 in all of our 
simulations, but the measured spike count correlation depended 
on response strength. When the mean membrane potential is above 
threshold (Fig. 2a), the correlation in spiking responses is similar to 
that of the subthreshold response. However, when the mean mem-
brane potential is far below threshold (Fig. 2b), rSC is markedly 
lower than between the subthreshold responses. This masking of 
correlated activity cannot be overcome by making more observa-
tions, which reduces the variance of correlation measurements, but 
does not alter the mean. If membrane potential correlations are the 
same for stimuli that drive weak and strong responses, the spiking 
responses for the latter will therefore be more correlated (Fig. 2c), 
reaching asymptote at the strength of the underlying membrane 
potential correlation.


The dependence of correlation on response strength is typi-
cally assessed by comparing rSC to the geometric mean response 
of the two neurons7,8,28,34. However, rSC will be reduced if either 


neuron responds weakly. For example,  
a pair in which one neuron has a mean response 
of 0.01 spikes per s and the other 100 spikes per 
s has the same geometric mean response as a 
pair whose mean responses are both 1 spike 
per s, but the measured rSC of the first pair is 
only 15% of the underlying correlation com-
pared with 85% in the second pair. Figure 2d 
shows rSC as a function of the response strength 
of the two neurons. A dependence of rSC on 
the geometric mean response would appear 
as diagonal stripes from the top left to bottom 
right. Instead, vertical and horizontal bands 
are seen, indicating that the magnitude of rSC 
depends more on the minimum response of the 
two neurons than their mean.


Counting spikes over short windows can 
lead to weaker correlation. The number 
of spikes a neuron fires also depends on 
the time window over which responses are 
measured. The studies in Table 1 use win-
dows that range from tens of milliseconds to 
multiple seconds. Counting spikes over short 
epochs can lead to weaker observed values 
of rSC, even if both neurons are sufficiently 
responsive to avoid the effect of thresholding 
described in Figure 2.


We ran additional simulations to illus-
trate the dependence of rSC on measurement 
 window (Fig. 3). To do so, it was necessary to 
use a framework in which we could control 
the timescale of correlation. As the simu-
lations shown in Figure 2 do not specify a 
timescale, we instead imposed correlations 
by adding a small number of common spikes 
to the otherwise independent (Poisson) spike 


trains of two simulated neurons (Fig. 3a,b; also see ref. 40).
This simulation illustrates that correlations are systemati-


cally underestimated if the counting window is shorter than the 
jitter in the timing of the common spikes. If the common spikes 
occur at the same instant (Fig. 3a), the resulting synchrony will be  
evident in spike count correlations based on responses measured 
over arbitrarily small windows (Fig. 3c). If the times of these  
common spikes are jittered (Fig. 3b), however, the resulting spike 
count correlation will only be fully evident when it is calculated 
from responses during longer response epochs (Fig. 3c). For 
instance, when spike times are jittered using a Gaussian distribution 
with an s.d. of 80 ms, a window of several hundred milliseconds is 
needed to capture the full strength of correlation. A similar depend-
ence on measurement window is observed for Poisson distributed 
spikes conditioned on correlated underlying firing rates (see ref. 
22 and Supplementary Results for analytical description). Note 
that in this scenario correlations do not arise from nearly synchro-
nous spikes, but the observed correlations are still smaller for brief  
measurement windows.


Several studies have measured the timescale of correlation in  
cortex, providing estimates ranging from tens22 to a few hundred  
milliseconds8,12,23. Measurements using response windows briefer 
than these timescales are thus almost certain to yield weaker corre-
lations than those using longer response windows.


Table 1 Summary of studies measuring spike count correlations in primates


Reference number Area
Firing rate  


(spikes per s)
Duration  


(ms)
State (task,  


anesthesia, etc.) rSC


12* V1 ~25 2,560 Anesthetized 0.2
26* V1 ~8 1,280 Anesthetized 0.16
23 V1 1,894 Anesthetized 0.25
31 V1 Anesthetized 0.26
13* V1 ~50 1,860 Fixation 0.25
28* V1 ~3 500 Fixation 0.01
82 V1 400 Tracing 0.18
83* V1 30 1,000 Discrimination 0.1
A. Zandvakili and  A.K., 
unpublished data*


V2 5 1,000 Anesthetized 0.11


M. Smith and  
M. Sommer (University 
of Pittsburgh), personal 
communication*


V4 5.2 1,000 Fixation 0.05


7* V4 21 200 Attention/detection 
task


0.04


8* V4 >5, ~20 800 Attention/tracking 
task


0.05


A.B.G. Graf (New York 
University), personal 
communication*


MT ~10 300 Anesthetized 0.09


29* MT ~20 500 Fixation 0.1
15* MT 28.5 500 Discrimination 0.13
6/22* MT ~20 1,000 Discrimination 0.15
84 Perirhinal ~12 200–500 Fixation/matching 


task
0.02


85 Supp motor area 66 or 200 Serial reaching 0.013
27 Supp motor area ~15 200 Reaching 0.02
86 Premotor areas ~5 400 Grasping/imagery 


task
0.02


87 M1 ~20 600 Reaching 0.1–0.2
25 Motor/parietal; areas 2/5 ~5 1,000 Reaching 0.02–0.04
88 Substantia nigra 58 500 Cue matching 0.01–0.04
89 FEF ~50 A few hundred Visual search 0.05–0.2
90 FEF ~20 ~200 Visual search 0.09
24 Prefrontal ~5 3,000 Delayed saccade task 0.08


These studies measured correlations in a variety of brain areas, behavioral and stimulus conditions, and measurement 
durations and between pairs of neurons that varied in the cortical distance and tuning similarity. When multiple values 
of correlations, firing rates and measurement windows were reported, we list either the average or most common value 
that was listed in the text or estimated from summary figures. Supp, supplementary; FEF, frontal eye field. 


Cohen & Kohn, 
Nature Neurosci. Rev.  '11
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barrels. This hypothesis was tested experimentally in a study by
Goldreich et al. (Goldreich et al., 1999) in which ablation of
the barrel corresponding to an AW has no effect on the level of
surround inhibition in the barrel corresponding to the PW.


Another prediction arises from examining ON versus OFF
responses in both real and simulated systems. Figure 3a presents
population PSTHs of responses to whisker def lection onset and
offset from both thalamic neurons and excitatory barrel
neurons. Differences between the population ON and OFF
response in cortex are probably due to some difference between
those same responses in thalamus. One possibility is that barrel
circuitry is sensitive to the slightly larger magnitude of the
thalamic ON versus OFF response and responds by enhancing
the difference in total spike count. A second possibility is that
barrel circuitry is sensitive to the change in initial firing
synchrony, i.e. faster onset rate, of the thalamic ON versus OFF
response and responds by transforming this difference in popu-
lation response timing into a difference in response magnitude.


To distinguish between these possibilities, the reduced model
was presented with a battery of simulated ‘thalamic’ input
triangles that were varied systematically in both magnitude and
onset rate. Fast versus slow onset rates were used to approxi-
mate abrupt versus gradual changes in firing synchrony among
thalamic input neurons. As illustrated in Figure 3b and quan-
tified in Figure 3c, simulated excitatory barrel population
responses are highly sensitive to the onset rate of thalamic input
and less sensitive to input magnitude. The prediction, therefore,
is that the responses of real excitatory barrel neurons are more
sensitive to thalamic population input timing than to magnitude,
and that this sensitivity explains the greater difference in size
between the ON and OFF responses in cortex.


To test the prediction experimentally, Pinto et al. (Pinto et al.,
2000) examined responses of excitatory barrel neurons and
thalamic neurons to whisker def lections having different
velocities and amplitudes. These stimuli were used because they
were found to evoke thalamic responses that varied in both
timing and magnitude. Greater whisker def lection velocities
evoke thalamic population responses having markedly faster
onset rates, while thalamic population response magnitude
increases slightly with either def lection velocity or amplitude.
The early phase of thalamic local field potentials (LFPs), which
presumably ref lect synchronous firing among thalamic neurons,
display a similar sensitivity to def lection velocity (Temereanca et
al., 2000). Thalamic population responses ref lect those of tri-
geminal ganglion neurons which also encode def lection velocity
in terms of their initial firing rates (Shoykhet et al., 2000).
Importantly, this temporal code for velocity is transformed by
cortical circuitry, for the first time in the whisker-barrel
pathway, into a code based on response magnitude. That is,
increasing def lection velocities evoke abrupt increases in firing
synchrony among thalamic neurons and, consistent with the
models’ prediction, increasing response magnitudes from the
cortical barrel. Changes in def lection amplitude do not affect
thalamic firing synchrony and hence evoke only small changes in
the cortical response.


The sensitivity of the cortical response to thalamic input
timing is a robust feature of barrel processing. Figure 4 presents
experimental response data from both thalamus and cortex
obtained using a variety of whisker def lection protocols,
including def lection onsets of different velocities and ampli-
tudes, PW and AW def lection onsets, short and long plateau
def lection offsets, and the initial response to sinusoidal def lec-
tions at different frequencies. The data were collected from
experiments performed by five sets of investigators over the past


Figure 3. Sensitivity to input timing versus magnitude in simulated barrels. Panel (a)
presents population PSTHs of ON and OFF responses accumulated from 68 excitatory
barrel neurons and 64 thalamic neurons (Kyriazi et al., 1994). Panel (b) presents
examples of the reduced model’s response to simulated thalamic input triangles having
different onset rates. Panel (c) quantifies the reduced model’s response to a battery of
input triangles having a 15 ms base, time-to-peak ranging from 1 to 10 ms, heights (h)
ranging from 0.29 to 0.37 spikes/ms in 0.02 increments, and with background activity
of 0.04 spikes/ms. Onset rate is calculated as the height divided by time-to-peak. Lines
connect responses to inputs having the same height but different onset rates. The gray
dot tracks the same stimulus through each panel and in following figures.


Figure 4. Sensitivity to input timing versus magnitude in real barrels. The symbols on
both graphs indicate data averaged from populations of cortical and thalamic neurons in
response to a variety of whisker deflection. These include onsets of deflections having
different velocities and amplitudes [triangles (Pinto et al., 2000)], PW and AW deflection
onsets [open and closed diamond (Simons and Carvell, 1989; Bruno and Simons,
2001)], short and long plateau offsets [open and closed circle (Kyriazi et al., 1994)], and
the initial response to sine wave deflections at different frequencies [squares (Hartings,
2000)] (see Appendix for further detail). Panel (a) quantifies the relationship between
cortical response magnitude and thalamic response magnitude. Panel (b) quantifies the
relationship between cortical response magnitude and the initial change in thalamic
firing synchrony (see text and Appendix). r2 values are based on all protocols evoking
cortical responses >1 spike/stimulus (dotted lines).
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barrels. This hypothesis was tested experimentally in a study by
Goldreich et al. (Goldreich et al., 1999) in which ablation of
the barrel corresponding to an AW has no effect on the level of
surround inhibition in the barrel corresponding to the PW.


Another prediction arises from examining ON versus OFF
responses in both real and simulated systems. Figure 3a presents
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mate abrupt versus gradual changes in firing synchrony among
thalamic input neurons. As illustrated in Figure 3b and quan-
tified in Figure 3c, simulated excitatory barrel population
responses are highly sensitive to the onset rate of thalamic input
and less sensitive to input magnitude. The prediction, therefore,
is that the responses of real excitatory barrel neurons are more
sensitive to thalamic population input timing than to magnitude,
and that this sensitivity explains the greater difference in size
between the ON and OFF responses in cortex.
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were found to evoke thalamic responses that varied in both
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evoke thalamic population responses having markedly faster
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The early phase of thalamic local field potentials (LFPs), which
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Importantly, this temporal code for velocity is transformed by
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pathway, into a code based on response magnitude. That is,
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synchrony among thalamic neurons and, consistent with the
models’ prediction, increasing response magnitudes from the
cortical barrel. Changes in def lection amplitude do not affect
thalamic firing synchrony and hence evoke only small changes in
the cortical response.


The sensitivity of the cortical response to thalamic input
timing is a robust feature of barrel processing. Figure 4 presents
experimental response data from both thalamus and cortex
obtained using a variety of whisker def lection protocols,
including def lection onsets of different velocities and ampli-
tudes, PW and AW def lection onsets, short and long plateau
def lection offsets, and the initial response to sinusoidal def lec-
tions at different frequencies. The data were collected from
experiments performed by five sets of investigators over the past


Figure 3. Sensitivity to input timing versus magnitude in simulated barrels. Panel (a)
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examples of the reduced model’s response to simulated thalamic input triangles having
different onset rates. Panel (c) quantifies the reduced model’s response to a battery of
input triangles having a 15 ms base, time-to-peak ranging from 1 to 10 ms, heights (h)
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of 0.04 spikes/ms. Onset rate is calculated as the height divided by time-to-peak. Lines
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Figure 4. Sensitivity to input timing versus magnitude in real barrels. The symbols on
both graphs indicate data averaged from populations of cortical and thalamic neurons in
response to a variety of whisker deflection. These include onsets of deflections having
different velocities and amplitudes [triangles (Pinto et al., 2000)], PW and AW deflection
onsets [open and closed diamond (Simons and Carvell, 1989; Bruno and Simons,
2001)], short and long plateau offsets [open and closed circle (Kyriazi et al., 1994)], and
the initial response to sine wave deflections at different frequencies [squares (Hartings,
2000)] (see Appendix for further detail). Panel (a) quantifies the relationship between
cortical response magnitude and thalamic response magnitude. Panel (b) quantifies the
relationship between cortical response magnitude and the initial change in thalamic
firing synchrony (see text and Appendix). r2 values are based on all protocols evoking
cortical responses >1 spike/stimulus (dotted lines).
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barrels. This hypothesis was tested experimentally in a study by
Goldreich et al. (Goldreich et al., 1999) in which ablation of
the barrel corresponding to an AW has no effect on the level of
surround inhibition in the barrel corresponding to the PW.


Another prediction arises from examining ON versus OFF
responses in both real and simulated systems. Figure 3a presents
population PSTHs of responses to whisker def lection onset and
offset from both thalamic neurons and excitatory barrel
neurons. Differences between the population ON and OFF
response in cortex are probably due to some difference between
those same responses in thalamus. One possibility is that barrel
circuitry is sensitive to the slightly larger magnitude of the
thalamic ON versus OFF response and responds by enhancing
the difference in total spike count. A second possibility is that
barrel circuitry is sensitive to the change in initial firing
synchrony, i.e. faster onset rate, of the thalamic ON versus OFF
response and responds by transforming this difference in popu-
lation response timing into a difference in response magnitude.


To distinguish between these possibilities, the reduced model
was presented with a battery of simulated ‘thalamic’ input
triangles that were varied systematically in both magnitude and
onset rate. Fast versus slow onset rates were used to approxi-
mate abrupt versus gradual changes in firing synchrony among
thalamic input neurons. As illustrated in Figure 3b and quan-
tified in Figure 3c, simulated excitatory barrel population
responses are highly sensitive to the onset rate of thalamic input
and less sensitive to input magnitude. The prediction, therefore,
is that the responses of real excitatory barrel neurons are more
sensitive to thalamic population input timing than to magnitude,
and that this sensitivity explains the greater difference in size
between the ON and OFF responses in cortex.


To test the prediction experimentally, Pinto et al. (Pinto et al.,
2000) examined responses of excitatory barrel neurons and
thalamic neurons to whisker def lections having different
velocities and amplitudes. These stimuli were used because they
were found to evoke thalamic responses that varied in both
timing and magnitude. Greater whisker def lection velocities
evoke thalamic population responses having markedly faster
onset rates, while thalamic population response magnitude
increases slightly with either def lection velocity or amplitude.
The early phase of thalamic local field potentials (LFPs), which
presumably ref lect synchronous firing among thalamic neurons,
display a similar sensitivity to def lection velocity (Temereanca et
al., 2000). Thalamic population responses ref lect those of tri-
geminal ganglion neurons which also encode def lection velocity
in terms of their initial firing rates (Shoykhet et al., 2000).
Importantly, this temporal code for velocity is transformed by
cortical circuitry, for the first time in the whisker-barrel
pathway, into a code based on response magnitude. That is,
increasing def lection velocities evoke abrupt increases in firing
synchrony among thalamic neurons and, consistent with the
models’ prediction, increasing response magnitudes from the
cortical barrel. Changes in def lection amplitude do not affect
thalamic firing synchrony and hence evoke only small changes in
the cortical response.


The sensitivity of the cortical response to thalamic input
timing is a robust feature of barrel processing. Figure 4 presents
experimental response data from both thalamus and cortex
obtained using a variety of whisker def lection protocols,
including def lection onsets of different velocities and ampli-
tudes, PW and AW def lection onsets, short and long plateau
def lection offsets, and the initial response to sinusoidal def lec-
tions at different frequencies. The data were collected from
experiments performed by five sets of investigators over the past


Figure 3. Sensitivity to input timing versus magnitude in simulated barrels. Panel (a)
presents population PSTHs of ON and OFF responses accumulated from 68 excitatory
barrel neurons and 64 thalamic neurons (Kyriazi et al., 1994). Panel (b) presents
examples of the reduced model’s response to simulated thalamic input triangles having
different onset rates. Panel (c) quantifies the reduced model’s response to a battery of
input triangles having a 15 ms base, time-to-peak ranging from 1 to 10 ms, heights (h)
ranging from 0.29 to 0.37 spikes/ms in 0.02 increments, and with background activity
of 0.04 spikes/ms. Onset rate is calculated as the height divided by time-to-peak. Lines
connect responses to inputs having the same height but different onset rates. The gray
dot tracks the same stimulus through each panel and in following figures.


Figure 4. Sensitivity to input timing versus magnitude in real barrels. The symbols on
both graphs indicate data averaged from populations of cortical and thalamic neurons in
response to a variety of whisker deflection. These include onsets of deflections having
different velocities and amplitudes [triangles (Pinto et al., 2000)], PW and AW deflection
onsets [open and closed diamond (Simons and Carvell, 1989; Bruno and Simons,
2001)], short and long plateau offsets [open and closed circle (Kyriazi et al., 1994)], and
the initial response to sine wave deflections at different frequencies [squares (Hartings,
2000)] (see Appendix for further detail). Panel (a) quantifies the relationship between
cortical response magnitude and thalamic response magnitude. Panel (b) quantifies the
relationship between cortical response magnitude and the initial change in thalamic
firing synchrony (see text and Appendix). r2 values are based on all protocols evoking
cortical responses >1 spike/stimulus (dotted lines).
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Goldreich et al. (Goldreich et al., 1999) in which ablation of
the barrel corresponding to an AW has no effect on the level of
surround inhibition in the barrel corresponding to the PW.


Another prediction arises from examining ON versus OFF
responses in both real and simulated systems. Figure 3a presents
population PSTHs of responses to whisker def lection onset and
offset from both thalamic neurons and excitatory barrel
neurons. Differences between the population ON and OFF
response in cortex are probably due to some difference between
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evoke thalamic population responses having markedly faster
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synchrony among thalamic neurons and, consistent with the
models’ prediction, increasing response magnitudes from the
cortical barrel. Changes in def lection amplitude do not affect
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those measured in vivo7,8,11. In this range r(c) was approximately
linear (Fig. 2a, b), allowing us to use perturbation techniques26 to
obtain an expression for r(c) (see Supplementary Information):


r<S m,sð Þc~
s2 dn


dm


! "2


CV2n
c ð3Þ


Wedefine the slope S(m,s) relating r to c as correlation susceptibility.
Here dn/dm is the derivative of the spike-rate transfer function (that
is, the relationship between firing rate, n(m,s), and the mean injected
current). Equation (3) accurately predicts the transformation r(c)
obtained via simulations (Fig. 2a, b, dashed lines).


As with the experiments, we varied m or s while keeping c fixed to
obtain different values of n. A plot of r versus n when m (or s) was
increased while keeping s (or m) fixed (inset of Fig. 2c) shows that r
rapidly increased in the physiological range of 0–50 spikes s21 and
asymptoted to c at high rates (Fig. 2c). Notably, the correlation–rate
curves obtained by increasing m or s were nearly identical, even
though voltage traces, correlation functions and CVs were very dif-
ferent (Fig. 2c). To show that these results did not depend on specific
m and s values, we used equation (3) to sweep a large region of the
m–s parameter space. The resultant r–n values were confined to a
narrow band around the stereotyped curve (Fig. 2c, shaded areas).
This allowed us to rewrite equation (3) in an approximate form in
which the susceptibility, S, depends only on the output rate and not
on the input variables m and s:


r<S nð Þc ð4Þ
The empirically measured rT also increased with n for all T
examined; however, the approximation that S depends only on n
(equation (4)) becomes progressively less accurate as T decreases
(see Supplementary Information).


To determine whether the correlation–rate relationship emerges in
a less controlled andmore biologically relevant setting, we performed
simulations of a two-layer network where neurons from layer 1 were
randomly connected to neurons in layer 2 (Fig. 3a). Layer 1 consisted
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Figure 1 | Relationship between output spike correlation and rate in in vitro
cells. a, Twenty neurons from cortical slices (n5 11) were stimulated with
gaussian currents (filtered with a time constant of 5ms), with both common
and independent components. b, Fluctuating current injection (bottom)
often evoked nearly synchronous spikes (top arrowheads). Red and black
traces are membrane potentials from cells 1 and 2, respectively. c, Typical
cross- (left) and auto-correlation (right) functions from a pair of cells firing
at low (blue), medium (red) and high (green) rate. d, A typical rT versus c for
a pair of cells. e, The correlation rT in a population (n5 123 pairwise
comparisons) increases with


ffiffiffiffiffiffiffi
ninj


p
and does not co-vary with


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CViCVj


p


(inset, linear regression, r5 0.13); cwas fixed at 0.5. Squares represent mean
and s.d. of the population, and coloured circles the examples shown in c. f, A
simple cell model that generates an output spike for every input spike. The
correlation rT is fixed at c, and is independent of n. Throughout we used
T5 40ms.
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Figure 2 | The correlation–rate relationship in an integrate-and-fire neuron
model. a, b, r versus c from simulations (solid line) and theory (dashed line,
from equation (3)). Increases in either m (a) or s (b) increase the slope of
r(c). Grey lines are the diagonal r5 c. Inset shows r(c) for all c. c, As m (red)
or s (blue) were varied following the paths drawn in the inset, r and n co-
varied as shown. Note that this relationship holds only when r(c) is linear
(a and b). Simulations (dots) and theory (solid line) show a dependence of r
and n along a stereotyped curve. The shaded area shown in m–s space (inset)
was swept using equation (3) and yielded the shaded area around the r–n
curves. Voltage traces, cross- and auto-correlation functions (upper and
lower panels, respectively) are illustrated for two sets of (m, s) values (see1
and3 in inset). We used tm5 10ms.
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those measured in vivo7,8,11. In this range r(c) was approximately
linear (Fig. 2a, b), allowing us to use perturbation techniques26 to
obtain an expression for r(c) (see Supplementary Information):
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Wedefine the slope S(m,s) relating r to c as correlation susceptibility.
Here dn/dm is the derivative of the spike-rate transfer function (that
is, the relationship between firing rate, n(m,s), and the mean injected
current). Equation (3) accurately predicts the transformation r(c)
obtained via simulations (Fig. 2a, b, dashed lines).


As with the experiments, we varied m or s while keeping c fixed to
obtain different values of n. A plot of r versus n when m (or s) was
increased while keeping s (or m) fixed (inset of Fig. 2c) shows that r
rapidly increased in the physiological range of 0–50 spikes s21 and
asymptoted to c at high rates (Fig. 2c). Notably, the correlation–rate
curves obtained by increasing m or s were nearly identical, even
though voltage traces, correlation functions and CVs were very dif-
ferent (Fig. 2c). To show that these results did not depend on specific
m and s values, we used equation (3) to sweep a large region of the
m–s parameter space. The resultant r–n values were confined to a
narrow band around the stereotyped curve (Fig. 2c, shaded areas).
This allowed us to rewrite equation (3) in an approximate form in
which the susceptibility, S, depends only on the output rate and not
on the input variables m and s:


r<S nð Þc ð4Þ
The empirically measured rT also increased with n for all T
examined; however, the approximation that S depends only on n
(equation (4)) becomes progressively less accurate as T decreases
(see Supplementary Information).


To determine whether the correlation–rate relationship emerges in
a less controlled andmore biologically relevant setting, we performed
simulations of a two-layer network where neurons from layer 1 were
randomly connected to neurons in layer 2 (Fig. 3a). Layer 1 consisted


+


+


+


+


CV


 


O
ut


pu
t c


or
re


la
tio


n 
r T


µ s


20 mV
0.1 nA


100 ms
30 ms


Time (ms)


C
ur


re
nt


Geometric mean output rate √ninj (spikes s–1)


50 (spikes s–1)2


≈


1


2


n1


rate: n
correlation:
rT = c ≠ f(n)


1


2


n2


T


0 10 20


–60


0


x1


x2


xc


–50 50–50 0 50 0


0


0.5


1


0 0.5 1
Input correlation c


a b


c d


0.1


0.2


0.1


0.2


0.5 1


r T


0


0.3


n(1–c)


n(1–c)


nc


y1:


y2:


x1:


xc:


x2:


e


f


O
ut


pu
t c


or
re


la
tio


n 
r T


0


0.3


Figure 1 | Relationship between output spike correlation and rate in in vitro
cells. a, Twenty neurons from cortical slices (n5 11) were stimulated with
gaussian currents (filtered with a time constant of 5ms), with both common
and independent components. b, Fluctuating current injection (bottom)
often evoked nearly synchronous spikes (top arrowheads). Red and black
traces are membrane potentials from cells 1 and 2, respectively. c, Typical
cross- (left) and auto-correlation (right) functions from a pair of cells firing
at low (blue), medium (red) and high (green) rate. d, A typical rT versus c for
a pair of cells. e, The correlation rT in a population (n5 123 pairwise
comparisons) increases with
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and does not co-vary with


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CViCVj
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(inset, linear regression, r5 0.13); cwas fixed at 0.5. Squares represent mean
and s.d. of the population, and coloured circles the examples shown in c. f, A
simple cell model that generates an output spike for every input spike. The
correlation rT is fixed at c, and is independent of n. Throughout we used
T5 40ms.


0 1 


  


0 
Input correlation c 


Output firing rate n (spikes s–1)


0 


O
ut


pu
t c


or
re


la
tio


n 
r


  


0 40 


10 ms


10 ms


10 ms


10 mV


µ (mV) 


s 
(m


V)


c


c


µ s


0 


0.1 


0.2 


0.3 


0.1 0.2 0.3 0 
Input correlation c 


0.1 0.2 0.3 


0.1 


0.2 


0 


0.3 
0 


O
ut


pu
t c


or
re


la
tio


n 
r


b 1 a 


0 


15 


c 
2


0 50 100 


Figure 2 | The correlation–rate relationship in an integrate-and-fire neuron
model. a, b, r versus c from simulations (solid line) and theory (dashed line,
from equation (3)). Increases in either m (a) or s (b) increase the slope of
r(c). Grey lines are the diagonal r5 c. Inset shows r(c) for all c. c, As m (red)
or s (blue) were varied following the paths drawn in the inset, r and n co-
varied as shown. Note that this relationship holds only when r(c) is linear
(a and b). Simulations (dots) and theory (solid line) show a dependence of r
and n along a stereotyped curve. The shaded area shown in m–s space (inset)
was swept using equation (3) and yielded the shaded area around the r–n
curves. Voltage traces, cross- and auto-correlation functions (upper and
lower panels, respectively) are illustrated for two sets of (m, s) values (see1
and3 in inset). We used tm5 10ms.


NATURE |Vol 448 | 16 August 2007 LETTERS


803
Nature   ©2007 Publishing Group


Thursday, September 29, 2011







Previous Results


Correlation between neural spike trains increases with firing rate.
de la Rocha, Doiron, et al., Nature 2007.


those measured in vivo7,8,11. In this range r(c) was approximately
linear (Fig. 2a, b), allowing us to use perturbation techniques26 to
obtain an expression for r(c) (see Supplementary Information):
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Wedefine the slope S(m,s) relating r to c as correlation susceptibility.
Here dn/dm is the derivative of the spike-rate transfer function (that
is, the relationship between firing rate, n(m,s), and the mean injected
current). Equation (3) accurately predicts the transformation r(c)
obtained via simulations (Fig. 2a, b, dashed lines).


As with the experiments, we varied m or s while keeping c fixed to
obtain different values of n. A plot of r versus n when m (or s) was
increased while keeping s (or m) fixed (inset of Fig. 2c) shows that r
rapidly increased in the physiological range of 0–50 spikes s21 and
asymptoted to c at high rates (Fig. 2c). Notably, the correlation–rate
curves obtained by increasing m or s were nearly identical, even
though voltage traces, correlation functions and CVs were very dif-
ferent (Fig. 2c). To show that these results did not depend on specific
m and s values, we used equation (3) to sweep a large region of the
m–s parameter space. The resultant r–n values were confined to a
narrow band around the stereotyped curve (Fig. 2c, shaded areas).
This allowed us to rewrite equation (3) in an approximate form in
which the susceptibility, S, depends only on the output rate and not
on the input variables m and s:


r<S nð Þc ð4Þ
The empirically measured rT also increased with n for all T
examined; however, the approximation that S depends only on n
(equation (4)) becomes progressively less accurate as T decreases
(see Supplementary Information).


To determine whether the correlation–rate relationship emerges in
a less controlled andmore biologically relevant setting, we performed
simulations of a two-layer network where neurons from layer 1 were
randomly connected to neurons in layer 2 (Fig. 3a). Layer 1 consisted
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Figure 1 | Relationship between output spike correlation and rate in in vitro
cells. a, Twenty neurons from cortical slices (n5 11) were stimulated with
gaussian currents (filtered with a time constant of 5ms), with both common
and independent components. b, Fluctuating current injection (bottom)
often evoked nearly synchronous spikes (top arrowheads). Red and black
traces are membrane potentials from cells 1 and 2, respectively. c, Typical
cross- (left) and auto-correlation (right) functions from a pair of cells firing
at low (blue), medium (red) and high (green) rate. d, A typical rT versus c for
a pair of cells. e, The correlation rT in a population (n5 123 pairwise
comparisons) increases with
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and does not co-vary with


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CViCVj
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(inset, linear regression, r5 0.13); cwas fixed at 0.5. Squares represent mean
and s.d. of the population, and coloured circles the examples shown in c. f, A
simple cell model that generates an output spike for every input spike. The
correlation rT is fixed at c, and is independent of n. Throughout we used
T5 40ms.
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Figure 2 | The correlation–rate relationship in an integrate-and-fire neuron
model. a, b, r versus c from simulations (solid line) and theory (dashed line,
from equation (3)). Increases in either m (a) or s (b) increase the slope of
r(c). Grey lines are the diagonal r5 c. Inset shows r(c) for all c. c, As m (red)
or s (blue) were varied following the paths drawn in the inset, r and n co-
varied as shown. Note that this relationship holds only when r(c) is linear
(a and b). Simulations (dots) and theory (solid line) show a dependence of r
and n along a stereotyped curve. The shaded area shown in m–s space (inset)
was swept using equation (3) and yielded the shaded area around the r–n
curves. Voltage traces, cross- and auto-correlation functions (upper and
lower panels, respectively) are illustrated for two sets of (m, s) values (see1
and3 in inset). We used tm5 10ms.
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those measured in vivo7,8,11. In this range r(c) was approximately
linear (Fig. 2a, b), allowing us to use perturbation techniques26 to
obtain an expression for r(c) (see Supplementary Information):
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Wedefine the slope S(m,s) relating r to c as correlation susceptibility.
Here dn/dm is the derivative of the spike-rate transfer function (that
is, the relationship between firing rate, n(m,s), and the mean injected
current). Equation (3) accurately predicts the transformation r(c)
obtained via simulations (Fig. 2a, b, dashed lines).


As with the experiments, we varied m or s while keeping c fixed to
obtain different values of n. A plot of r versus n when m (or s) was
increased while keeping s (or m) fixed (inset of Fig. 2c) shows that r
rapidly increased in the physiological range of 0–50 spikes s21 and
asymptoted to c at high rates (Fig. 2c). Notably, the correlation–rate
curves obtained by increasing m or s were nearly identical, even
though voltage traces, correlation functions and CVs were very dif-
ferent (Fig. 2c). To show that these results did not depend on specific
m and s values, we used equation (3) to sweep a large region of the
m–s parameter space. The resultant r–n values were confined to a
narrow band around the stereotyped curve (Fig. 2c, shaded areas).
This allowed us to rewrite equation (3) in an approximate form in
which the susceptibility, S, depends only on the output rate and not
on the input variables m and s:


r<S nð Þc ð4Þ
The empirically measured rT also increased with n for all T
examined; however, the approximation that S depends only on n
(equation (4)) becomes progressively less accurate as T decreases
(see Supplementary Information).


To determine whether the correlation–rate relationship emerges in
a less controlled andmore biologically relevant setting, we performed
simulations of a two-layer network where neurons from layer 1 were
randomly connected to neurons in layer 2 (Fig. 3a). Layer 1 consisted
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Figure 1 | Relationship between output spike correlation and rate in in vitro
cells. a, Twenty neurons from cortical slices (n5 11) were stimulated with
gaussian currents (filtered with a time constant of 5ms), with both common
and independent components. b, Fluctuating current injection (bottom)
often evoked nearly synchronous spikes (top arrowheads). Red and black
traces are membrane potentials from cells 1 and 2, respectively. c, Typical
cross- (left) and auto-correlation (right) functions from a pair of cells firing
at low (blue), medium (red) and high (green) rate. d, A typical rT versus c for
a pair of cells. e, The correlation rT in a population (n5 123 pairwise
comparisons) increases with
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and does not co-vary with
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(inset, linear regression, r5 0.13); cwas fixed at 0.5. Squares represent mean
and s.d. of the population, and coloured circles the examples shown in c. f, A
simple cell model that generates an output spike for every input spike. The
correlation rT is fixed at c, and is independent of n. Throughout we used
T5 40ms.
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Figure 2 | The correlation–rate relationship in an integrate-and-fire neuron
model. a, b, r versus c from simulations (solid line) and theory (dashed line,
from equation (3)). Increases in either m (a) or s (b) increase the slope of
r(c). Grey lines are the diagonal r5 c. Inset shows r(c) for all c. c, As m (red)
or s (blue) were varied following the paths drawn in the inset, r and n co-
varied as shown. Note that this relationship holds only when r(c) is linear
(a and b). Simulations (dots) and theory (solid line) show a dependence of r
and n along a stereotyped curve. The shaded area shown in m–s space (inset)
was swept using equation (3) and yielded the shaded area around the r–n
curves. Voltage traces, cross- and auto-correlation functions (upper and
lower panels, respectively) are illustrated for two sets of (m, s) values (see1
and3 in inset). We used tm5 10ms.
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those measured in vivo7,8,11. In this range r(c) was approximately
linear (Fig. 2a, b), allowing us to use perturbation techniques26 to
obtain an expression for r(c) (see Supplementary Information):
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Wedefine the slope S(m,s) relating r to c as correlation susceptibility.
Here dn/dm is the derivative of the spike-rate transfer function (that
is, the relationship between firing rate, n(m,s), and the mean injected
current). Equation (3) accurately predicts the transformation r(c)
obtained via simulations (Fig. 2a, b, dashed lines).


As with the experiments, we varied m or s while keeping c fixed to
obtain different values of n. A plot of r versus n when m (or s) was
increased while keeping s (or m) fixed (inset of Fig. 2c) shows that r
rapidly increased in the physiological range of 0–50 spikes s21 and
asymptoted to c at high rates (Fig. 2c). Notably, the correlation–rate
curves obtained by increasing m or s were nearly identical, even
though voltage traces, correlation functions and CVs were very dif-
ferent (Fig. 2c). To show that these results did not depend on specific
m and s values, we used equation (3) to sweep a large region of the
m–s parameter space. The resultant r–n values were confined to a
narrow band around the stereotyped curve (Fig. 2c, shaded areas).
This allowed us to rewrite equation (3) in an approximate form in
which the susceptibility, S, depends only on the output rate and not
on the input variables m and s:


r<S nð Þc ð4Þ
The empirically measured rT also increased with n for all T
examined; however, the approximation that S depends only on n
(equation (4)) becomes progressively less accurate as T decreases
(see Supplementary Information).


To determine whether the correlation–rate relationship emerges in
a less controlled andmore biologically relevant setting, we performed
simulations of a two-layer network where neurons from layer 1 were
randomly connected to neurons in layer 2 (Fig. 3a). Layer 1 consisted
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Figure 1 | Relationship between output spike correlation and rate in in vitro
cells. a, Twenty neurons from cortical slices (n5 11) were stimulated with
gaussian currents (filtered with a time constant of 5ms), with both common
and independent components. b, Fluctuating current injection (bottom)
often evoked nearly synchronous spikes (top arrowheads). Red and black
traces are membrane potentials from cells 1 and 2, respectively. c, Typical
cross- (left) and auto-correlation (right) functions from a pair of cells firing
at low (blue), medium (red) and high (green) rate. d, A typical rT versus c for
a pair of cells. e, The correlation rT in a population (n5 123 pairwise
comparisons) increases with


ffiffiffiffiffiffiffi
ninj


p
and does not co-vary with


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CViCVj


p


(inset, linear regression, r5 0.13); cwas fixed at 0.5. Squares represent mean
and s.d. of the population, and coloured circles the examples shown in c. f, A
simple cell model that generates an output spike for every input spike. The
correlation rT is fixed at c, and is independent of n. Throughout we used
T5 40ms.
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Figure 2 | The correlation–rate relationship in an integrate-and-fire neuron
model. a, b, r versus c from simulations (solid line) and theory (dashed line,
from equation (3)). Increases in either m (a) or s (b) increase the slope of
r(c). Grey lines are the diagonal r5 c. Inset shows r(c) for all c. c, As m (red)
or s (blue) were varied following the paths drawn in the inset, r and n co-
varied as shown. Note that this relationship holds only when r(c) is linear
(a and b). Simulations (dots) and theory (solid line) show a dependence of r
and n along a stereotyped curve. The shaded area shown in m–s space (inset)
was swept using equation (3) and yielded the shaded area around the r–n
curves. Voltage traces, cross- and auto-correlation functions (upper and
lower panels, respectively) are illustrated for two sets of (m, s) values (see1
and3 in inset). We used tm5 10ms.
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those measured in vivo7,8,11. In this range r(c) was approximately
linear (Fig. 2a, b), allowing us to use perturbation techniques26 to
obtain an expression for r(c) (see Supplementary Information):


r<S m,sð Þc~
s2 dn


dm


! "2


CV2n
c ð3Þ


Wedefine the slope S(m,s) relating r to c as correlation susceptibility.
Here dn/dm is the derivative of the spike-rate transfer function (that
is, the relationship between firing rate, n(m,s), and the mean injected
current). Equation (3) accurately predicts the transformation r(c)
obtained via simulations (Fig. 2a, b, dashed lines).


As with the experiments, we varied m or s while keeping c fixed to
obtain different values of n. A plot of r versus n when m (or s) was
increased while keeping s (or m) fixed (inset of Fig. 2c) shows that r
rapidly increased in the physiological range of 0–50 spikes s21 and
asymptoted to c at high rates (Fig. 2c). Notably, the correlation–rate
curves obtained by increasing m or s were nearly identical, even
though voltage traces, correlation functions and CVs were very dif-
ferent (Fig. 2c). To show that these results did not depend on specific
m and s values, we used equation (3) to sweep a large region of the
m–s parameter space. The resultant r–n values were confined to a
narrow band around the stereotyped curve (Fig. 2c, shaded areas).
This allowed us to rewrite equation (3) in an approximate form in
which the susceptibility, S, depends only on the output rate and not
on the input variables m and s:


r<S nð Þc ð4Þ
The empirically measured rT also increased with n for all T
examined; however, the approximation that S depends only on n
(equation (4)) becomes progressively less accurate as T decreases
(see Supplementary Information).


To determine whether the correlation–rate relationship emerges in
a less controlled andmore biologically relevant setting, we performed
simulations of a two-layer network where neurons from layer 1 were
randomly connected to neurons in layer 2 (Fig. 3a). Layer 1 consisted
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Figure 1 | Relationship between output spike correlation and rate in in vitro
cells. a, Twenty neurons from cortical slices (n5 11) were stimulated with
gaussian currents (filtered with a time constant of 5ms), with both common
and independent components. b, Fluctuating current injection (bottom)
often evoked nearly synchronous spikes (top arrowheads). Red and black
traces are membrane potentials from cells 1 and 2, respectively. c, Typical
cross- (left) and auto-correlation (right) functions from a pair of cells firing
at low (blue), medium (red) and high (green) rate. d, A typical rT versus c for
a pair of cells. e, The correlation rT in a population (n5 123 pairwise
comparisons) increases with
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and does not co-vary with


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CViCVj


p


(inset, linear regression, r5 0.13); cwas fixed at 0.5. Squares represent mean
and s.d. of the population, and coloured circles the examples shown in c. f, A
simple cell model that generates an output spike for every input spike. The
correlation rT is fixed at c, and is independent of n. Throughout we used
T5 40ms.
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Figure 2 | The correlation–rate relationship in an integrate-and-fire neuron
model. a, b, r versus c from simulations (solid line) and theory (dashed line,
from equation (3)). Increases in either m (a) or s (b) increase the slope of
r(c). Grey lines are the diagonal r5 c. Inset shows r(c) for all c. c, As m (red)
or s (blue) were varied following the paths drawn in the inset, r and n co-
varied as shown. Note that this relationship holds only when r(c) is linear
(a and b). Simulations (dots) and theory (solid line) show a dependence of r
and n along a stereotyped curve. The shaded area shown in m–s space (inset)
was swept using equation (3) and yielded the shaded area around the r–n
curves. Voltage traces, cross- and auto-correlation functions (upper and
lower panels, respectively) are illustrated for two sets of (m, s) values (see1
and3 in inset). We used tm5 10ms.
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those measured in vivo7,8,11. In this range r(c) was approximately
linear (Fig. 2a, b), allowing us to use perturbation techniques26 to
obtain an expression for r(c) (see Supplementary Information):


r<S m,sð Þc~
s2 dn


dm


! "2


CV2n
c ð3Þ


Wedefine the slope S(m,s) relating r to c as correlation susceptibility.
Here dn/dm is the derivative of the spike-rate transfer function (that
is, the relationship between firing rate, n(m,s), and the mean injected
current). Equation (3) accurately predicts the transformation r(c)
obtained via simulations (Fig. 2a, b, dashed lines).


As with the experiments, we varied m or s while keeping c fixed to
obtain different values of n. A plot of r versus n when m (or s) was
increased while keeping s (or m) fixed (inset of Fig. 2c) shows that r
rapidly increased in the physiological range of 0–50 spikes s21 and
asymptoted to c at high rates (Fig. 2c). Notably, the correlation–rate
curves obtained by increasing m or s were nearly identical, even
though voltage traces, correlation functions and CVs were very dif-
ferent (Fig. 2c). To show that these results did not depend on specific
m and s values, we used equation (3) to sweep a large region of the
m–s parameter space. The resultant r–n values were confined to a
narrow band around the stereotyped curve (Fig. 2c, shaded areas).
This allowed us to rewrite equation (3) in an approximate form in
which the susceptibility, S, depends only on the output rate and not
on the input variables m and s:


r<S nð Þc ð4Þ
The empirically measured rT also increased with n for all T
examined; however, the approximation that S depends only on n
(equation (4)) becomes progressively less accurate as T decreases
(see Supplementary Information).


To determine whether the correlation–rate relationship emerges in
a less controlled andmore biologically relevant setting, we performed
simulations of a two-layer network where neurons from layer 1 were
randomly connected to neurons in layer 2 (Fig. 3a). Layer 1 consisted
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Figure 1 | Relationship between output spike correlation and rate in in vitro
cells. a, Twenty neurons from cortical slices (n5 11) were stimulated with
gaussian currents (filtered with a time constant of 5ms), with both common
and independent components. b, Fluctuating current injection (bottom)
often evoked nearly synchronous spikes (top arrowheads). Red and black
traces are membrane potentials from cells 1 and 2, respectively. c, Typical
cross- (left) and auto-correlation (right) functions from a pair of cells firing
at low (blue), medium (red) and high (green) rate. d, A typical rT versus c for
a pair of cells. e, The correlation rT in a population (n5 123 pairwise
comparisons) increases with


ffiffiffiffiffiffiffi
ninj


p
and does not co-vary with


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CViCVj


p


(inset, linear regression, r5 0.13); cwas fixed at 0.5. Squares represent mean
and s.d. of the population, and coloured circles the examples shown in c. f, A
simple cell model that generates an output spike for every input spike. The
correlation rT is fixed at c, and is independent of n. Throughout we used
T5 40ms.
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Figure 2 | The correlation–rate relationship in an integrate-and-fire neuron
model. a, b, r versus c from simulations (solid line) and theory (dashed line,
from equation (3)). Increases in either m (a) or s (b) increase the slope of
r(c). Grey lines are the diagonal r5 c. Inset shows r(c) for all c. c, As m (red)
or s (blue) were varied following the paths drawn in the inset, r and n co-
varied as shown. Note that this relationship holds only when r(c) is linear
(a and b). Simulations (dots) and theory (solid line) show a dependence of r
and n along a stereotyped curve. The shaded area shown in m–s space (inset)
was swept using equation (3) and yielded the shaded area around the r–n
curves. Voltage traces, cross- and auto-correlation functions (upper and
lower panels, respectively) are illustrated for two sets of (m, s) values (see1
and3 in inset). We used tm5 10ms.
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those measured in vivo7,8,11. In this range r(c) was approximately
linear (Fig. 2a, b), allowing us to use perturbation techniques26 to
obtain an expression for r(c) (see Supplementary Information):


r<S m,sð Þc~
s2 dn


dm


! "2


CV2n
c ð3Þ


Wedefine the slope S(m,s) relating r to c as correlation susceptibility.
Here dn/dm is the derivative of the spike-rate transfer function (that
is, the relationship between firing rate, n(m,s), and the mean injected
current). Equation (3) accurately predicts the transformation r(c)
obtained via simulations (Fig. 2a, b, dashed lines).


As with the experiments, we varied m or s while keeping c fixed to
obtain different values of n. A plot of r versus n when m (or s) was
increased while keeping s (or m) fixed (inset of Fig. 2c) shows that r
rapidly increased in the physiological range of 0–50 spikes s21 and
asymptoted to c at high rates (Fig. 2c). Notably, the correlation–rate
curves obtained by increasing m or s were nearly identical, even
though voltage traces, correlation functions and CVs were very dif-
ferent (Fig. 2c). To show that these results did not depend on specific
m and s values, we used equation (3) to sweep a large region of the
m–s parameter space. The resultant r–n values were confined to a
narrow band around the stereotyped curve (Fig. 2c, shaded areas).
This allowed us to rewrite equation (3) in an approximate form in
which the susceptibility, S, depends only on the output rate and not
on the input variables m and s:


r<S nð Þc ð4Þ
The empirically measured rT also increased with n for all T
examined; however, the approximation that S depends only on n
(equation (4)) becomes progressively less accurate as T decreases
(see Supplementary Information).


To determine whether the correlation–rate relationship emerges in
a less controlled andmore biologically relevant setting, we performed
simulations of a two-layer network where neurons from layer 1 were
randomly connected to neurons in layer 2 (Fig. 3a). Layer 1 consisted
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Figure 1 | Relationship between output spike correlation and rate in in vitro
cells. a, Twenty neurons from cortical slices (n5 11) were stimulated with
gaussian currents (filtered with a time constant of 5ms), with both common
and independent components. b, Fluctuating current injection (bottom)
often evoked nearly synchronous spikes (top arrowheads). Red and black
traces are membrane potentials from cells 1 and 2, respectively. c, Typical
cross- (left) and auto-correlation (right) functions from a pair of cells firing
at low (blue), medium (red) and high (green) rate. d, A typical rT versus c for
a pair of cells. e, The correlation rT in a population (n5 123 pairwise
comparisons) increases with


ffiffiffiffiffiffiffi
ninj


p
and does not co-vary with


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CViCVj


p


(inset, linear regression, r5 0.13); cwas fixed at 0.5. Squares represent mean
and s.d. of the population, and coloured circles the examples shown in c. f, A
simple cell model that generates an output spike for every input spike. The
correlation rT is fixed at c, and is independent of n. Throughout we used
T5 40ms.
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Figure 2 | The correlation–rate relationship in an integrate-and-fire neuron
model. a, b, r versus c from simulations (solid line) and theory (dashed line,
from equation (3)). Increases in either m (a) or s (b) increase the slope of
r(c). Grey lines are the diagonal r5 c. Inset shows r(c) for all c. c, As m (red)
or s (blue) were varied following the paths drawn in the inset, r and n co-
varied as shown. Note that this relationship holds only when r(c) is linear
(a and b). Simulations (dots) and theory (solid line) show a dependence of r
and n along a stereotyped curve. The shaded area shown in m–s space (inset)
was swept using equation (3) and yielded the shaded area around the r–n
curves. Voltage traces, cross- and auto-correlation functions (upper and
lower panels, respectively) are illustrated for two sets of (m, s) values (see1
and3 in inset). We used tm5 10ms.
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those measured in vivo7,8,11. In this range r(c) was approximately
linear (Fig. 2a, b), allowing us to use perturbation techniques26 to
obtain an expression for r(c) (see Supplementary Information):


r<S m,sð Þc~
s2 dn


dm


! "2


CV2n
c ð3Þ


Wedefine the slope S(m,s) relating r to c as correlation susceptibility.
Here dn/dm is the derivative of the spike-rate transfer function (that
is, the relationship between firing rate, n(m,s), and the mean injected
current). Equation (3) accurately predicts the transformation r(c)
obtained via simulations (Fig. 2a, b, dashed lines).


As with the experiments, we varied m or s while keeping c fixed to
obtain different values of n. A plot of r versus n when m (or s) was
increased while keeping s (or m) fixed (inset of Fig. 2c) shows that r
rapidly increased in the physiological range of 0–50 spikes s21 and
asymptoted to c at high rates (Fig. 2c). Notably, the correlation–rate
curves obtained by increasing m or s were nearly identical, even
though voltage traces, correlation functions and CVs were very dif-
ferent (Fig. 2c). To show that these results did not depend on specific
m and s values, we used equation (3) to sweep a large region of the
m–s parameter space. The resultant r–n values were confined to a
narrow band around the stereotyped curve (Fig. 2c, shaded areas).
This allowed us to rewrite equation (3) in an approximate form in
which the susceptibility, S, depends only on the output rate and not
on the input variables m and s:


r<S nð Þc ð4Þ
The empirically measured rT also increased with n for all T
examined; however, the approximation that S depends only on n
(equation (4)) becomes progressively less accurate as T decreases
(see Supplementary Information).


To determine whether the correlation–rate relationship emerges in
a less controlled andmore biologically relevant setting, we performed
simulations of a two-layer network where neurons from layer 1 were
randomly connected to neurons in layer 2 (Fig. 3a). Layer 1 consisted
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Figure 1 | Relationship between output spike correlation and rate in in vitro
cells. a, Twenty neurons from cortical slices (n5 11) were stimulated with
gaussian currents (filtered with a time constant of 5ms), with both common
and independent components. b, Fluctuating current injection (bottom)
often evoked nearly synchronous spikes (top arrowheads). Red and black
traces are membrane potentials from cells 1 and 2, respectively. c, Typical
cross- (left) and auto-correlation (right) functions from a pair of cells firing
at low (blue), medium (red) and high (green) rate. d, A typical rT versus c for
a pair of cells. e, The correlation rT in a population (n5 123 pairwise
comparisons) increases with


ffiffiffiffiffiffiffi
ninj


p
and does not co-vary with


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CViCVj


p


(inset, linear regression, r5 0.13); cwas fixed at 0.5. Squares represent mean
and s.d. of the population, and coloured circles the examples shown in c. f, A
simple cell model that generates an output spike for every input spike. The
correlation rT is fixed at c, and is independent of n. Throughout we used
T5 40ms.
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Figure 2 | The correlation–rate relationship in an integrate-and-fire neuron
model. a, b, r versus c from simulations (solid line) and theory (dashed line,
from equation (3)). Increases in either m (a) or s (b) increase the slope of
r(c). Grey lines are the diagonal r5 c. Inset shows r(c) for all c. c, As m (red)
or s (blue) were varied following the paths drawn in the inset, r and n co-
varied as shown. Note that this relationship holds only when r(c) is linear
(a and b). Simulations (dots) and theory (solid line) show a dependence of r
and n along a stereotyped curve. The shaded area shown in m–s space (inset)
was swept using equation (3) and yielded the shaded area around the r–n
curves. Voltage traces, cross- and auto-correlation functions (upper and
lower panels, respectively) are illustrated for two sets of (m, s) values (see1
and3 in inset). We used tm5 10ms.
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those measured in vivo7,8,11. In this range r(c) was approximately
linear (Fig. 2a, b), allowing us to use perturbation techniques26 to
obtain an expression for r(c) (see Supplementary Information):


r<S m,sð Þc~
s2 dn


dm


! "2


CV2n
c ð3Þ


Wedefine the slope S(m,s) relating r to c as correlation susceptibility.
Here dn/dm is the derivative of the spike-rate transfer function (that
is, the relationship between firing rate, n(m,s), and the mean injected
current). Equation (3) accurately predicts the transformation r(c)
obtained via simulations (Fig. 2a, b, dashed lines).


As with the experiments, we varied m or s while keeping c fixed to
obtain different values of n. A plot of r versus n when m (or s) was
increased while keeping s (or m) fixed (inset of Fig. 2c) shows that r
rapidly increased in the physiological range of 0–50 spikes s21 and
asymptoted to c at high rates (Fig. 2c). Notably, the correlation–rate
curves obtained by increasing m or s were nearly identical, even
though voltage traces, correlation functions and CVs were very dif-
ferent (Fig. 2c). To show that these results did not depend on specific
m and s values, we used equation (3) to sweep a large region of the
m–s parameter space. The resultant r–n values were confined to a
narrow band around the stereotyped curve (Fig. 2c, shaded areas).
This allowed us to rewrite equation (3) in an approximate form in
which the susceptibility, S, depends only on the output rate and not
on the input variables m and s:


r<S nð Þc ð4Þ
The empirically measured rT also increased with n for all T
examined; however, the approximation that S depends only on n
(equation (4)) becomes progressively less accurate as T decreases
(see Supplementary Information).


To determine whether the correlation–rate relationship emerges in
a less controlled andmore biologically relevant setting, we performed
simulations of a two-layer network where neurons from layer 1 were
randomly connected to neurons in layer 2 (Fig. 3a). Layer 1 consisted
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ρT ≈ S(ν)c


of action potential firing in dual recordings involving GABAergic
neurons was also observed in analyses of randomly selected
subsetsof theGABAergicneurondata,whichweredownsampled
to match the dataset from dual recordings of excitatory neurons.


Action potentials are therefore highly specific events occurring
independently in neighboring layer 2/3 excitatory neurons,
whereas nearby inhibitory neurons show broadly synchronized
firing. In order to understand the mechanisms underlying these
differences in spiking activity, we analyzed the membrane
potential trajectories leading to action potential threshold. Spike
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Figure 4. Correlated Activity of Excitatory and
Inhibitory Neurons during Quiet Wakefulness
(A) A dual recording involving two excitatory neurons


(black and gray traces) shows highly synchronous slow


oscillations during quiet wakefulness, which is quantified


in the cross-correlogram (right).


(B) Two example experiments of dual recordings of an


excitatory neuron and a GABAergic fast-spiking (FS)


neuron. Upper example shows an anatomical reconstruc-


tion of the somatodendritic arborizations of an excitatory


pyramidal neuron (black) and a GABAergic fast-spiking


(FS) neuron (red), which were simultaneously recorded in


an awakemouse. During quiet wakefulness themembrane


potential dynamics of these neurons were highly corre-


lated (upper middle trace shows one second of the dual


recording; and upper right shows the cross-correlation).


Action potentials are truncated to increase the vertical


scale. Lower example shows a different experiment with


highly synchronous slow membrane potential oscillations


in an excitatory neuron and a GABAergic FS neuron during


quiet wakefulness.


(C) A dual recording involving an excitatory neuron (black)


and a GABAergic non-fast-spiking (NFS) neuron (blue)


shows highly synchronous slow oscillations during quiet


wakefulness.


initiation is driven by a much larger depolariza-
tion in excitatory pyramidal neurons than in
GABAergic neurons (Figure S9). For both excit-
atory and inhibitory neurons, intrinsic conduc-
tances underlying action potential generation
play only a minor role in the membrane potential
trajectory over the 20 ms preceding spike initia-
tion (Figure S9). Synaptic inputs therefore drive
the membrane potential to action potential
threshold.
In dual recordings (Figures 6G and 6H), we


examined the cellular specificity of the synaptic
input driving action potentials. The large depo-
larization preceding action potential initiation
in excitatory neuronswas specific for the spiking
neuron, with much smaller synchronous depo-
larization observed in a neighboring excitatory
neuron (Poulet and Petersen, 2008) or in a
neighboring inhibitory neuron. That large cell-
specific depolarizations drive action potentials
in excitatory neurons provides an explanation
for the asynchronous cell-specific firing of excit-
atory neurons. On the other hand, the depolar-


ization driving spiking in an inhibitory neuron was almost iden-
tical to the depolarization in another nearby GABAergic neuron,
which therefore provides a simple explanation for the correlated
action potential activity of inhibitory neurons.


DISCUSSION


Through whole-cell recordings targeted by two-photon micros-
copy to genetically-defined neuronal populations in the C2 barrel
column of awake mice, we have obtained the first insights into
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over a surface, using a single sweep speed, and at a single dis-
tance of the surface from the face or vibrissa base. As we de-
scribe in Figure 1, vibrissa responses will in general be a mix of
surface-dependent and intrinsic motions, and designating a par-
ticular motion as due to ‘‘resonance’’ is problematic without ei-
ther varying sampling conditions or using other information,
e.g., spatial extent of the whisker motion. Another important po-
tential discrepancy is that different boundary conditions at the
base (e.g., due to muscle tonus or blood pressure) likely exist
in behaving versus anesthetized animals (and both likely differ
from ex vivo), which may affect the relative contributions of sur-
face-driven and intrinsic modes (Moore and Andermann, 2005;
Neimark et al., 2003; Yohro, 1977). Some previous reports that
did not observe an impact of resonance have also focused their
analysis exclusively on signals in a lower frequency range (e.g.,
<150 Hz [Hipp et al., 2006]), whereas higher frequencies were
observed in the present study. As one example, the range of fre-
quencies generated during smooth surface contact extended
above 300 Hz for smaller vibrissae (Figure 5). Further, high-fre-
quency oscillations during contact can be sustained for only por-
tions of the overall contact epoch, so Fourier methods may be
misleading if the time scale of the frequency analysis is not ap-
propriate for this class of motions.
Perhaps most importantly, prior studies on this topic relied on


simulated sampling (artificial whisking), while micromotions ob-
served here resulted from sampling strategies chosen by behav-
ing animals. During natural behavior, peripheral filters are often
actively manipulated to optimize perception, for example sac-
cadic and smooth pursuit eye movements that align features of
interest in the visual scene with the fovea (Einhauser et al.,
2007; Reinagel and Zador, 1999), motion of the head and pinnae
to optimize sound collection (Easton, 1983), context-dependent
damping of cochlear transduction to maintain dynamic range
(Maison et al., 2001; Suga et al., 2000), and regulation of pres-
sure and velocity exerted against a surface to maintain acuity


during fingertip touch (Gibson and Welker, 1983; Smith and
Scott, 1996). Our data indicate that the animal’s sensing choices
enabled significant biomechanical transformations of surface
features.


Velocities Are Significantly Greater Than Those
Previously Shown to Drive Neural Activity
A significant number of the micromotion velocities observed
during active sensation substantially exceeded those typically
applied during classical sensory physiology studies, suggest-
ing that the awake behaving animal receives stronger afferent
drive than is typically ascribed to this system. Moreover, a sig-
nificant fraction of events exceeded the psychophysical
thresholds for isolated deflections recently established in
(Stuttgen et al., 2006). Findings from anesthetized and immobi-
lized animals suggest that most of the micromotions generated
during active sensation are poised to drive robust neural firing
in the barrel cortex, including the smaller-amplitude signals
generated during smooth surface contact. An even broader
range of sensitivity exists in peripheral trigeminal ganglion re-
sponses (Gibson and Welker, 1983; Jones et al., 2004). Impor-
tant in this regard is the recent study of von Heimendahl and
colleagues (von Heimendahl et al., 2007), which shows a differ-
ence in cortical multiunit activity between rough and smooth
surface contact that correlates with the animal’s discrimination
choice. While they did not measure micromotions, we predict
that differences during their task in line with micromotions
reported here (Figure 8) could underlie their behavioral and
neural observations.
This finding indicates that current theories regarding the re-


sponsiveness of the vibrissa system may underestimate the
strength of afferent drive. Specifically, several authors have sug-
gested, based on compelling evidence across many reduced
preparations where the vibrissa are manually deflected, that en-
coding in the vibrissa sensory system is ‘‘sparse,’’ with at most


Figure 8. Joint Distribution of Micromotion
‘Events’ During Contact with Rough and
Smooth Surfaces
(A) Scatterplot showing the joint peak velocity and


rise time distribution of all events. Color and shape


indicates rough (red squares) and smooth (blue


circles) contact events. Size of shape indicates


the amplitude of the event, as shown in the figure


legend. Dashed lines demarcate themeans across


all events, and solid lines demarcate the medians.


A distinct class of high-amplitude events occurs


for rough contact.


(B) Same scatterplot data (gray) with overlaid


patches representing stimulus parameters from


previous studies that conducted parametric anal-


yses of neuronal responses (blue [Hartings and Si-


mons, 1998; Pinto et al., 2000; Shoykhet et al.,


2000; Temereanca and Simons, 2003], green [Ara-


bzadeh et al., 2003], black curve with triangles [Wi-


lent and Contreras, 2004, 2005]). The red curve


demarcates events of 3! amplitude, separating


high-velocity and low-velocity psychophysical


‘‘channels’’ found in head posted rats (Stuttgen


et al., 2006). See text and Experimental Proce-


dures for details.
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Results hold for various velocities


Phenomenology of Smooth Surface Contact:
Smaller-Amplitude Oscillatory Motions
Oscillatory micromotions were also observed during vibrissa
contact with a smooth surface, suggesting the presence of fric-
tional interactions even in the absence of macroscopic textural
features. This behavior also occurred ex vivo during sweeps
over glass (Figure 5A) in contrast to other ex vivo reports (Ara-
bzadeh et al., 2005; Hipp et al., 2006). Figure 5B and the top
trace in Figure 5C show examples in the behaving animal.


Compared to sweeps over the rough surface, smooth surface
interactions exhibited more epochs of periodic skip motions,
without epochs of irregular sticking followed by ringing. These
oscillatory vibrissa motions were typically smaller than those


generated during rough surface contact, and only a subset of vi-
brissae demonstrated measurable oscillations in this condition.
This variability can be seen by comparing traces from two simul-
taneously tracked vibrissae in Figure 5C. While the upper trace
displays clear periods of large-amplitude periodic behavior, the
bottom trace does not show oscillations. Of the 22 vibrissae
quantitatively analyzed, 7 failed to demonstrate residual motions
greater than 100 mmat the tip.When oscillatory behavior was ob-
served during smooth contact, these micromotions demon-
strated a significant linear relation between the frequency of sig-
nal transduction and vibrissa length (1/L2), as shown in Figure 5C
(n = 15 vibrissae, 2 rats, 4 trials; r2 = 0.68; p < 0.001; slope, 9.883
103 Hz*mm2).


Figure 3. Vibrissa Micromotions during Active Sensing of a Rough Surface
(A) Single frame from high-speed video while a rat swept its vibrissae laterally across the surface. The red lines show the tracked positions of an anterior


vibrissa every third frame (!1 ms period) prior to the underlying frame. Regions where tracks are more densely spaced indicate slower motion (sticking). The


small white vertical bar demarcates the border between the rough and smooth surfaces, which were removed by intensity normalization. This example is taken


from a Movie S1.


(B) Three examples of vibrissae tracked during simultaneous contact with the rough surface from the same trial as Figure 3A. The panel on the left shows every


third vibrissa track in a region of surface interaction (zero distance is the top left corner of the frame). On the right, the red time series is the face-centered angle of


motion 5 mm from the face, and the blue line is the simultaneous vibrissa motion through a ‘‘line scan’’ placed !1 mm from the surface (see Experimental Pro-


cedures; horizontal blue line at left). Time zero is arbitrarily chosen just before any vibrissa made surface contact. Black lines on the tracks on the left indicate the


vertical divisions in the time series on the right (leftmost black mark indicates the onset of the time series). The top two vibrissae were from the left side of the face,


the bottom vibrissa from the right. As was typical of rough surface interactions, all three vibrissae demonstrated stick-slip behavior, where the vibrissa deceler-


ated for a sustained period, built tension, and then moved rapidly forward in a ballistic manner, until again decelerating. In many cases, this sudden deceleration


following a slip was followed by ringing of the vibrissa, a period of high-frequency oscillations (for example, three cycles within 185 to 195ms (top); note the ringing


is more pronounced at 5 mm [red] than near the contact point [blue]).
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over a surface, using a single sweep speed, and at a single dis-
tance of the surface from the face or vibrissa base. As we de-
scribe in Figure 1, vibrissa responses will in general be a mix of
surface-dependent and intrinsic motions, and designating a par-
ticular motion as due to ‘‘resonance’’ is problematic without ei-
ther varying sampling conditions or using other information,
e.g., spatial extent of the whisker motion. Another important po-
tential discrepancy is that different boundary conditions at the
base (e.g., due to muscle tonus or blood pressure) likely exist
in behaving versus anesthetized animals (and both likely differ
from ex vivo), which may affect the relative contributions of sur-
face-driven and intrinsic modes (Moore and Andermann, 2005;
Neimark et al., 2003; Yohro, 1977). Some previous reports that
did not observe an impact of resonance have also focused their
analysis exclusively on signals in a lower frequency range (e.g.,
<150 Hz [Hipp et al., 2006]), whereas higher frequencies were
observed in the present study. As one example, the range of fre-
quencies generated during smooth surface contact extended
above 300 Hz for smaller vibrissae (Figure 5). Further, high-fre-
quency oscillations during contact can be sustained for only por-
tions of the overall contact epoch, so Fourier methods may be
misleading if the time scale of the frequency analysis is not ap-
propriate for this class of motions.
Perhaps most importantly, prior studies on this topic relied on


simulated sampling (artificial whisking), while micromotions ob-
served here resulted from sampling strategies chosen by behav-
ing animals. During natural behavior, peripheral filters are often
actively manipulated to optimize perception, for example sac-
cadic and smooth pursuit eye movements that align features of
interest in the visual scene with the fovea (Einhauser et al.,
2007; Reinagel and Zador, 1999), motion of the head and pinnae
to optimize sound collection (Easton, 1983), context-dependent
damping of cochlear transduction to maintain dynamic range
(Maison et al., 2001; Suga et al., 2000), and regulation of pres-
sure and velocity exerted against a surface to maintain acuity


during fingertip touch (Gibson and Welker, 1983; Smith and
Scott, 1996). Our data indicate that the animal’s sensing choices
enabled significant biomechanical transformations of surface
features.


Velocities Are Significantly Greater Than Those
Previously Shown to Drive Neural Activity
A significant number of the micromotion velocities observed
during active sensation substantially exceeded those typically
applied during classical sensory physiology studies, suggest-
ing that the awake behaving animal receives stronger afferent
drive than is typically ascribed to this system. Moreover, a sig-
nificant fraction of events exceeded the psychophysical
thresholds for isolated deflections recently established in
(Stuttgen et al., 2006). Findings from anesthetized and immobi-
lized animals suggest that most of the micromotions generated
during active sensation are poised to drive robust neural firing
in the barrel cortex, including the smaller-amplitude signals
generated during smooth surface contact. An even broader
range of sensitivity exists in peripheral trigeminal ganglion re-
sponses (Gibson and Welker, 1983; Jones et al., 2004). Impor-
tant in this regard is the recent study of von Heimendahl and
colleagues (von Heimendahl et al., 2007), which shows a differ-
ence in cortical multiunit activity between rough and smooth
surface contact that correlates with the animal’s discrimination
choice. While they did not measure micromotions, we predict
that differences during their task in line with micromotions
reported here (Figure 8) could underlie their behavioral and
neural observations.
This finding indicates that current theories regarding the re-


sponsiveness of the vibrissa system may underestimate the
strength of afferent drive. Specifically, several authors have sug-
gested, based on compelling evidence across many reduced
preparations where the vibrissa are manually deflected, that en-
coding in the vibrissa sensory system is ‘‘sparse,’’ with at most


Figure 8. Joint Distribution of Micromotion
‘Events’ During Contact with Rough and
Smooth Surfaces
(A) Scatterplot showing the joint peak velocity and


rise time distribution of all events. Color and shape


indicates rough (red squares) and smooth (blue


circles) contact events. Size of shape indicates


the amplitude of the event, as shown in the figure


legend. Dashed lines demarcate themeans across


all events, and solid lines demarcate the medians.


A distinct class of high-amplitude events occurs


for rough contact.


(B) Same scatterplot data (gray) with overlaid


patches representing stimulus parameters from


previous studies that conducted parametric anal-


yses of neuronal responses (blue [Hartings and Si-


mons, 1998; Pinto et al., 2000; Shoykhet et al.,


2000; Temereanca and Simons, 2003], green [Ara-


bzadeh et al., 2003], black curve with triangles [Wi-


lent and Contreras, 2004, 2005]). The red curve


demarcates events of 3! amplitude, separating


high-velocity and low-velocity psychophysical


‘‘channels’’ found in head posted rats (Stuttgen


et al., 2006). See text and Experimental Proce-


dures for details.
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Results hold for various velocities


Phenomenology of Smooth Surface Contact:
Smaller-Amplitude Oscillatory Motions
Oscillatory micromotions were also observed during vibrissa
contact with a smooth surface, suggesting the presence of fric-
tional interactions even in the absence of macroscopic textural
features. This behavior also occurred ex vivo during sweeps
over glass (Figure 5A) in contrast to other ex vivo reports (Ara-
bzadeh et al., 2005; Hipp et al., 2006). Figure 5B and the top
trace in Figure 5C show examples in the behaving animal.


Compared to sweeps over the rough surface, smooth surface
interactions exhibited more epochs of periodic skip motions,
without epochs of irregular sticking followed by ringing. These
oscillatory vibrissa motions were typically smaller than those


generated during rough surface contact, and only a subset of vi-
brissae demonstrated measurable oscillations in this condition.
This variability can be seen by comparing traces from two simul-
taneously tracked vibrissae in Figure 5C. While the upper trace
displays clear periods of large-amplitude periodic behavior, the
bottom trace does not show oscillations. Of the 22 vibrissae
quantitatively analyzed, 7 failed to demonstrate residual motions
greater than 100 mmat the tip.When oscillatory behavior was ob-
served during smooth contact, these micromotions demon-
strated a significant linear relation between the frequency of sig-
nal transduction and vibrissa length (1/L2), as shown in Figure 5C
(n = 15 vibrissae, 2 rats, 4 trials; r2 = 0.68; p < 0.001; slope, 9.883
103 Hz*mm2).


Figure 3. Vibrissa Micromotions during Active Sensing of a Rough Surface
(A) Single frame from high-speed video while a rat swept its vibrissae laterally across the surface. The red lines show the tracked positions of an anterior


vibrissa every third frame (!1 ms period) prior to the underlying frame. Regions where tracks are more densely spaced indicate slower motion (sticking). The


small white vertical bar demarcates the border between the rough and smooth surfaces, which were removed by intensity normalization. This example is taken


from a Movie S1.


(B) Three examples of vibrissae tracked during simultaneous contact with the rough surface from the same trial as Figure 3A. The panel on the left shows every


third vibrissa track in a region of surface interaction (zero distance is the top left corner of the frame). On the right, the red time series is the face-centered angle of


motion 5 mm from the face, and the blue line is the simultaneous vibrissa motion through a ‘‘line scan’’ placed !1 mm from the surface (see Experimental Pro-


cedures; horizontal blue line at left). Time zero is arbitrarily chosen just before any vibrissa made surface contact. Black lines on the tracks on the left indicate the


vertical divisions in the time series on the right (leftmost black mark indicates the onset of the time series). The top two vibrissae were from the left side of the face,


the bottom vibrissa from the right. As was typical of rough surface interactions, all three vibrissae demonstrated stick-slip behavior, where the vibrissa deceler-


ated for a sustained period, built tension, and then moved rapidly forward in a ballistic manner, until again decelerating. In many cases, this sudden deceleration


following a slip was followed by ringing of the vibrissa, a period of high-frequency oscillations (for example, three cycles within 185 to 195ms (top); note the ringing


is more pronounced at 5 mm [red] than near the contact point [blue]).
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over a surface, using a single sweep speed, and at a single dis-
tance of the surface from the face or vibrissa base. As we de-
scribe in Figure 1, vibrissa responses will in general be a mix of
surface-dependent and intrinsic motions, and designating a par-
ticular motion as due to ‘‘resonance’’ is problematic without ei-
ther varying sampling conditions or using other information,
e.g., spatial extent of the whisker motion. Another important po-
tential discrepancy is that different boundary conditions at the
base (e.g., due to muscle tonus or blood pressure) likely exist
in behaving versus anesthetized animals (and both likely differ
from ex vivo), which may affect the relative contributions of sur-
face-driven and intrinsic modes (Moore and Andermann, 2005;
Neimark et al., 2003; Yohro, 1977). Some previous reports that
did not observe an impact of resonance have also focused their
analysis exclusively on signals in a lower frequency range (e.g.,
<150 Hz [Hipp et al., 2006]), whereas higher frequencies were
observed in the present study. As one example, the range of fre-
quencies generated during smooth surface contact extended
above 300 Hz for smaller vibrissae (Figure 5). Further, high-fre-
quency oscillations during contact can be sustained for only por-
tions of the overall contact epoch, so Fourier methods may be
misleading if the time scale of the frequency analysis is not ap-
propriate for this class of motions.
Perhaps most importantly, prior studies on this topic relied on


simulated sampling (artificial whisking), while micromotions ob-
served here resulted from sampling strategies chosen by behav-
ing animals. During natural behavior, peripheral filters are often
actively manipulated to optimize perception, for example sac-
cadic and smooth pursuit eye movements that align features of
interest in the visual scene with the fovea (Einhauser et al.,
2007; Reinagel and Zador, 1999), motion of the head and pinnae
to optimize sound collection (Easton, 1983), context-dependent
damping of cochlear transduction to maintain dynamic range
(Maison et al., 2001; Suga et al., 2000), and regulation of pres-
sure and velocity exerted against a surface to maintain acuity


during fingertip touch (Gibson and Welker, 1983; Smith and
Scott, 1996). Our data indicate that the animal’s sensing choices
enabled significant biomechanical transformations of surface
features.


Velocities Are Significantly Greater Than Those
Previously Shown to Drive Neural Activity
A significant number of the micromotion velocities observed
during active sensation substantially exceeded those typically
applied during classical sensory physiology studies, suggest-
ing that the awake behaving animal receives stronger afferent
drive than is typically ascribed to this system. Moreover, a sig-
nificant fraction of events exceeded the psychophysical
thresholds for isolated deflections recently established in
(Stuttgen et al., 2006). Findings from anesthetized and immobi-
lized animals suggest that most of the micromotions generated
during active sensation are poised to drive robust neural firing
in the barrel cortex, including the smaller-amplitude signals
generated during smooth surface contact. An even broader
range of sensitivity exists in peripheral trigeminal ganglion re-
sponses (Gibson and Welker, 1983; Jones et al., 2004). Impor-
tant in this regard is the recent study of von Heimendahl and
colleagues (von Heimendahl et al., 2007), which shows a differ-
ence in cortical multiunit activity between rough and smooth
surface contact that correlates with the animal’s discrimination
choice. While they did not measure micromotions, we predict
that differences during their task in line with micromotions
reported here (Figure 8) could underlie their behavioral and
neural observations.
This finding indicates that current theories regarding the re-


sponsiveness of the vibrissa system may underestimate the
strength of afferent drive. Specifically, several authors have sug-
gested, based on compelling evidence across many reduced
preparations where the vibrissa are manually deflected, that en-
coding in the vibrissa sensory system is ‘‘sparse,’’ with at most


Figure 8. Joint Distribution of Micromotion
‘Events’ During Contact with Rough and
Smooth Surfaces
(A) Scatterplot showing the joint peak velocity and


rise time distribution of all events. Color and shape


indicates rough (red squares) and smooth (blue


circles) contact events. Size of shape indicates


the amplitude of the event, as shown in the figure


legend. Dashed lines demarcate themeans across


all events, and solid lines demarcate the medians.


A distinct class of high-amplitude events occurs


for rough contact.


(B) Same scatterplot data (gray) with overlaid


patches representing stimulus parameters from


previous studies that conducted parametric anal-


yses of neuronal responses (blue [Hartings and Si-


mons, 1998; Pinto et al., 2000; Shoykhet et al.,


2000; Temereanca and Simons, 2003], green [Ara-


bzadeh et al., 2003], black curve with triangles [Wi-


lent and Contreras, 2004, 2005]). The red curve


demarcates events of 3! amplitude, separating


high-velocity and low-velocity psychophysical


‘‘channels’’ found in head posted rats (Stuttgen


et al., 2006). See text and Experimental Proce-


dures for details.
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Results hold for various velocities


Phenomenology of Smooth Surface Contact:
Smaller-Amplitude Oscillatory Motions
Oscillatory micromotions were also observed during vibrissa
contact with a smooth surface, suggesting the presence of fric-
tional interactions even in the absence of macroscopic textural
features. This behavior also occurred ex vivo during sweeps
over glass (Figure 5A) in contrast to other ex vivo reports (Ara-
bzadeh et al., 2005; Hipp et al., 2006). Figure 5B and the top
trace in Figure 5C show examples in the behaving animal.


Compared to sweeps over the rough surface, smooth surface
interactions exhibited more epochs of periodic skip motions,
without epochs of irregular sticking followed by ringing. These
oscillatory vibrissa motions were typically smaller than those


generated during rough surface contact, and only a subset of vi-
brissae demonstrated measurable oscillations in this condition.
This variability can be seen by comparing traces from two simul-
taneously tracked vibrissae in Figure 5C. While the upper trace
displays clear periods of large-amplitude periodic behavior, the
bottom trace does not show oscillations. Of the 22 vibrissae
quantitatively analyzed, 7 failed to demonstrate residual motions
greater than 100 mmat the tip.When oscillatory behavior was ob-
served during smooth contact, these micromotions demon-
strated a significant linear relation between the frequency of sig-
nal transduction and vibrissa length (1/L2), as shown in Figure 5C
(n = 15 vibrissae, 2 rats, 4 trials; r2 = 0.68; p < 0.001; slope, 9.883
103 Hz*mm2).


Figure 3. Vibrissa Micromotions during Active Sensing of a Rough Surface
(A) Single frame from high-speed video while a rat swept its vibrissae laterally across the surface. The red lines show the tracked positions of an anterior


vibrissa every third frame (!1 ms period) prior to the underlying frame. Regions where tracks are more densely spaced indicate slower motion (sticking). The


small white vertical bar demarcates the border between the rough and smooth surfaces, which were removed by intensity normalization. This example is taken


from a Movie S1.


(B) Three examples of vibrissae tracked during simultaneous contact with the rough surface from the same trial as Figure 3A. The panel on the left shows every


third vibrissa track in a region of surface interaction (zero distance is the top left corner of the frame). On the right, the red time series is the face-centered angle of


motion 5 mm from the face, and the blue line is the simultaneous vibrissa motion through a ‘‘line scan’’ placed !1 mm from the surface (see Experimental Pro-


cedures; horizontal blue line at left). Time zero is arbitrarily chosen just before any vibrissa made surface contact. Black lines on the tracks on the left indicate the


vertical divisions in the time series on the right (leftmost black mark indicates the onset of the time series). The top two vibrissae were from the left side of the face,


the bottom vibrissa from the right. As was typical of rough surface interactions, all three vibrissae demonstrated stick-slip behavior, where the vibrissa deceler-


ated for a sustained period, built tension, and then moved rapidly forward in a ballistic manner, until again decelerating. In many cases, this sudden deceleration


following a slip was followed by ringing of the vibrissa, a period of high-frequency oscillations (for example, three cycles within 185 to 195ms (top); note the ringing


is more pronounced at 5 mm [red] than near the contact point [blue]).


Neuron


What the Rat’s Vibrissa Tells the Rat’s Brain


604 Neuron 57, 599–613, February 28, 2008 ª2008 Elsevier Inc.


0


0.4


0.8


20 ms


Po
is


so
n 


In
pu


t
R


at
e 


fro
m


 L
4


0.2
0.4


1


No InhibitionWith Inhibition


0


10


20


30


20 ms
0


10


20


30


20 ms


E-
ce


ll 
Fi


rin
g


R
at


e 
(H


z)


Thursday, September 29, 2011







over a surface, using a single sweep speed, and at a single dis-
tance of the surface from the face or vibrissa base. As we de-
scribe in Figure 1, vibrissa responses will in general be a mix of
surface-dependent and intrinsic motions, and designating a par-
ticular motion as due to ‘‘resonance’’ is problematic without ei-
ther varying sampling conditions or using other information,
e.g., spatial extent of the whisker motion. Another important po-
tential discrepancy is that different boundary conditions at the
base (e.g., due to muscle tonus or blood pressure) likely exist
in behaving versus anesthetized animals (and both likely differ
from ex vivo), which may affect the relative contributions of sur-
face-driven and intrinsic modes (Moore and Andermann, 2005;
Neimark et al., 2003; Yohro, 1977). Some previous reports that
did not observe an impact of resonance have also focused their
analysis exclusively on signals in a lower frequency range (e.g.,
<150 Hz [Hipp et al., 2006]), whereas higher frequencies were
observed in the present study. As one example, the range of fre-
quencies generated during smooth surface contact extended
above 300 Hz for smaller vibrissae (Figure 5). Further, high-fre-
quency oscillations during contact can be sustained for only por-
tions of the overall contact epoch, so Fourier methods may be
misleading if the time scale of the frequency analysis is not ap-
propriate for this class of motions.
Perhaps most importantly, prior studies on this topic relied on


simulated sampling (artificial whisking), while micromotions ob-
served here resulted from sampling strategies chosen by behav-
ing animals. During natural behavior, peripheral filters are often
actively manipulated to optimize perception, for example sac-
cadic and smooth pursuit eye movements that align features of
interest in the visual scene with the fovea (Einhauser et al.,
2007; Reinagel and Zador, 1999), motion of the head and pinnae
to optimize sound collection (Easton, 1983), context-dependent
damping of cochlear transduction to maintain dynamic range
(Maison et al., 2001; Suga et al., 2000), and regulation of pres-
sure and velocity exerted against a surface to maintain acuity


during fingertip touch (Gibson and Welker, 1983; Smith and
Scott, 1996). Our data indicate that the animal’s sensing choices
enabled significant biomechanical transformations of surface
features.


Velocities Are Significantly Greater Than Those
Previously Shown to Drive Neural Activity
A significant number of the micromotion velocities observed
during active sensation substantially exceeded those typically
applied during classical sensory physiology studies, suggest-
ing that the awake behaving animal receives stronger afferent
drive than is typically ascribed to this system. Moreover, a sig-
nificant fraction of events exceeded the psychophysical
thresholds for isolated deflections recently established in
(Stuttgen et al., 2006). Findings from anesthetized and immobi-
lized animals suggest that most of the micromotions generated
during active sensation are poised to drive robust neural firing
in the barrel cortex, including the smaller-amplitude signals
generated during smooth surface contact. An even broader
range of sensitivity exists in peripheral trigeminal ganglion re-
sponses (Gibson and Welker, 1983; Jones et al., 2004). Impor-
tant in this regard is the recent study of von Heimendahl and
colleagues (von Heimendahl et al., 2007), which shows a differ-
ence in cortical multiunit activity between rough and smooth
surface contact that correlates with the animal’s discrimination
choice. While they did not measure micromotions, we predict
that differences during their task in line with micromotions
reported here (Figure 8) could underlie their behavioral and
neural observations.
This finding indicates that current theories regarding the re-


sponsiveness of the vibrissa system may underestimate the
strength of afferent drive. Specifically, several authors have sug-
gested, based on compelling evidence across many reduced
preparations where the vibrissa are manually deflected, that en-
coding in the vibrissa sensory system is ‘‘sparse,’’ with at most


Figure 8. Joint Distribution of Micromotion
‘Events’ During Contact with Rough and
Smooth Surfaces
(A) Scatterplot showing the joint peak velocity and


rise time distribution of all events. Color and shape


indicates rough (red squares) and smooth (blue


circles) contact events. Size of shape indicates


the amplitude of the event, as shown in the figure


legend. Dashed lines demarcate themeans across


all events, and solid lines demarcate the medians.


A distinct class of high-amplitude events occurs


for rough contact.


(B) Same scatterplot data (gray) with overlaid


patches representing stimulus parameters from


previous studies that conducted parametric anal-


yses of neuronal responses (blue [Hartings and Si-


mons, 1998; Pinto et al., 2000; Shoykhet et al.,


2000; Temereanca and Simons, 2003], green [Ara-


bzadeh et al., 2003], black curve with triangles [Wi-


lent and Contreras, 2004, 2005]). The red curve


demarcates events of 3! amplitude, separating


high-velocity and low-velocity psychophysical


‘‘channels’’ found in head posted rats (Stuttgen


et al., 2006). See text and Experimental Proce-


dures for details.
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Results hold for various velocities


Phenomenology of Smooth Surface Contact:
Smaller-Amplitude Oscillatory Motions
Oscillatory micromotions were also observed during vibrissa
contact with a smooth surface, suggesting the presence of fric-
tional interactions even in the absence of macroscopic textural
features. This behavior also occurred ex vivo during sweeps
over glass (Figure 5A) in contrast to other ex vivo reports (Ara-
bzadeh et al., 2005; Hipp et al., 2006). Figure 5B and the top
trace in Figure 5C show examples in the behaving animal.


Compared to sweeps over the rough surface, smooth surface
interactions exhibited more epochs of periodic skip motions,
without epochs of irregular sticking followed by ringing. These
oscillatory vibrissa motions were typically smaller than those


generated during rough surface contact, and only a subset of vi-
brissae demonstrated measurable oscillations in this condition.
This variability can be seen by comparing traces from two simul-
taneously tracked vibrissae in Figure 5C. While the upper trace
displays clear periods of large-amplitude periodic behavior, the
bottom trace does not show oscillations. Of the 22 vibrissae
quantitatively analyzed, 7 failed to demonstrate residual motions
greater than 100 mmat the tip.When oscillatory behavior was ob-
served during smooth contact, these micromotions demon-
strated a significant linear relation between the frequency of sig-
nal transduction and vibrissa length (1/L2), as shown in Figure 5C
(n = 15 vibrissae, 2 rats, 4 trials; r2 = 0.68; p < 0.001; slope, 9.883
103 Hz*mm2).


Figure 3. Vibrissa Micromotions during Active Sensing of a Rough Surface
(A) Single frame from high-speed video while a rat swept its vibrissae laterally across the surface. The red lines show the tracked positions of an anterior


vibrissa every third frame (!1 ms period) prior to the underlying frame. Regions where tracks are more densely spaced indicate slower motion (sticking). The


small white vertical bar demarcates the border between the rough and smooth surfaces, which were removed by intensity normalization. This example is taken


from a Movie S1.


(B) Three examples of vibrissae tracked during simultaneous contact with the rough surface from the same trial as Figure 3A. The panel on the left shows every


third vibrissa track in a region of surface interaction (zero distance is the top left corner of the frame). On the right, the red time series is the face-centered angle of


motion 5 mm from the face, and the blue line is the simultaneous vibrissa motion through a ‘‘line scan’’ placed !1 mm from the surface (see Experimental Pro-


cedures; horizontal blue line at left). Time zero is arbitrarily chosen just before any vibrissa made surface contact. Black lines on the tracks on the left indicate the


vertical divisions in the time series on the right (leftmost black mark indicates the onset of the time series). The top two vibrissae were from the left side of the face,


the bottom vibrissa from the right. As was typical of rough surface interactions, all three vibrissae demonstrated stick-slip behavior, where the vibrissa deceler-


ated for a sustained period, built tension, and then moved rapidly forward in a ballistic manner, until again decelerating. In many cases, this sudden deceleration


following a slip was followed by ringing of the vibrissa, a period of high-frequency oscillations (for example, three cycles within 185 to 195ms (top); note the ringing


is more pronounced at 5 mm [red] than near the contact point [blue]).
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over a surface, using a single sweep speed, and at a single dis-
tance of the surface from the face or vibrissa base. As we de-
scribe in Figure 1, vibrissa responses will in general be a mix of
surface-dependent and intrinsic motions, and designating a par-
ticular motion as due to ‘‘resonance’’ is problematic without ei-
ther varying sampling conditions or using other information,
e.g., spatial extent of the whisker motion. Another important po-
tential discrepancy is that different boundary conditions at the
base (e.g., due to muscle tonus or blood pressure) likely exist
in behaving versus anesthetized animals (and both likely differ
from ex vivo), which may affect the relative contributions of sur-
face-driven and intrinsic modes (Moore and Andermann, 2005;
Neimark et al., 2003; Yohro, 1977). Some previous reports that
did not observe an impact of resonance have also focused their
analysis exclusively on signals in a lower frequency range (e.g.,
<150 Hz [Hipp et al., 2006]), whereas higher frequencies were
observed in the present study. As one example, the range of fre-
quencies generated during smooth surface contact extended
above 300 Hz for smaller vibrissae (Figure 5). Further, high-fre-
quency oscillations during contact can be sustained for only por-
tions of the overall contact epoch, so Fourier methods may be
misleading if the time scale of the frequency analysis is not ap-
propriate for this class of motions.
Perhaps most importantly, prior studies on this topic relied on


simulated sampling (artificial whisking), while micromotions ob-
served here resulted from sampling strategies chosen by behav-
ing animals. During natural behavior, peripheral filters are often
actively manipulated to optimize perception, for example sac-
cadic and smooth pursuit eye movements that align features of
interest in the visual scene with the fovea (Einhauser et al.,
2007; Reinagel and Zador, 1999), motion of the head and pinnae
to optimize sound collection (Easton, 1983), context-dependent
damping of cochlear transduction to maintain dynamic range
(Maison et al., 2001; Suga et al., 2000), and regulation of pres-
sure and velocity exerted against a surface to maintain acuity


during fingertip touch (Gibson and Welker, 1983; Smith and
Scott, 1996). Our data indicate that the animal’s sensing choices
enabled significant biomechanical transformations of surface
features.


Velocities Are Significantly Greater Than Those
Previously Shown to Drive Neural Activity
A significant number of the micromotion velocities observed
during active sensation substantially exceeded those typically
applied during classical sensory physiology studies, suggest-
ing that the awake behaving animal receives stronger afferent
drive than is typically ascribed to this system. Moreover, a sig-
nificant fraction of events exceeded the psychophysical
thresholds for isolated deflections recently established in
(Stuttgen et al., 2006). Findings from anesthetized and immobi-
lized animals suggest that most of the micromotions generated
during active sensation are poised to drive robust neural firing
in the barrel cortex, including the smaller-amplitude signals
generated during smooth surface contact. An even broader
range of sensitivity exists in peripheral trigeminal ganglion re-
sponses (Gibson and Welker, 1983; Jones et al., 2004). Impor-
tant in this regard is the recent study of von Heimendahl and
colleagues (von Heimendahl et al., 2007), which shows a differ-
ence in cortical multiunit activity between rough and smooth
surface contact that correlates with the animal’s discrimination
choice. While they did not measure micromotions, we predict
that differences during their task in line with micromotions
reported here (Figure 8) could underlie their behavioral and
neural observations.
This finding indicates that current theories regarding the re-


sponsiveness of the vibrissa system may underestimate the
strength of afferent drive. Specifically, several authors have sug-
gested, based on compelling evidence across many reduced
preparations where the vibrissa are manually deflected, that en-
coding in the vibrissa sensory system is ‘‘sparse,’’ with at most


Figure 8. Joint Distribution of Micromotion
‘Events’ During Contact with Rough and
Smooth Surfaces
(A) Scatterplot showing the joint peak velocity and


rise time distribution of all events. Color and shape


indicates rough (red squares) and smooth (blue


circles) contact events. Size of shape indicates


the amplitude of the event, as shown in the figure


legend. Dashed lines demarcate themeans across


all events, and solid lines demarcate the medians.


A distinct class of high-amplitude events occurs


for rough contact.


(B) Same scatterplot data (gray) with overlaid


patches representing stimulus parameters from


previous studies that conducted parametric anal-


yses of neuronal responses (blue [Hartings and Si-


mons, 1998; Pinto et al., 2000; Shoykhet et al.,


2000; Temereanca and Simons, 2003], green [Ara-


bzadeh et al., 2003], black curve with triangles [Wi-


lent and Contreras, 2004, 2005]). The red curve


demarcates events of 3! amplitude, separating


high-velocity and low-velocity psychophysical


‘‘channels’’ found in head posted rats (Stuttgen


et al., 2006). See text and Experimental Proce-


dures for details.
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Phenomenology of Smooth Surface Contact:
Smaller-Amplitude Oscillatory Motions
Oscillatory micromotions were also observed during vibrissa
contact with a smooth surface, suggesting the presence of fric-
tional interactions even in the absence of macroscopic textural
features. This behavior also occurred ex vivo during sweeps
over glass (Figure 5A) in contrast to other ex vivo reports (Ara-
bzadeh et al., 2005; Hipp et al., 2006). Figure 5B and the top
trace in Figure 5C show examples in the behaving animal.


Compared to sweeps over the rough surface, smooth surface
interactions exhibited more epochs of periodic skip motions,
without epochs of irregular sticking followed by ringing. These
oscillatory vibrissa motions were typically smaller than those


generated during rough surface contact, and only a subset of vi-
brissae demonstrated measurable oscillations in this condition.
This variability can be seen by comparing traces from two simul-
taneously tracked vibrissae in Figure 5C. While the upper trace
displays clear periods of large-amplitude periodic behavior, the
bottom trace does not show oscillations. Of the 22 vibrissae
quantitatively analyzed, 7 failed to demonstrate residual motions
greater than 100 mmat the tip.When oscillatory behavior was ob-
served during smooth contact, these micromotions demon-
strated a significant linear relation between the frequency of sig-
nal transduction and vibrissa length (1/L2), as shown in Figure 5C
(n = 15 vibrissae, 2 rats, 4 trials; r2 = 0.68; p < 0.001; slope, 9.883
103 Hz*mm2).


Figure 3. Vibrissa Micromotions during Active Sensing of a Rough Surface
(A) Single frame from high-speed video while a rat swept its vibrissae laterally across the surface. The red lines show the tracked positions of an anterior


vibrissa every third frame (!1 ms period) prior to the underlying frame. Regions where tracks are more densely spaced indicate slower motion (sticking). The


small white vertical bar demarcates the border between the rough and smooth surfaces, which were removed by intensity normalization. This example is taken


from a Movie S1.


(B) Three examples of vibrissae tracked during simultaneous contact with the rough surface from the same trial as Figure 3A. The panel on the left shows every


third vibrissa track in a region of surface interaction (zero distance is the top left corner of the frame). On the right, the red time series is the face-centered angle of


motion 5 mm from the face, and the blue line is the simultaneous vibrissa motion through a ‘‘line scan’’ placed !1 mm from the surface (see Experimental Pro-


cedures; horizontal blue line at left). Time zero is arbitrarily chosen just before any vibrissa made surface contact. Black lines on the tracks on the left indicate the


vertical divisions in the time series on the right (leftmost black mark indicates the onset of the time series). The top two vibrissae were from the left side of the face,


the bottom vibrissa from the right. As was typical of rough surface interactions, all three vibrissae demonstrated stick-slip behavior, where the vibrissa deceler-


ated for a sustained period, built tension, and then moved rapidly forward in a ballistic manner, until again decelerating. In many cases, this sudden deceleration


following a slip was followed by ringing of the vibrissa, a period of high-frequency oscillations (for example, three cycles within 185 to 195ms (top); note the ringing


is more pronounced at 5 mm [red] than near the contact point [blue]).
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spike), depending on if the input was below or above a threshold value θ, respectively (Fig. 3Ai). Input


variability was Gaussian distributed for I-cells (Fig. 3Ai, top). For E-cells the input was the combination


of a Gaussian distributed field and the binomial responses from a subset of the I-cell population, scaled


by −g, that project feedforward to the E-cell (Fig. 3Ai, bottom). As in the LIF simulations, the synaptic


field inputs were correlated with strength c for all cell pairs (E-E, E-I, and I-I).


For binary neuron models the response probability is the fraction of the input probability density


that is larger than the threshold (Fig. 3Aii, shaded region). Since the stimulus was fixed across trials, a


change in whisker velocity resulted in a shift of the input density by a deterministic amount, applied to


both the E and I neurons (Fig. 3B, left to right). Equivalently, an increase in whisker velocity can be


thought of as a decrease in threshold θ, and in the model we made the association θ = θ0 − kV , where V


is whisker velocity and k > 0 is a linear scaling. Hereafter, we refer to an increase in whisker velocity or


a lowering of θ interchangeably. For the I-cell population the input variability was Gaussian distributed


for all whisker velocities (Fig. 3B, top), while the input distribution to E neurons was not Gaussian


because of the variability of the feedforward I-cell activity. This variability was significant for large


whisker velocities, skewing the distribution of total E-cell inputs (Fig. 3B, bottom-right). Nonetheless,


the feedforward architecture allowed a calculation of the joint ’spiking’ statistics of the network using


thresholded high dimensional Gaussians (i.e., dichotomized Gaussians; see Materials and Methods).


We computed the spike statistics from a large feedforward binary network (50 excitatory neurons each


receiving an avg. of 118 inhibitory inputs). The E-cell population showed low ρEE across a range of


whisker velocities (Fig. 3C, black curve). Furthermore, ρEE was much larger without inhibition (Fig.


3C, blue curve; note the broken axis). Thus, despite the simplifications, the binary network model with


inhibition exhibited low E-E cell co-variability over a broad range of activation, similar to LIF spiking


model and the experimental data (Fig. 3C and Fig. S3). Further, its analytic tractability allowed for a


deeper analysis of the mechanisms that maintain low E-E co-variability, which we present below.


To ease presentation we analyzed a small network of two E-cells receiving feedforward inhibition from


one I-cell. Further, we focused on the response covariance rather than the correlation coefficient ρ; this


simplification did not qualitatively impact our results since the near zero ρEE is due to spike count


covariance being small, as opposed to variance being excessively large. The response statistics of the E-E


pair obeyed:


νE =


(
∫ ∞
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CovEE = E [EE] − ν2
E , (4)


where Gn is an n-dimensional Gaussian with 0 mean, unit variances, and covariances of strength c (see


Materials and Methods, Eqs. (44)–(46)). Variables x and yj are the distribution values of the synaptic


field to the inhibitory and excitatory neurons, respectively. We remark that the strength of feedforward


inhibition, g, only appears in the limits of the integrals, implying that inhibition acts to effectively raise


E-cell threshold. The exact formula for CovEE is not insightful for understanding how covariance depends
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those measured in vivo7,8,11. In this range r(c) was approximately
linear (Fig. 2a, b), allowing us to use perturbation techniques26 to
obtain an expression for r(c) (see Supplementary Information):
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Wedefine the slope S(m,s) relating r to c as correlation susceptibility.
Here dn/dm is the derivative of the spike-rate transfer function (that
is, the relationship between firing rate, n(m,s), and the mean injected
current). Equation (3) accurately predicts the transformation r(c)
obtained via simulations (Fig. 2a, b, dashed lines).


As with the experiments, we varied m or s while keeping c fixed to
obtain different values of n. A plot of r versus n when m (or s) was
increased while keeping s (or m) fixed (inset of Fig. 2c) shows that r
rapidly increased in the physiological range of 0–50 spikes s21 and
asymptoted to c at high rates (Fig. 2c). Notably, the correlation–rate
curves obtained by increasing m or s were nearly identical, even
though voltage traces, correlation functions and CVs were very dif-
ferent (Fig. 2c). To show that these results did not depend on specific
m and s values, we used equation (3) to sweep a large region of the
m–s parameter space. The resultant r–n values were confined to a
narrow band around the stereotyped curve (Fig. 2c, shaded areas).
This allowed us to rewrite equation (3) in an approximate form in
which the susceptibility, S, depends only on the output rate and not
on the input variables m and s:


r<S nð Þc ð4Þ
The empirically measured rT also increased with n for all T
examined; however, the approximation that S depends only on n
(equation (4)) becomes progressively less accurate as T decreases
(see Supplementary Information).


To determine whether the correlation–rate relationship emerges in
a less controlled andmore biologically relevant setting, we performed
simulations of a two-layer network where neurons from layer 1 were
randomly connected to neurons in layer 2 (Fig. 3a). Layer 1 consisted


+


+


+


+


CV


 


O
ut


pu
t c


or
re


la
tio


n 
r T


µ s


20 mV
0.1 nA


100 ms
30 ms


Time (ms)


C
ur


re
nt


Geometric mean output rate √ninj (spikes s–1)


50 (spikes s–1)2


≈


1


2


n1


rate: n
correlation:
rT = c ≠ f(n)


1


2


n2


T


0 10 20


–60


0


x1


x2


xc


–50 50–50 0 50 0


0


0.5


1


0 0.5 1
Input correlation c


a b


c d


0.1


0.2


0.1


0.2


0.5 1


r T


0


0.3


n(1–c)


n(1–c)


nc


y1:


y2:


x1:


xc:


x2:


e


f


O
ut


pu
t c


or
re


la
tio


n 
r T


0


0.3


Figure 1 | Relationship between output spike correlation and rate in in vitro
cells. a, Twenty neurons from cortical slices (n5 11) were stimulated with
gaussian currents (filtered with a time constant of 5ms), with both common
and independent components. b, Fluctuating current injection (bottom)
often evoked nearly synchronous spikes (top arrowheads). Red and black
traces are membrane potentials from cells 1 and 2, respectively. c, Typical
cross- (left) and auto-correlation (right) functions from a pair of cells firing
at low (blue), medium (red) and high (green) rate. d, A typical rT versus c for
a pair of cells. e, The correlation rT in a population (n5 123 pairwise
comparisons) increases with
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and does not co-vary with
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(inset, linear regression, r5 0.13); cwas fixed at 0.5. Squares represent mean
and s.d. of the population, and coloured circles the examples shown in c. f, A
simple cell model that generates an output spike for every input spike. The
correlation rT is fixed at c, and is independent of n. Throughout we used
T5 40ms.
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Figure 2 | The correlation–rate relationship in an integrate-and-fire neuron
model. a, b, r versus c from simulations (solid line) and theory (dashed line,
from equation (3)). Increases in either m (a) or s (b) increase the slope of
r(c). Grey lines are the diagonal r5 c. Inset shows r(c) for all c. c, As m (red)
or s (blue) were varied following the paths drawn in the inset, r and n co-
varied as shown. Note that this relationship holds only when r(c) is linear
(a and b). Simulations (dots) and theory (solid line) show a dependence of r
and n along a stereotyped curve. The shaded area shown in m–s space (inset)
was swept using equation (3) and yielded the shaded area around the r–n
curves. Voltage traces, cross- and auto-correlation functions (upper and
lower panels, respectively) are illustrated for two sets of (m, s) values (see1
and3 in inset). We used tm5 10ms.
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those measured in vivo7,8,11. In this range r(c) was approximately
linear (Fig. 2a, b), allowing us to use perturbation techniques26 to
obtain an expression for r(c) (see Supplementary Information):
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Here dn/dm is the derivative of the spike-rate transfer function (that
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current). Equation (3) accurately predicts the transformation r(c)
obtained via simulations (Fig. 2a, b, dashed lines).
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This allowed us to rewrite equation (3) in an approximate form in
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examined; however, the approximation that S depends only on n
(equation (4)) becomes progressively less accurate as T decreases
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Figure 1 | Relationship between output spike correlation and rate in in vitro
cells. a, Twenty neurons from cortical slices (n5 11) were stimulated with
gaussian currents (filtered with a time constant of 5ms), with both common
and independent components. b, Fluctuating current injection (bottom)
often evoked nearly synchronous spikes (top arrowheads). Red and black
traces are membrane potentials from cells 1 and 2, respectively. c, Typical
cross- (left) and auto-correlation (right) functions from a pair of cells firing
at low (blue), medium (red) and high (green) rate. d, A typical rT versus c for
a pair of cells. e, The correlation rT in a population (n5 123 pairwise
comparisons) increases with
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(inset, linear regression, r5 0.13); cwas fixed at 0.5. Squares represent mean
and s.d. of the population, and coloured circles the examples shown in c. f, A
simple cell model that generates an output spike for every input spike. The
correlation rT is fixed at c, and is independent of n. Throughout we used
T5 40ms.
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Figure 2 | The correlation–rate relationship in an integrate-and-fire neuron
model. a, b, r versus c from simulations (solid line) and theory (dashed line,
from equation (3)). Increases in either m (a) or s (b) increase the slope of
r(c). Grey lines are the diagonal r5 c. Inset shows r(c) for all c. c, As m (red)
or s (blue) were varied following the paths drawn in the inset, r and n co-
varied as shown. Note that this relationship holds only when r(c) is linear
(a and b). Simulations (dots) and theory (solid line) show a dependence of r
and n along a stereotyped curve. The shaded area shown in m–s space (inset)
was swept using equation (3) and yielded the shaded area around the r–n
curves. Voltage traces, cross- and auto-correlation functions (upper and
lower panels, respectively) are illustrated for two sets of (m, s) values (see1
and3 in inset). We used tm5 10ms.
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those measured in vivo7,8,11. In this range r(c) was approximately
linear (Fig. 2a, b), allowing us to use perturbation techniques26 to
obtain an expression for r(c) (see Supplementary Information):
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Wedefine the slope S(m,s) relating r to c as correlation susceptibility.
Here dn/dm is the derivative of the spike-rate transfer function (that
is, the relationship between firing rate, n(m,s), and the mean injected
current). Equation (3) accurately predicts the transformation r(c)
obtained via simulations (Fig. 2a, b, dashed lines).


As with the experiments, we varied m or s while keeping c fixed to
obtain different values of n. A plot of r versus n when m (or s) was
increased while keeping s (or m) fixed (inset of Fig. 2c) shows that r
rapidly increased in the physiological range of 0–50 spikes s21 and
asymptoted to c at high rates (Fig. 2c). Notably, the correlation–rate
curves obtained by increasing m or s were nearly identical, even
though voltage traces, correlation functions and CVs were very dif-
ferent (Fig. 2c). To show that these results did not depend on specific
m and s values, we used equation (3) to sweep a large region of the
m–s parameter space. The resultant r–n values were confined to a
narrow band around the stereotyped curve (Fig. 2c, shaded areas).
This allowed us to rewrite equation (3) in an approximate form in
which the susceptibility, S, depends only on the output rate and not
on the input variables m and s:


r<S nð Þc ð4Þ
The empirically measured rT also increased with n for all T
examined; however, the approximation that S depends only on n
(equation (4)) becomes progressively less accurate as T decreases
(see Supplementary Information).
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a less controlled andmore biologically relevant setting, we performed
simulations of a two-layer network where neurons from layer 1 were
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Figure 1 | Relationship between output spike correlation and rate in in vitro
cells. a, Twenty neurons from cortical slices (n5 11) were stimulated with
gaussian currents (filtered with a time constant of 5ms), with both common
and independent components. b, Fluctuating current injection (bottom)
often evoked nearly synchronous spikes (top arrowheads). Red and black
traces are membrane potentials from cells 1 and 2, respectively. c, Typical
cross- (left) and auto-correlation (right) functions from a pair of cells firing
at low (blue), medium (red) and high (green) rate. d, A typical rT versus c for
a pair of cells. e, The correlation rT in a population (n5 123 pairwise
comparisons) increases with
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and does not co-vary with


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CViCVj


p


(inset, linear regression, r5 0.13); cwas fixed at 0.5. Squares represent mean
and s.d. of the population, and coloured circles the examples shown in c. f, A
simple cell model that generates an output spike for every input spike. The
correlation rT is fixed at c, and is independent of n. Throughout we used
T5 40ms.
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Figure 2 | The correlation–rate relationship in an integrate-and-fire neuron
model. a, b, r versus c from simulations (solid line) and theory (dashed line,
from equation (3)). Increases in either m (a) or s (b) increase the slope of
r(c). Grey lines are the diagonal r5 c. Inset shows r(c) for all c. c, As m (red)
or s (blue) were varied following the paths drawn in the inset, r and n co-
varied as shown. Note that this relationship holds only when r(c) is linear
(a and b). Simulations (dots) and theory (solid line) show a dependence of r
and n along a stereotyped curve. The shaded area shown in m–s space (inset)
was swept using equation (3) and yielded the shaded area around the r–n
curves. Voltage traces, cross- and auto-correlation functions (upper and
lower panels, respectively) are illustrated for two sets of (m, s) values (see1
and3 in inset). We used tm5 10ms.
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those measured in vivo7,8,11. In this range r(c) was approximately
linear (Fig. 2a, b), allowing us to use perturbation techniques26 to
obtain an expression for r(c) (see Supplementary Information):
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Wedefine the slope S(m,s) relating r to c as correlation susceptibility.
Here dn/dm is the derivative of the spike-rate transfer function (that
is, the relationship between firing rate, n(m,s), and the mean injected
current). Equation (3) accurately predicts the transformation r(c)
obtained via simulations (Fig. 2a, b, dashed lines).


As with the experiments, we varied m or s while keeping c fixed to
obtain different values of n. A plot of r versus n when m (or s) was
increased while keeping s (or m) fixed (inset of Fig. 2c) shows that r
rapidly increased in the physiological range of 0–50 spikes s21 and
asymptoted to c at high rates (Fig. 2c). Notably, the correlation–rate
curves obtained by increasing m or s were nearly identical, even
though voltage traces, correlation functions and CVs were very dif-
ferent (Fig. 2c). To show that these results did not depend on specific
m and s values, we used equation (3) to sweep a large region of the
m–s parameter space. The resultant r–n values were confined to a
narrow band around the stereotyped curve (Fig. 2c, shaded areas).
This allowed us to rewrite equation (3) in an approximate form in
which the susceptibility, S, depends only on the output rate and not
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examined; however, the approximation that S depends only on n
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Figure 1 | Relationship between output spike correlation and rate in in vitro
cells. a, Twenty neurons from cortical slices (n5 11) were stimulated with
gaussian currents (filtered with a time constant of 5ms), with both common
and independent components. b, Fluctuating current injection (bottom)
often evoked nearly synchronous spikes (top arrowheads). Red and black
traces are membrane potentials from cells 1 and 2, respectively. c, Typical
cross- (left) and auto-correlation (right) functions from a pair of cells firing
at low (blue), medium (red) and high (green) rate. d, A typical rT versus c for
a pair of cells. e, The correlation rT in a population (n5 123 pairwise
comparisons) increases with
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(inset, linear regression, r5 0.13); cwas fixed at 0.5. Squares represent mean
and s.d. of the population, and coloured circles the examples shown in c. f, A
simple cell model that generates an output spike for every input spike. The
correlation rT is fixed at c, and is independent of n. Throughout we used
T5 40ms.
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Figure 2 | The correlation–rate relationship in an integrate-and-fire neuron
model. a, b, r versus c from simulations (solid line) and theory (dashed line,
from equation (3)). Increases in either m (a) or s (b) increase the slope of
r(c). Grey lines are the diagonal r5 c. Inset shows r(c) for all c. c, As m (red)
or s (blue) were varied following the paths drawn in the inset, r and n co-
varied as shown. Note that this relationship holds only when r(c) is linear
(a and b). Simulations (dots) and theory (solid line) show a dependence of r
and n along a stereotyped curve. The shaded area shown in m–s space (inset)
was swept using equation (3) and yielded the shaded area around the r–n
curves. Voltage traces, cross- and auto-correlation functions (upper and
lower panels, respectively) are illustrated for two sets of (m, s) values (see1
and3 in inset). We used tm5 10ms.
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[No coupling]
Correlation between neural spike trains increases with firing rate.


de la Rocha, Doiron, et al., Nature 2007.
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Conclusions


• Analyzed statistics of dual recordings of excitatory & inhibitory neurons 
in spontaneous and evoked states (and modeling different velocities).


• With a reduced model, dissected the underlying mechanism for low 
correlation (feedforward inhibition).  Validated reduced theory with full 
spiking model.


• Have a better understanding of how neural networks encode information 
efficiently to higher layers.
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Petersen's Data


of action potential firing in dual recordings involving GABAergic
neurons was also observed in analyses of randomly selected
subsetsof theGABAergicneurondata,whichweredownsampled
to match the dataset from dual recordings of excitatory neurons.


Action potentials are therefore highly specific events occurring
independently in neighboring layer 2/3 excitatory neurons,
whereas nearby inhibitory neurons show broadly synchronized
firing. In order to understand the mechanisms underlying these
differences in spiking activity, we analyzed the membrane
potential trajectories leading to action potential threshold. Spike
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Figure 4. Correlated Activity of Excitatory and
Inhibitory Neurons during Quiet Wakefulness
(A) A dual recording involving two excitatory neurons


(black and gray traces) shows highly synchronous slow


oscillations during quiet wakefulness, which is quantified


in the cross-correlogram (right).


(B) Two example experiments of dual recordings of an


excitatory neuron and a GABAergic fast-spiking (FS)


neuron. Upper example shows an anatomical reconstruc-


tion of the somatodendritic arborizations of an excitatory


pyramidal neuron (black) and a GABAergic fast-spiking


(FS) neuron (red), which were simultaneously recorded in


an awakemouse. During quiet wakefulness themembrane


potential dynamics of these neurons were highly corre-


lated (upper middle trace shows one second of the dual


recording; and upper right shows the cross-correlation).


Action potentials are truncated to increase the vertical


scale. Lower example shows a different experiment with


highly synchronous slow membrane potential oscillations


in an excitatory neuron and a GABAergic FS neuron during


quiet wakefulness.


(C) A dual recording involving an excitatory neuron (black)


and a GABAergic non-fast-spiking (NFS) neuron (blue)


shows highly synchronous slow oscillations during quiet


wakefulness.


initiation is driven by a much larger depolariza-
tion in excitatory pyramidal neurons than in
GABAergic neurons (Figure S9). For both excit-
atory and inhibitory neurons, intrinsic conduc-
tances underlying action potential generation
play only a minor role in the membrane potential
trajectory over the 20 ms preceding spike initia-
tion (Figure S9). Synaptic inputs therefore drive
the membrane potential to action potential
threshold.
In dual recordings (Figures 6G and 6H), we


examined the cellular specificity of the synaptic
input driving action potentials. The large depo-
larization preceding action potential initiation
in excitatory neuronswas specific for the spiking
neuron, with much smaller synchronous depo-
larization observed in a neighboring excitatory
neuron (Poulet and Petersen, 2008) or in a
neighboring inhibitory neuron. That large cell-
specific depolarizations drive action potentials
in excitatory neurons provides an explanation
for the asynchronous cell-specific firing of excit-
atory neurons. On the other hand, the depolar-


ization driving spiking in an inhibitory neuron was almost iden-
tical to the depolarization in another nearby GABAergic neuron,
which therefore provides a simple explanation for the correlated
action potential activity of inhibitory neurons.


DISCUSSION


Through whole-cell recordings targeted by two-photon micros-
copy to genetically-defined neuronal populations in the C2 barrel
column of awake mice, we have obtained the first insights into
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Excit. & Inihib. (FS)
input correl.


morphology and molecular markers (Ascoli et al., 2008). Indeed,
it is important to note that there is extensive functional diversity
even within the three different classes of neurons that we
characterize. Therefore, although we find highly significant
differences on average comparing between the behaviors of
excitatory, GABAergic FS and GABAergic NFS neurons, within
each group there is a wide distribution of membrane potential,
membrane potential variance, firing rates, correlations and a
variable dependence of these measurements upon whisker
behavior. By combining electrophysiological measurements
with anatomical reconstruction of axonal arborizations and
with characterization of gene expression, it may be possible in
future studies to further subdivide the layer 2/3 cortical neuron


population into additional subclasses with more consistent
response properties.
Interestingly, the intrinsic electrophysiological differentiation


between GABAergic FS and GABAergic NFS neurons already
leads to remarkable functional differences on average during
different brain states. Whereas GABAergic FS neurons reduce
spike rates during active periods (Figures 3A, 3B, and 3F),
GABAergic NFS neurons depolarize (Figures 3A, 3B, and 3D)
leading to increased action potential rates (Figure 3F). The
different brain states could be accompanied by different neuro-
modulatory inputs to the neocortex, which might directly affect
the membrane potential and spiking activity of the neocortical
GABAergic neurons in a subtype-specific manner (Bacci et al.,
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Figure 6. Action Potentials in Excitatory
Neurons Are Driven by Large, Brief, and
Cell-Specific Depolarization, Whereas
GABAergic Neurons Are Driven by Broadly
Synchronized Depolarization
(A) Example simultaneous recording from two


excitatory neurons. Asynchronous action poten-


tials are evoked by large, brief and specific depo-


larization. Action potentials are truncated to


increase the vertical scale.


(B) Across all dual recordings from two excitatory


neurons, for every action potential recorded, the


relative time of action potentials in the other nearby


simultaneously recorded neuron was quantified.


The histograms of spike times were binned in 10


ms intervals and normalized to the total number


of trigger spikes. There is no obvious AP


synchrony for pairs of excitatory neurons. The


same analysis carried out for shuffled AP timings


is shown superimposed in red.


(C) Example simultaneous recording from one


excitatory and one GABAergic FS neuron. Brief,


large and cell-specific depolarizations in the excit-


atory neuron drive action potentials, which are


broadly synchronized to the firing of the inhibitory


neuron. Action potentials are truncated to increase


the vertical scale.


(D) Same analysis as in (B), except now across all


dual recordings involving one excitatory and one


inhibitory neuron.


(E) Example simultaneous recording from two


GABAergic FS neurons. Action potentials are


broadly synchronized through correlated slow


membrane potential depolarizations. Action


potentials are truncated to increase the vertical


scale.


(F) Same analysis as in (B), except now across all


dual recordings involving two inhibitory neurons.


(G) Spike-triggered grand average across all


simultaneous dual recordings indicates that the depolarization driving an action potential in an excitatory neuron (black traces, far left, and center left) is


much larger than the simultaneously recorded depolarization in a neighboring excitatory neuron (gray trace, far left) or in a neighboring GABAergic neuron


(red trace, center left). Action potentials in excitatory neurons are therefore driven by large depolarizations that are not present in other nearby neurons. In


contrast, the depolarization driving action potentials in GABAergic neurons (red traces, center right and far right) is almost identical to the depolarization observed


in a neighboring excitatory neuron (black trace, center right) or a neighboring GABAergic neuron (blue trace, far right). Action potentials are truncated to increase


the vertical scale.


(H) Themembrane potential trajectory in the 20ms leading to spike initiation in one cell was quantified across dual recordings. Each lightly-colored line shows the


result of a dual recording and the solid lines with filled circles represent mean ± SEM. For each experiment, the left indicates the spiking neuron and the right the


other simultaneously recorded neuron. Action potentials in excitatory neuronswere driven by large and cell-specific depolarizations. Action potentials in inhibitory


neurons were driven by smaller depolarizations, which were also observed in nearby neurons. Statistical significance according to Student’s t test is indicated by


** for p < 0.01 and * for p < 0.05.
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C2 depends on C3 and so on
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Need to truncate
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Klimontovich


θ
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Klimontovich


θ


η


Begin with exchange symmetry
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N neurons in 1D


θ


η


Begin with exchange symmetry
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θ
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Klimontovich
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N neurons in 1D


η(θ, u, t) =
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δ(θ − θi(t))


θ


η


Begin with exchange symmetry
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Oscillator dynamics: θ̇ = I(t) + αu(t)
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Oscillator dynamics:


Synaptic dynamics:


θ̇ = I(t) + αu(t)
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Oscillator dynamics:


u̇ + βu = βνSynaptic dynamics:


θ̇ = I(t) + αu(t)
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Oscillator dynamics:


u̇ + βu = βνSynaptic dynamics:


θ̇ = I(t) + αu(t)


Firing rate:
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Oscillator dynamics:


u̇ + βu = βνSynaptic dynamics:
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Oscillator dynamics:


u̇ + βu = βνSynaptic dynamics:


θ̇ = I(t) + αu(t)


Firing rate:


δ(t− tsj) = θ̇δ(π − θ(t))
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Oscillator dynamics:


u̇ + βu = βνSynaptic dynamics:


θ̇ = I(t) + αu(t)


Firing rate:
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Klimontovich
e.g. Hildebrand, Buice, Chow, PRL 98.054101, 2007


Oscillator conservation 


∂tη + ∂θ [(I(t) + αu(t))η] = 0


Tuesday, October 4, 2011







Klimontovich
e.g. Hildebrand, Buice, Chow, PRL 98.054101, 2007


Oscillator conservation 


∂tη + ∂θ [(I(t) + αu(t))η] = 0


u̇ + βu = βν


ν(t) = (I(t) + αu(t))η(π, t)
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Klimontovich
e.g. Hildebrand, Buice, Chow, PRL 98.054101, 2007


Oscillator conservation 


∂tη + ∂θ [(I(t) + αu(t))η] = 0


u̇ + βu = βν


ν(t) = (I(t) + αu(t))η(π, t)


but η is not differentiable
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Average over initial data


θ


η smooth by 
averaging
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ρ(θ, t) = �η(θ, t)�


Average over initial data


θ


η smooth by 
averaging
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ρ(θ, t) = �η(θ, t)�


Average over initial data


u0 = �u�


θ


η smooth by 
averaging
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Average over initial data


u̇(t) = −βu(t) + β [I(t)η + αuη]
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Average over initial data


�� u̇(t) = −βu(t) + β [I(t)η + αuη]
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Average over initial data


u̇0(t) = −βu0(t) + β [I(t)ρ+ α�uη�]
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Average over initial data


∂tη + ∂θ [I(t)η + αuη] = 0


u̇0(t) = −βu0(t) + β [I(t)ρ+ α�uη�]
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Average over initial data


�� ∂tη + ∂θ [I(t)η + αuη] = 0


u̇0(t) = −βu0(t) + β [I(t)ρ+ α�uη�]
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Average over initial data


∂tρ+ ∂θ [I(t)ρ+ α�uη�] = 0


u̇0(t) = −βu0(t) + β [I(t)ρ+ α�uη�]
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Average over initial data


∂tρ+ ∂θ [I(t)ρ+ α�uη�] = 0


u̇0(t) = −βu0(t) + β [I(t)ρ+ α�uη�]


(∂tu(t) + βu(t)− β [I(t)η + αuη]) = 0
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(∂tu(t) + βu(t)− β [I(t)η + αuη]) = 0
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BBGKY moment hierarchy
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u̇0(t) = −βu0(t) + β [I(t)ρ+ α�uη�]
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(∂tu(t) + βu(t)− β [I(t)η + αuη]) = 0
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Average over initial data


BBGKY moment hierarchy
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...
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Average over initial data


BBGKY moment hierarchy


∂tρ+ ∂θ [I(t)ρ+ α�uη�] = 0


...


u̇0(t) = −βu0(t) + β [I(t)ρ+ α�uη�]


� �η
�ηuη�


(∂tu(t) + βu(t)− β [I(t)η + αuη]) = 0
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Mean field theory


�uη� = u0ρ+
1


N
Cuv
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Mean field theory


�uη� = u0ρ+
1


N
Cuv
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Mean field theory


Ignore correlations


�uη� = u0ρ+
1


N
Cuv
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Mean field theory


u̇0(t) = −βu0(t) + βν(t)


∂tρ+ ∂θ [(I(t) + αu0(t))ρ] = 0


ν(t) = (I(t) + αu0(t))ρ(π, t)
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Mean field theory


e.g. Desai and Zwanzig, 1978; Strogatz and Mirollo, 1990; 
Treves 1993;  Abbott and Van Vreeswijk, 1993; ...


Previous work went straight to mean field theory


u̇0(t) = −βu0(t) + βν(t)


∂tρ+ ∂θ [(I(t) + αu0(t))ρ] = 0


ν(t) = (I(t) + αu0(t))ρ(π, t)
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Density functional
e.g. Buice and Chow, PRE, 76.031118, 2007
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e.g. Buice and Chow, PRE, 76.031118, 2007


θθ1


θ2


θN


Liouville Klimontovich


Tuesday, October 4, 2011







Density functional
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Density functional
e.g. Buice and Chow, PRE, 76.031118, 2007
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Density functional
e.g. Buice and Chow, PRE, 76.031118, 2007
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Density functional
e.g. Buice and Chow, PRE, 76.031118, 2007


θθ1


θ2


θN �θ(t; t20)


η(θ, t; t20)
Liouville Klimontovich
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Density functional
e.g. Buice and Chow, PRE, 76.031118, 2007
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θN �θ(t; t20)
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Liouville Klimontovich
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Density functional
e.g. Buice and Chow, PRE, 76.031118, 2007
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η(θ, t; t20)
Liouville Klimontovich
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Density functional
e.g. Buice and Chow, PRE, 76.031118, 2007


θθ1
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θN �θ(t; t10) �θ(t; t20)


η(θ, t; t10)


η(θ, t; t20)
Liouville Klimontovich
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Density functional
e.g. Buice and Chow, PRE, 76.031118, 2007


Ensemble of initial data


θθ1


θ2


θN �θ(t; t10) �θ(t; t20)


η(θ, t; t10)


η(θ, t; t20)
Liouville Klimontovich


Tuesday, October 4, 2011







Density functional
e.g. Buice and Chow, PRE, 76.031118, 2007


Ensemble of initial data


θθ1
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θN �θ(t; t10) �θ(t; t20)


η(θ, t; t10)


η(θ, t; t20)
Liouville Klimontovich
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Density functional
e.g. Buice and Chow, PRE, 76.031118, 2007


Ensemble of initial data


θ


⇒ Ensemble of systems


θ1


θ2


θN �θ(t; t10) �θ(t; t20)


η(θ, t; t10)


η(θ, t; t20)


PN (�θ, t)
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Density functional
e.g. Buice and Chow, PRE, 76.031118, 2007


Ensemble of initial data


θθ1
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θN �θ(t; t10) �θ(t; t20)


η(θ, t; t10)


η(θ, t; t20)
P [η(θ, t)]{


PN (�θ, t)
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Density functional
e.g. Buice and Chow, PRE, 76.031118, 2007


Ensemble of initial data


θθ1


θ2


θN �θ(t; t10) �θ(t; t20)


η(θ, t; t10)


η(θ, t; t20)
P [η(θ, t)]{


PN (�θ, t)


⇒ Density of densities
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Density functional
e.g. Buice and Chow, PRE, 76.031118, 2007


∂tη + ∂θ [(I(t) + αu(t))η] = 0


u̇ + βu = β(I + αu)η(π, t)
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Density functional
e.g. Buice and Chow, PRE, 76.031118, 2007


∂tη + ∂θ [(I(t) + αu(t))η] = 0


η(θ, t0) = η0(θ)


u̇ + βu = β(I + αu)η(π, t)
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Density functional
e.g. Buice and Chow, PRE, 76.031118, 2007


∂tη + ∂θ [(I(t) + αu(t))η] = 0


η(θ, t0) = η0(θ) u(t0) = u0


u̇ + βu = β(I + αu)η(π, t)
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Density functional
e.g. Buice and Chow, PRE, 76.031118, 2007


∂tη + ∂θ [(I(t) + αu(t))η] = 0


η(θ, t0) = η0(θ) u(t0) = u0


u̇ + βu = β(I + αu)η(π, t) } L(u, η) = 0
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Density functional
e.g. Buice and Chow, PRE, 76.031118, 2007


∂tη + ∂θ [(I(t) + αu(t))η] = 0


η(θ, t0) = η0(θ) u(t0) = u0


u̇ + βu = β(I + αu)η(π, t) } L(u, η) = 0


P [u, η] ∝ δ[L(u, v) = 0]
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Density functional
e.g. Buice and Chow, PRE, 76.031118, 2007


∂tη + ∂θ [(I(t) + αu(t))η] = 0


η(θ, t0) = η0(θ) u(t0) = u0


u̇ + βu = β(I + αu)η(π, t) }
Density of the density


L(u, η) = 0


P [u, η] ∝ δ[L(u, v) = 0]
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δ(x) =


�
eikxdk
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δ(x) =


�
eikxdk


P [u, η] = δ[L(u, v) = 0] ∝
�


DũDη̃ e−S[u,ũ,η,η̃]
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δ(x) =


�
eikxdk


P [u, η] = δ[L(u, v) = 0] ∝
�


DũDη̃ e−S[u,ũ,η,η̃]


Action
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δ(x) =


�
eikxdk


P [u, η] = δ[L(u, v) = 0] ∝
�


DũDη̃ e−S[u,ũ,η,η̃]


Action


Path or functional integral
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δ(x) =


�
eikxdk


P [u, η] = δ[L(u, v) = 0] ∝
�


DũDη̃ e−S[u,ũ,η,η̃]


Action


S[u, ũ, η, η̃] = N


�
dtdθ η̃(θ, t) (∂tη + ∂θ[(I + αu)η])


Path or functional integral
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δ(x) =


�
eikxdk


P [u, η] = δ[L(u, v) = 0] ∝
�


DũDη̃ e−S[u,ũ,η,η̃]


Action


S[u, ũ, η, η̃] = N


�
dtdθ η̃(θ, t) (∂tη + ∂θ[(I + αu)η])


+


�
dt ũ (u̇+ βu− β[I + αu]η(π, t))


Path or functional integral
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δ(x) =


�
eikxdk


P [u, η] = δ[L(u, v) = 0] ∝
�


DũDη̃ e−S[u,ũ,η,η̃]


Action


− lnZ0


S[u, ũ, η, η̃] = N


�
dtdθ η̃(θ, t) (∂tη + ∂θ[(I + αu)η])


+


�
dt ũ (u̇+ βu− β[I + αu]η(π, t))


Path or functional integral
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e.g.
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e.g. �v2� =
�


DṽDv v2e−N
�
dxṽ∆−1v+aṽ3+bṽv2
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Steepest descent expansion in 1/N 


e.g. �v2� =
�


DṽDv v2e−N
�
dxṽ∆−1v+aṽ3+bṽv2
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Steepest descent expansion in 1/N 


e.g.


=


�
DṽDv e−N


�
ṽ∆−1vv2


�
dx[1 + aṽ3 + bṽv2 + · · · ]


�v2� =
�


DṽDv v2e−N
�
dxṽ∆−1v+aṽ3+bṽv2
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Steepest descent expansion in 1/N 


Moments in terms of combinations of Δ’s


e.g.


=


�
DṽDv e−N


�
ṽ∆−1vv2


�
dx[1 + aṽ3 + bṽv2 + · · · ]


�v2� =
�


DṽDv v2e−N
�
dxṽ∆−1v+aṽ3+bṽv2
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Linear Response


∆u
u(t; t


�) = �δu(t)ũ(t�)�
∆ψ


u (t; θ
�, t�) = �δu(t)ψ̃(θ�, t�)�


∆u
ψ(θ, t; t


�) = �ψ(θ, �α, t)ũ(t�)�


∆ψ
ψ(θ, t; θ


�, t�) = �ψ(θ, t)ψ̃(θ�, t�)�


∆u
u(t; t


�) = �δu(t)ũ(t�)�
∆ψ


u (t; θ
�, t�) = �δu(t)ψ̃(θ�, t�)�


∆u
ψ(θ, t; t


�) = �ψ(θ, �α, t)ũ(t�)�


∆ψ
ψ(θ, t; θ


�, t�) = �ψ(θ, t)ψ̃(θ�, t�)�


ψ(θ, t) = η(θ, t)e−η̃(θ,t) − ρ(θ, t)


ψ̃(θ, t) = eη̃(θ,t) − 1
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Linear Response


�
d


dt
+ β


�
∆u


u − βρ(π, t)∆u
u − β(I + αū)∆u


ψ = δ(t− t�)


�
d


dt
+ β


�
∆ψ


u − βρ(π, t)∆ψ
u − β(I + αū)∆ψ


ψ = 0


∂t∆
u
ψ + ∂θ


�
(I + αū)∆u


ψ


�
+ ∂θρ∆


u
u = 0


∂t∆
ψ
ψ + ∂θ


�
(I + αū)∆ψ


ψ


�
+ ∂θρ∆


ψ
u =


1


N
δ(θ − θ�)δ(t− t�)


�
d


dt
+ β


�
∆u


u − βρ(π, t)∆u
u − β(I + αū)∆u


ψ = δ(t− t�)


�
d


dt
+ β


�
∆ψ


u − βρ(π, t)∆ψ
u − β(I + αū)∆ψ


ψ = 0


∂t∆
u
ψ + ∂θ


�
(I + αū)∆u


ψ


�
+ ∂θρ∆


u
u = 0


∂t∆
ψ
ψ + ∂θ


�
(I + αū)∆ψ


ψ


�
+ ∂θρ∆


ψ
u =


1


N
δ(θ − θ�)δ(t− t�)


ψ(θ, t) = η(θ, t)e−η̃(θ,t) − ρ(θ, t)


ψ̃(θ, t) = eη̃(θ,t) − 1
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Linear Response


∆u
u =


∆ψ
u =


∆u
ψ =


∆ψ
ψ =
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Steady state


u̇ = −βu+ β(I + αu)ρ(π, t)


∂tρ = −∂θ [(I(t) + αu(t))ρ]
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Steady state


= 0u̇ = −βu+ β(I + αu)ρ(π, t)


∂tρ = −∂θ [(I(t) + αu(t))ρ]
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Steady state


= 0u̇ = −βu+ β(I + αu)ρ(π, t)


∂tρ = −∂θ [(I(t) + αu(t))ρ] = 0
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Steady state


= 0u̇ = −βu+ β(I + αu)ρ(π, t)


∂tρ = −∂θ [(I(t) + αu(t))ρ] = 0


ū =
I


2π


�
1− α


2π


�−1
ρ̄ =


1


2π
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Steady state


= 0u̇ = −βu+ β(I + αu)ρ(π, t)


∂tρ = −∂θ [(I(t) + αu(t))ρ] = 0


ū =
I


2π


�
1− α


2π


�−1
ρ̄ =


1


2π


ν = (I + αū)ρ̄ = ū
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Drive Correlations
�δu(t)δu(t�)�


= β


�
dt�� (I + αū(t��))∆u


u(t, t
��)∆ψ


u (t
�,π, t��)ρ(π,α, t��) + (t ↔ t�)


− N


(2π)2


�
dθ∆ψ


u (t, s)


�
dθ�∆ψ


u (t
�, s�)


Tuesday, October 4, 2011







Drive Correlations
�δu(t)δu(t�)�


= β


�
dt�� (I + αū(t��))∆u


u(t, t
��)∆ψ


u (t
�,π, t��)ρ(π,α, t��) + (t ↔ t�)


− N


(2π)2


�
dθ∆ψ


u (t, s)


�
dθ�∆ψ


u (t
�, s�) +O


�
1


N2


�
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Drive Correlations
�δu(t)δu(t�)�


= β


�
dt�� (I + αū(t��))∆u


u(t, t
��)∆ψ


u (t
�,π, t��)ρ(π,α, t��) + (t ↔ t�)


− N


(2π)2


�
dθ∆ψ


u (t, s)


�
dθ�∆ψ


u (t
�, s�)


= + +


+O


�
1


N2


�
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�δu(t)2� =
1


N


∞�


k=0


�
1− 1


2
δk,0


�
β
2


πδ
(I + αū0)


×e
−βδ∆tk


�
1− e


−2βδ(t−t0−∆tk)
�
H(t− t0 −∆tk)


− 1


N
ū
2
0


�
1− e


−βδ(t−t0)
�2


Input Correlations
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�δu(t)2� =
1


N


∞�


k=0


�
1− 1


2
δk,0


�
β
2


πδ
(I + αū0)


×e
−βδ∆tk


�
1− e


−2βδ(t−t0−∆tk)
�
H(t− t0 −∆tk)


− 1


N
ū
2
0


�
1− e


−βδ(t−t0)
�2


Input Correlations


Firing times of
a “fictitious neuron”
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Transients


C(t) = �u(t)2� − �u(t)�2 ∝ 1
N
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Asymptotic state


N


C(t)
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Asymptotic state


N


C(t)
1


N
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Firing rate fluctuations


ν(t) = (I(t) + αu(t))η(π, t)


�ν(t)� = (I(t) + αu(t))ρ̄ = ū


�(ν(t)− ū) (ν(t�)− ū)� = (I + αū)2 �η(π, t)η(π, t�)�
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Firing rate fluctuations


ν(t) = (I(t) + αu(t))η(π, t)


�ν(t)� = (I(t) + αu(t))ρ̄ = ū


�(ν(t)− ū) (ν(t�)− ū)� = (I + αū)2 �η(π, t)η(π, t�)�


+ +
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Firing rate fluctuations


ν(t) = (I(t) + αu(t))η(π, t)


�ν(t)� = (I(t) + αu(t))ρ̄ = ū


�(ν(t)− ū) (ν(t�)− ū)� = (I + αū)2 �η(π, t)η(π, t�)�
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Firing rate fluctuations


ν(t) = (I(t) + αu(t))η(π, t)


�ν(t)� = (I(t) + αu(t))ρ̄ = ū


�(ν(t)− ū) (ν(t�)− ū)� = (I + αū)2 �η(π, t)η(π, t�)�


=
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Firing rate fluctuations


ν(t) = (I(t) + αu(t))η(π, t)


�ν(t)� = (I(t) + αu(t))ρ̄ = ū


�(ν(t)− ū) (ν(t�)− ū)� = (I + αū)2 �η(π, t)η(π, t�)�


ū


Ndt
=
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Firing rate fluctuations


ν(t) = (I(t) + αu(t))η(π, t)


�ν(t)� = (I(t) + αu(t))ρ̄ = ū


�(ν(t)− ū) (ν(t�)− ū)�


Poisson ansatz
e.g. Van V and S,


Brunel and Hakim


= (I + αū)2 �η(π, t)η(π, t�)�


ū


Ndt
=
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Firing rate fluctuations


ν(t) = (I(t) + αu(t))η(π, t)


�ν(t)� = (I(t) + αu(t))ρ̄ = ū


�(ν(t)− ū) (ν(t�)− ū)�


Poisson ansatz
e.g. Van V and S,


Brunel and Hakim


= (I + αū)2 �η(π, t)η(π, t�)�


−ū


Ndt
=
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Firing rate fluctuations


ν(t) = (I(t) + αu(t))η(π, t)


�ν(t)� = (I(t) + αu(t))ρ̄ = ū


�(ν(t)− ū) (ν(t�)− ū)�


Poisson ansatz
e.g. Van V and S,


Brunel and Hakim


= (I + αū)2 �η(π, t)η(π, t�)�


ū2


N
−ū


Ndt
=
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Firing rate fluctuations


ν(t) = (I(t) + αu(t))η(π, t)


�ν(t)� = (I(t) + αu(t))ρ̄ = ū


�(ν(t)− ū) (ν(t�)− ū)�


Poisson ansatz
e.g. Van V and S,


Brunel and Hakim


= (I + αū)2 �η(π, t)η(π, t�)�


Initial state 
sampling correction


ū2


N
−ū


Ndt
=
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} Deviation from
Poisson
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Theta Model 
θ̇i(t) = 1− cos θi(t) + (Ii(t) + αiu(t))(1 + cos θi(t))


u̇i + βui =
β


N


�


j


δ(t− tsj)
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Theta Model 
θ̇i(t) = 1− cos θi(t) + (Ii(t) + αiu(t))(1 + cos θi(t))


u̇i + βui =
β


N


�


j


δ(t− tsj)


S = S[ũ(t), u(t)] + S[ϕ̃(θ, t),ϕ(θ, t)]
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Theta Model 
θ̇i(t) = 1− cos θi(t) + (Ii(t) + αiu(t))(1 + cos θi(t))


u̇i + βui =
β


N


�


j


δ(t− tsj)


S = S[ũ(t), u(t)] + S[ϕ̃(θ, t),ϕ(θ, t)]


S[ϕ, ϕ̃] = N


�
dtdθ ϕ̃(θ, t) [∂tϕ(θ, t) + ∂θ [1− cos θ


+(1 + cos θ) {I + αu(t)}ϕ(θ, t)]]− lnZ[ϕ̃0(θ, t0)]
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Theta Model 
θ̇i(t) = 1− cos θi(t) + (Ii(t) + αiu(t))(1 + cos θi(t))


u̇i + βui =
β


N


�


j


δ(t− tsj)


S = S[ũ(t), u(t)] + S[ϕ̃(θ, t),ϕ(θ, t)]


S[ũ(t), u(t)] =


� t


t0


ds ũ(s)


�
d


ds
u(s) + βu(s)


−2β {ϕ̃(π, s)ϕ(π, s) + ϕ(π, s)})− lnZ[ũ(t0)]


S[ϕ, ϕ̃] = N


�
dtdθ ϕ̃(θ, t) [∂tϕ(θ, t) + ∂θ [1− cos θ


+(1 + cos θ) {I + αu(t)}ϕ(θ, t)]]− lnZ[ϕ̃0(θ, t0)]
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Steady state


ρ0(θ) =


√
I + u0


π(1− cos θ + (I + αu0)(1 + cos θ))


u0 =
�


I + αu0


ν =
1


π


�
I + αu0
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Firing rate fluctuations


�ν(t)� = 2ρ(π, t)
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Firing rate fluctuations


�ν(t)� = 2ρ(π, t)


�ν(t)� =
�


dαdΩdα�dΩ��ψ(xπ)ψ(x
�
π)�+


1


Ndt
�ν(t)�
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Firing rate fluctuations


Poisson ansatz
�ν(t)� = 2ρ(π, t)


�ν(t)� =
�


dαdΩdα�dΩ��ψ(xπ)ψ(x
�
π)�+


1


Ndt
�ν(t)�
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Firing rate fluctuations


Anomalous finite size effects


Poisson ansatz
�ν(t)� = 2ρ(π, t)


�ν(t)� =
�


dαdΩdα�dΩ��ψ(xπ)ψ(x
�
π)�+


1


Ndt
�ν(t)�


Tuesday, October 4, 2011







Firing rate fluctuations


Anomalous finite size effects


Poisson ansatz
�ν(t)� = 2ρ(π, t)


�ν(t)� =
�


dαdΩdα�dΩ��ψ(xπ)ψ(x
�
π)�+


1


Ndt
�ν(t)�


not in phase model
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Simulations


N=1000
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Simulations


}


N=1000
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Simulations


} deviation
from Poisson


N=1000
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N = 10
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N=10
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Mean-field methods and multiscale analysis of neuronal populations
3-7 October 2011, CIRM, Marseille


Jaime de la Rocha


Neuronal Variability and Co-variability in 
sensory cortices.
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Outline


• Intro: cortical variability and co-variability and the effect 
of sensory stimulation.


• Mechanisms producing single neuronal variability and 
pair-wise correlations.


• Asynchronous state in a recurrent randomly connected 
network.


• Mean field model of a competitive  network.
• Spiking simulations.


• Conclusions.
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Structure of correlations across the network
MT behaving monkey (Bair et al 2001)


V1 awake monkey (Ecker et al 2010)
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Churchland et al 2010


Impact of stimulus on single neuronal variability







Kohn & Smith, 2005; Nahaus et al 2008.


Impact of stimulus on pair-wise correlations


V1 anesthetized monkey.







Yu & Ferster, 2010.


Impact of stimulus on pair-wise correlations


V1 anesthetized cat.







Outline


• Intro: cortical variability and covariability and the effect of 
sensory stimulation.


• Mechanisms producing single neuronal variability and 
pair-wise correlations.


• Asynchronous state in a recurrent randomly connected 
network.


• Mean field model of a competitive  network.
• Spiking simulations.


• Conclusions.







Amit & Brunel 1997


van Vreeswijk & Sompolinsky 1996


Mechanisms behind neuronal variability:
balanced state


Banerjee 2007; Banerjee, Series & Pouget 2007; London et al 2010; 







shared pool


0% shared


10%


20%


30%


40%


50% shared


Shared input causes correlations. 


Feed-forward network:


(40% shared E & I Inputs)


Pre-synaptic neurons


Postsynaptic neurons


Can correlations produced by shared 
inputs in a previous layer have an 
impact on output correlations?


Shadlen & Newsome ‘98







Outline


• Mechanisms producing single neuronal variability and 
pair-wise correlations.


• Asynchronous state in a recurrent randomly connected 
network.


• Mean field model of a competitive  network.
• Spiking simulations.
• Conclusions.







1) Neurons are binary: σi =0 (inactive), 1 (active). 


Analytically tractable.


2) Network is randomly and densely connected 
(connection probability does not decrease with N).


3) Neurons are strongly coupled: only a small 
fraction of a neuron’s inputs are enough to make it 
fire: synaptic couplings scale as 1/sqrt(N).


Model of a recurrent network.Model of a recurrent network.







1. the network is BALANCED


If inhibition is not too weak or slow,...


Threshold


Time (ms)


Recurrent balanced network is asynchronousRecurrent balanced network is asynchronous


2. the network is ASYNCHRONOUS:


C
or


re
la


tio
n 


〈
r〉


 


〈 r〉  ~ 1/N


Correlation decreases at fixed p (avg. shared fraction).


Renart et al ‘10







z-
sc


or
ed


   
ac


tiv
ity mXmEmI


Very fast and strong negative feedback!


mE (t) = AE mX(t)


mI (t)  = AI  mX(t)


Tracking of spontaneous E and I activity fluctuations 
generates strong EI correlations
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ity mXmEmI


Very fast and strong negative feedback!


mE (t) = AE mX(t)


mI (t)  = AI  mX(t)


Tracking of spontaneous E and I activity fluctuations 
generates strong EI correlations


EE


II


XX


EIIE


TT


Tracking generates negative current 
correlations which cancel all sources of 
positive current correlations, including 
shared inputs.


Dominates!!


rout      p + N(JErEE + JIrII - 2JEJI rEI + …) ~
2 2


Becomes      -p~







Weakly Synchronous Total Current
c ~ O(1/√N)


Asynchronous firing: r ~ O(1/N)


Synchronous Currents: cEE ~ O(1)


Fast Exc-Inh Tracking 


Amplification due to strong coupling


Common input (Recurrent & Exernal)


Spikes


Total current


Self-consistent Asynchronous state







The sources of heterogeneity in the correlation are 
larger than the mean


The distribution of r is ‘wide’, meaning 1>>
r


rσ


This implies that around half of the pairs have r < 0







Cortical Activation:
anesthetized rats; auditory and somatosensory cortices 


< r > = 0.007


As predicted, r distribution is wide: 
σr  >> 〈  r 〉  


Jittered surrogates


Correlations in spontaneous activity during Activated states.







Correlations during the Activated state.


?


LIF simulations







Question:


• What kind of network mechanisms can 
generates large positive and negative slow 


correlations with a near-zero average?











Correlations via Hopf Bifurcations


Brunel & Hakim 1999; Hansel & Mato 2002; Brunel & Wang 2003; Mazzoni et al, 2008


This fast oscillatory states have a small impact on individual 
and pair wise statistics over large window sizes.







Shaddle-node bifurcations and correlations:


see Mr. Roxin tomorrow.







Outline


• Mechanisms producing single neuronal variability and 
pair-wise correlations.


• Asynchronous state in a recurrent randomly connected 
network.


• Mean field model of a competitive  network.
• Spiking simulations.
• Conclusions.
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Dynamics in competitive networks


Uncorrelated Poisson spiking







Work in progress


• Reduce the spiking network to Wilson-Cowan equations 
with additive noise.


• The magnitude and time-scale of the fluctuations of the 
rate variables is a proxy of the correlations across pairs 
within spiking network.


• Assumption: the asynchronous state is not perturbed by 
the addition of the competitive structure (needs to be 
proven).
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Wong & Wang ‘06; Wong et al ‘07; Roxin & Ledberg ’08; Martí et al 2008; Albantakis & Deco 2011.







Mean-field equations.
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Supercritical Pitchfork Bifurcation
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Roxin & Ledberg ’08:


Supercritical Pitchfork Bifurcation







Slow competitive dynamics close to the bifurcation.
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Slow competitive dynamics close to the bifurcation.


Time lag (ms)


w, Iext







Impact of common noise on global fluctuations.







Impact of common noise on global fluctuations.
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Impact of an asymmetric stimulus: I1>I2
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Impact of an asymmetric stimulus: I1>I2







Time lag (ms)


E1E1


E1E2


E2E2


TT


Yu & Ferster, 2010.


Impact of an asymmetric stimulus: I1>I2


i. Slow fluctuations 
decreased.


ii. E1 population couples 
more strongly with I 
and shows a more 
oscillatory behavior.


iii. Total correlations are 
largely unaffected.







Outline


• Mechanisms producing single neuronal variability and 
pair-wise correlations.


• Asynchronous state in a recurrent randomly connected 
network.


• Mean field model of a competitive  network.
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Impact of an stimulus on correlations


I1=I2 I1>0, I2=0







Impact of an stimulus on correlations


E1E1


E1E2


E1E1


E1E2


-100     0      100


Time lag (ms)


Symmetric: I1=I2


Asymmetric: I1>0, I2=0







Spontaneous activity near the bifurcation.







Unbiased stimuli increase competition.







Asymmetric stimuli decrease competition…







…and an “asynchronous” state, like in the EI network, is 
recovered.







Competitive interactions broaden the distribution of Spike 
Count Corr. Coefs. rij without affecting the mean.


Spike count Corr. Coefs. rij


E1E1E1E2


TT


E2E2


ii. Symmetric stimuli.


i. decrease E1E2-shared inputs


i. increase E1E2-shared 
inputs


ii. Asymmetric stimuli.







Competitive interactions in sensory cortex during 
spontaneous activity.


Rij = CorrCoef(rik, rjk)


R
80


,j


neuron index j


maximally varying neuron 
i=80


matrix of spike count 
corr. coef. rij


sorted rij sorted Rij







•Recurrent balanced network dynamics generate near-zero average 
correlations despite large amounts of shared input. This is caused 
by an active decorrelation of synaptic inputs arising from tracking of  
E and I fluctuations which occurs in the balance state.


•Noise correlations in sensory cortices could be reflecting 
competitive dynamics between similarly ‘tuned’ populations which 
interact via inhibition. This explains why signal and noise 
correlations are positively correlated.


•Stimuli can impact the competition and therefore modulate the 
magnitude and time-scale of correlations. 


•The correlations observed in the cortex are most likely not about 
shared-inputs, but reflect the the dynamics of intrinsic cortical states 
and their interaction with external stimuli.


Conclusions
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Two or three things I know about mean field
methods in neuroscience
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I Javier Baladron


I Bruno Cessac
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I Jonathan Touboul







The neuronal activity in V1: from Ecker et al., Science
2010


I Recording neurons in V1


I shows that their activity is
HIGHLY decorrelated for
synthetic


I and natural images


I as opposed to the current
consensus.
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The neuronal activity in V1: from Ecker et al., Science
2010


I Is this a network effect?


I Is this related to the stochastic nature of neuronal
computation?







Spin glasses


I N spins x i in interaction in a potential U (keeps spin values
bounded).


I Weights of interaction: Jij . Assume Jij 6= Jji .


I Weights are i.i.d. N (0, 1).


Single spin dynamics:{
ẋ i = −∇U(x i ) + β√


N


∑
j Jijx


j + ξi


Law of x0 = µ⊗N0


I Limit, when N →∞, of the dynamics?







Which limit?


I Let PN
β (J) be the law of the solution to the N spin equations.


I If we anneal it by taking the expectation over the weights:


QN
β = E


[
PN
β (J)


]
we can obtain two theorems.


Theorem (Ben Arous-Guionnet)


The law of the empirical measure µ̂N = 1
N


∑N
i=1 δx i under QN


β


converges to δQ .


Theorem (Ben Arous-Guionnet)


Q is the law of the solution to the following nonlinear stochastic
differential equation:


dxt = −∇U(xt)dt + dBt


dBt = dWt + β2
(∫ t


0 f (t, s) dBs


)
dt


Law of x0 = µ0







Which limit?


W is a Q-Brownian motion, the function f is given by


f (t, s) = E


GQ
s GQ


t


exp
{
−β2


∫ t
0


(
GQ
u


)2
du
}


E


[
exp


{
−β2


∫ t
0


(
GQ
u


)2
du


}]
 ,


and GQ
t is a centered Gaussian process, independent of Q, and


with the same covariance:


E


[
GQ
s GQ


t


]
=


∫
xsxt dQ(x)







The results of Sompolinsky and Zippelius


I S.-Z. studied the same spin-glass equation, up to minor
details.


Theorem (Sompolinsky-Zippelius)


The annealed mean-field equation in the thermodynamic limit is{
dxt = −∇U(xt)dt + Φx


t dt
Law of x0 = µ0


Φx
t is a Gaussian process with zero mean and whose


autocorrelation C writes


C (t, s) ≡ E [Φx
s Φx


t ] = δ(t − s) + β2


∫
xsxt dQ(x) =


δ(t − s) + β2
E


[
GQ
s GQ


t


]







Are these two results the same?


Proposition (Faugeras)


If the function f in the Ben Arous-Guionnet theorem is continuous
in [0,T ]2, the stochastic differential equation{


dBt = dWt + β2
(∫ t


0 f (t, s) dBs


)
dt


B0 = 0


has a unique solution defined for all t ∈ [0,T ] by


dBt = dWt +


(∫ t


0
Γ(t, s) dWs


)
dt,


where
Γ(t, s) =


∞∑
i=1


gi (t, s),


and


gn+1(t, s) = β2


∫ t


s
f (t, τ)gn(τ, s) dτ n ≥ 1, g1 = β2f







Are these two results the same?


I Rewrite the Ben Arous-Guionnet mean-field equation as{
dxt = −∇U(xt)dt + Ψx


t dt
Law of x0 = µ0


,


where


Ψx
t =


dWt


dt
+


∫ t


0
Γ(t, u) dWu


I The process dWt
dt is interpreted as “Gaussian white noise”.


I Ψx is a Gaussian process with zero mean and autocorrelation


E [Ψx
t Ψx


s ] = δ(t − s) +


∫ t∧s


0
Γ(t, u)Γ(s, u) du


I Since in general∫ t∧s


0
Γ(t, u)Γ(s, u) du 6= β2


E


[
GQ
s GQ


t


]
,


the two results may be contradictory!







From spin glasses to firing rate neurons


I In 1988, Sompolinsky, Crisanti and Sommers generalized the
spin glass equations to firing rate neurons:{


ẋ i = −∇U(x i ) + β√
N


∑
j JijS(x j) + ξi


Law of x0 = µ⊗N0


I S is the “usual” sigmoid function.


I They proposed the following mean-field equation:{
dxt = −∇U(xt)dt + Φx


t dt + Idt
Law of x0 = µ0


Φx
t is a zero mean Gaussian process whose autocorrelation C


writes


C (t, s) ≡ E [Φx
s Φx


t ] = δ(t − s) + β2


∫
S(xs)S(xt) dQ(x) =


δ(t − s) + β2
E


[
S(GQ


s )S(GQ
t )
]







From spin glasses to firing rate neurons


I In 2009, Faugeras, Touboul and Cessac generalized the
S.-C.-S. equation to the case of several populations.


I The weights are i.i.d. and Jij ≈ N
(


Jαβ


Nβ
,
σαβ√
Nβ


)
I They proposed an annealed mean-field equation inspired from


that of S.-C.-S. and proved the equation had a unique
solution in finite time.


I The solution is Gaussian, but non-Markov.


I The mean satisfies a first-order differential equation.


I The covariance function satisfies an integral equation.


I Both equations are nonlinearly coupled.


I Studying the solution turned out to be a formidable task (see
part of Geoffroy Hermann’s PhD thesis)


I From the discussion on spin glasses one may wonder whether
this equation is the “correct” one.







From spin glasses to firing rate neurons


The mean process is coupled through the variance C (t, t)


dµ(t)


dt
= −µ(t)


τ
+ J̄


∫
R


S
(


x
√


C (t, t) + µ(t)
)


Dx+


I (t)







From spin glasses to firing rate neurons


The mean process is coupled through the variance C (t, t)


dµ(t)


dt
= −µ(t)


τ
+ J̄


∫
R


S
(


x
√


C (t, t) + µ(t)
)


Dx+


I (t)







From spin glasses to firing rate neurons


To the non-Markovian covariance


C (t, s) = e−(t+s)/τ
[
C (0, 0) +


σ2
ext


2


(
e2(t∧s)/τ − 1


)
+ J̄


∫ t


0


∫ s


0
e(u+v)/τ∆(u, v)dudv


]


∆(t, s) = E [S(xt)S(xs)]
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From spin glasses to firing rate neurons


To the non-Markovian covariance


C (t, s) = e−(t+s)/τ
[
C (0, 0) +


σ2
ext


2


(
e2(t∧s)/τ − 1


)
+ J̄


∫ t


0


∫ s


0
e(u+v)/τ∆(u, v)dudv


]
∆(t, s) = E [S(xt)S(xs)]







Questions, open problems


I The neuron models are deceptively simple: can we do better?


I The synaptic connection models are deceptively simple: can
we improve them?


I The completely connected graph model is too restrictive: can
we develop a theory for different graphs?


I The i.i.d. model for the synaptic weights is not compatible
with biological evidence: can we include correlations?







Networks of continuous spiking neurons


I Hodgkin-Huxley model or one of its 2D reductions.


I Chemical and electric noisy synapses (conductance-based
models)


I Synaptic weights are dynamically changing over time.
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Fitzhugh Nagumo model


Stochastic Differential Equation (SDE):{
dVt = (Vt − V 3


t
3 − wt + I ext(t)) dt + σext dWt


dwt = a (b Vt − wt) dt


Takes into account external current noise.







Synapses


Synaptic current from the jth to the ith neuron:


I synij = gij(t)(V i − V i
rev)


Chemical conductance:


gij(t) = Jij(t)y j(t)


The function y denotes the fraction of open channels:


ẏ j(t) = ajrSj(V j)(1− y j(t))− ajdy j(t),


The function S :


S(V j) =
Tmax


1 + e−λ(V j−VT )







Synapses


Taking noise into account:


dy j
t =


(
arS(V j)(1− y j(t))− ady j(t)


)
dt + σ(V j , y j) dW j ,y


t


Keeping y j between 0 and 1:


σ(V j , y j) =
√


arS(V j)(1− y j) + ady jχ(y j)







Synaptic weights


The synaptic weights are affected by dynamical random variations:


Jij(t) =
J̄


N
+
σ


N
ξi (t) =


J̄


N
+
σ


N


dB i
t


dt
,


Advantage : simplicity


Disadvantage : an increase of the noise level increases the
probability that the sign of Jij(t) is different from
that of J̄.
It can be fixed (technical)
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Putting everything together


Each neuron is represented by a state vector of dimension 3:


dV i
t =


(
V i
t −


(V i
t )3


3 − w i
t + I (t)


)
dt+(


1
N


∑
j J̄(V i


t − Vrev)y j
t


)
dt+


1
N


(∑
j σ(V i


t − Vrev)y j
t


)
dB i


t+


σext dW i
t


dw i
t = a


(
b V i


t − w i
t


)
dt


dy i
t =


(
arS(V i


t )(1− y i
t )− ady i


t


)
dt + σ(V i


t , y
i
t )dW i , y


t







Putting everything together


The full dynamics of the neuron i can be described compactly by


dX i
t = f (t,X i


t ) dt + g(t,X i
t )


[
dW i


t


dW i , y
t


]
+


1


N


∑
j


b(X i
t ,X


j
t ) dt+


1


N


∑
j


β(X i
t ,X


j
t )dB i , j


t


This very general equation applies to all continuous spiking neuron
models.







Putting everything together


Questions:


I What happens when N →∞?


I Can we “summarize” the mean network activity with a few
equations?


I What is ∞?







Answer to points 1 and 2


In the limit N →∞ (thermodynamic limit), given independent
initial conditions


1. All neurons become independent (propagation of chaos) .


2. All neurons have asymptotically the same probability
distribution
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2. All neurons have asymptotically the same probability
distribution







Answer to points 1 and 2


True under the following assumptions:


(H1). Locally Lipschitz dynamics: The functions f and g are
uniformly locally Lipschitz-continuous with respect to the
second variable.


(H2). Lipschitz interactions: The functions b and β are
Lipschitz-continuous


(H3). Monotonous growth of the dynamics: We assume that f
and g satisfy the following monotonous condition:


xT f (t, x) +
1


2
‖g(t, x)‖2 ≤ K (1 + ‖x‖2)







Answer to points 1 and 2


I The equation:


dX̄t = f (t, X̄t) dt +EZ̄ [b(X̄t , Z̄t)] dt + g(t, X̄t) dWt


+EZ̄ [β(X̄t , Z̄t)] dBt


Z̄ is a process independent of X̄ that has the same law, and EZ̄


denotes the expectation under the law of Z̄ .
Note that we had to “guess” the equation







Answer to points 1 and 2


I Note p(t, z) the PDF of X̄ .


I Rewrite the equations as:


dX̄t = f (t, X̄t) dt +


(∫
Rd


b(X̄t , z)p(t, z) dz


)
dt+


g(t, X̄t) dWt +


(∫
Rd


β(X̄t , z)p(t, z)


)
dBt







Comments


I The equation is “unsurprising”


I It is complicated: “non-local” and the populations are
independent but functionnally coupled (McKean-Vlasov
equation)


I A “non-local” Fokker-Planck equations can be written:
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∂tp(t, x) =


− div


((
f (t, x) +


∫
b (x , y) p (t, y) dy


)
p (t, x)


)
+


1


2


d∑
i , j=1


∂2


∂xi∂xj
(Dij (x) p (t, x)) ,


D(x) = EZ [β(x ,Z )]ET
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Main result I


Theorem (Well-posedness)


Under the previous assumptions, there exists a unique solution to
the mean-field equation on [0,T ] for any T > 0.


Proof: Use a fixed point argument.







Main result I


I Express the solution of the mean field equation as the solution
of x = F (x)


I x is a measure and F a mapping from the set of measures
into itself


I The proof involves Martingale inequalities and Gronwall
lemma
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I Express the solution of the mean field equation as the solution
of x = F (x)


I x is a measure and F a mapping from the set of measures
into itself


I The proof involves Martingale inequalities and Gronwall
lemma







Main result II


Theorem
Under the previous assumptions the following holds true:


I Convergence: For each neuron i , the law of the
multidimensional process X i ,N converges towards the law of
the solution of the mean-field equation, namely X̄ .


I Propagation of chaos: For any k ∈ N∗, and any k-uplet
(i1, . . . , ik), the law p(t, z1, · · · , zk) of the process


(X i1,N
t , . . . ,X ik ,N


t , t ≤ T ) converges towards
p(t, z1)⊗ . . .⊗ p(t, zk), i.e. the asymptotic processes have
the law of the solution of the mean-field equations and are all
independent.


Proof: Use Sznitman coupling argument (1989), first proposed by
Dobrushin (1970)







Numerical validation of the propagation of chaos


I The propagation of chaos effect appears for small populations:
compatible with biology.
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Connection with information theory


I The propagation of chaos
property implies that the
cortex behaves optimally in
terms of information coding.


I It looks as if neurons were
coding probability laws


from Ecker et al., Science 2010
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Finite size effects
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Finite size effects


Here is a movie







Discussion and caveats


Assumptions


I Realistic model of neurons,
synapses.


I Somewhat realistic models
of synaptic weights (not
including plasticity)


I Fully connected network


I Independence of noise
sources


I Accurate description for
infinitely large populations.


Comments


I Fine


I Fine, but plasticity is (very)
important


I The results (probably) hold
if the number of neighbours
is o(N), e.g., log N (Ben
Arous and Zeitouni 1999)


I Should look at correlated
noise sources (probably very
hard)


I Finite size effects seem to be
small and can be
characterized
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I Should look at correlated
noise sources (probably very
hard)


I Finite size effects seem to be
small and can be
characterized
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Comparison between the static and dynamic randomness
approaches


Static randomness


I Mean field equation is part
of the large deviations
technique


I Mean field process is
non-Markov


Dynamic randomness


I Mean field equation must be
guessed


I Markov property is preserved


I Generalization to correlated noise/synaptic weights is possible


I Generalization to other types of connectivity is possible
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Introduction


Outline


1 Introduction : link between exit problem and stochastic resonance


2 Exit time for a self-stabilizing process (McKean-Vlasov) living in a
convex landscape: the inertia of a particular process attracted by its
own law...


3 Exit time for a self-stabilizing diffusion in a double-well landscape
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Introduction


Introduction


The stochastic resonance framework ß to understand how a weak
deterministic and periodic input of a given dynamical system can be
amplified by noisy perturbations.


In particular, there exists an optimal relation between the period log(T )
(deterministic input) and the noise intensity ε so that the stochastic paths
look like the most periodic as possible (quality measures are needed)


dXt =
√
εdWt−V ′(Xt)dt+A0 cos(2πt/T )dt, t ≥ 0,


where (Wt , t ≥ 0) is a Brownien motion,
the diffusion coefficient is constant and V is
a double-well potential.


Study of the exit problem (from one well): joint work with P. Imkeller and
D. Peithmann.
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Introduction


Several physicists (Jung, Behn, Pantazelou, Moss ’92) introduced the
stochastic resonance phenomenon for globally coupled systems (N
individuals in interaction, for instance, neural networks):


dX i
t =
√
εdW i


t − V ′(X i
t )dt − 1


N


N∑
j=1


F ′(X i
t − X j


t )dt + A0 cos(2πt/T )dt,


where W i are indep. BM, V is a double-well potential, F ′ is linear. The
quality measures used in practice depends on invariant measures of
simplified systems. ß Difficulties if ε is small and N large (mean field).


Propagation of chaos


The empirical measure 1
N
∑N


j=1 δX j
t
converges towards ut which


corresponds to the distribution of the McKean-Vlasov solution:
dX ε


t =
√
εdWt − V ′(X ε


t )dt −
∫
R F ′(X ε


t − x)duεt (x) dt + A0 cos(2πt/T )dt.


References: Sznitman ’91, Dawson & Gärtner ’87, McKean ’66 ’67, Stroock &
Varadhan ’79, Oelschläger ’85, Funaki ’84, Tamura ’84 ’87, Benachour,
Roynette, Talay & Vallois ’98, Benachour, Roynette & Vallois ’98
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Introduction


In order to analyse stochastic resonance for the limit process, it suffices to
describe the exit problem (transitions between the metastables states of
the dynamical system) for the nonlinear stochastic process:


dX ε
t =
√
εdWt − V ′(X ε


t )dt −
∫
R


F ′(X ε
t − x)duεt (x) dt + A0 cos(2πt/T )dt.


First step: asymptotic behavior as ε << 1 without the periodic
perturbation.


Difficulties:


the process is nonlinear
the drift term depends on the time (non homogeneous)
the drift term depends on the small parameter ε.


The study concerns a fonction V which represents:
either a convex landscape
or a double-well landscape


Assumption: V & F loc. Lipschitz, even with polyn. growth.
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Convexe case


2. Exit problem: self-stabilizing process living in a convex landscape


dX ε
t =
√
εdWt − V ′(X ε


t )dt − bε(t,X ε
t ) dt,


bε(t, x) =


∫
R


F ′(x − y)duεt (y) dt = E[F ′(x − X ε
t )].


Asymptotic behaviour of the exit time (ε→ 0): Find the Large Deviations
Principle associated to X ε on the time interval [0,T ], then study on R+.


Convergence & Large Deviations


The self-stabilising process starting from x0 converges in distribution
towards the solution: ψ̇t = −V ′(ψt), ψ0 = x0.
X ε satisfies LDP in (C([O,T ]), ‖ · ‖∞) with the associated rate function:


I x0
T (ϕ) =


1
2


∫ T


0
‖ϕ̇t + V ′(ϕt) + F ′(ϕt − ψt(x0))‖2dt, si ϕ ∈ H1


x0
.
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Convexe case


If the SDE is observed on [s, s + T ] then the LDP is associated with
IT (ϕ) = 1


2


∫ T
0 ‖ϕ̇t + V ′(ϕt) + F ′(ϕt − ψs+t(x))‖2 dt.


4 Exit time for diffusions in convex landscapes.


Intuitive idea: splitting the real axis in large time intervals of length L.


τ denotes the exit time of D which con-
tains the stable point of V : xstable .


6L3L 4L 5L0 L 2L


1 On each interval time dependent LDP describing the probability to
exit the domain D in this interval.


2 After a large number of intervals: the exit probability is close to a
particular p associated with


I∞L (ϕ) =
1
2


∫ L


0
‖ϕ̇t + V ′(ϕt) + F ′(ϕt − xstable)‖2 dt


Minimal cost E∞ = inf{I∞t (ϕ) : ϕ cont., ϕ0 = xstable, ϕt ∈ Dc , t > 0}
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Double-well case


ý The convexity is essential : what happens in a double-well landscape ?


Self-stabilizing process in a double-well landscape V


dX ε
t = −V ′(X ε


t )dt−
∫
R


F ′(X ε
t − x)duεt (x) dt +


√
εdWt .


The minima of V are reached at x = −a and a.


ý Aim: to describe the transitions in the small noise limit.


ý Simplification: stationary regime.
We replace uεt by an invariant uε.


Invariant measures and asymptotic behavior as ε→ 0


In order to find an invariant measure we solve


ε


2
u′′ε (x) +


(
uε(x)(V ′(x) + F ′ ? uε(x))


)′
= 0.
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Double-well case


Each invariant measure takes the exponential form


uε(x) =
1


λ(uε)
exp
[
−2
ε


(∫ x


0
F ′ ? uε(y)dy + V (x)


)]
= A(uε).


We have to solve a fixed point problem associated with the application A
å simplification in the particular linear F ′(x) = αx .


Linear case


If F ′(x) = αx and V ′′ convex, there exist exactly:
one symmetric invariant measure
two asymmetric measures close to δa et δ−a


If m is the mean of the invariant measure then m = Ψε(m) with


Ψε(m) =


∫
R x exp


[
− 2


ε


(
V (x)+α x2


2 −αmx
)]


dx∫
R exp


[
− 2


ε


(
V (x)+α x2


2 −αmx
)]


dx


There exist exactly 3 solutions corresponding to 3 invariant measures.
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Double-well case


0 is an obvious solution (symmetric measure). The asymptotic behavior of
the corresponding measure is emphasized by the Laplace method:


uε(x) = 1
Zε exp−2


ε


{
V (x) + αx2


2


}
å uε converges towards a limit measure (ε→ 0) whose support belongs
to the set of solutions of αx0 + V ′(x0) = 0.


if α ≥ −V ′′(0) then uε → δ0


if α < −V ′′(0) then uε → 1
2δx0 + 1


2δ−x0 .


Generalization to polynomial interaction functions


If V ′′ and F ′′ are both convex functions (+ suitable weak conditions),
then there exist exactly three invariant measures: one is symmetric and
two are asymmetric close to δa and δa. The symmetric one converges
(ε→ 0) towards 1


2δ−x0 + 1
2δx0 with


V ′(x0) + 1
2F ′(2x0) = 0 and V (x0) + F ′′(0)+F ′′(2x0)


2 ≥ 0


If F (0) ≥ −V (0) then x0 = 0 otherwise the support contains 2 points.
We use the Schauder’s fixed point theorem in order to solve uε = A(uε).


S. Herrmann (IMB) University of Burgundy, Dijon October 6, 2011 14 / 15







Double-well case


dX ε
t = −V ′(X ε


t )dt−
∫
R F ′(X ε


t − x)duεt (x) dt +
√
εdWt .


Exit problem


For any δ > 0, lim
ε→0


Px(e(E
∞+δ)/ε > τ > e(E


∞−δ)/ε) = 1


and lim
ε→0


ε lnEx [τ ] = E∞.


Here E∞ = inf{I∞T (ϕ) : ϕ cont., ϕ0 = xstable, ϕT ∈ Dc ,T > 0} with


I∞T (ϕ) =
1
2


∫ T


0
‖ϕ̇t + V ′(ϕt)+Φ(ϕt)‖2 dt


where Φ represents one of the following functions:
1 Φ(x) = F ′(x) if uε is symmetric and F ′′(0) ≥ −V ′′(0)


2 1
2F ′(x − x0) + 1


2F ′(x + x0) if uε is symmetric and F ′′(0) < −V ′′(0)


3 F ′(x − a) (resp. F ′(x + a)) if uε converges towards δa (resp. δ−a).
å Open questions: What’s about the domain of attraction for these
invariant measures ? What happens if we add a deterministic periodic
perturbation ? Can we describe stochastic resonance ?
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Outline


- Correlations in networks and linear response


- Distinct impact of inputs on membrane voltage and spiking 
correlations


- The structure of correlations in neuronal networks
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Oscillations can be observable 
on the population level


Gutnisky and Josić, 2010
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Convergence can cause runaway 
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Subthreshold integration of I(t)


Fire and Reset


Integrate-and-Fire neurons


V (t) = Vt ⇒ V (t+) = Vr
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de la Rocha, et al ’07, Rosenbaum and Josić, ’10


The simplest question


Figure 1.3: Circuit model for the correlation transfer problem. Two neurons ( j = 1, 2)
receive correlated stochastic input currents in j(t). We will often assume that each input
consists of a sum of excitatory and inhibitory spike trains, in j(t) = e j(t) − i j(t). The
inputs are non-linearly filtered by the neurons to produce output spike trains, s j(t). We
seek to understand how the correlation between the output spike trains are related to
the univariate and bivariate statistics of the inputs and the dynamical properties of the
neurons.


models that will be used throughout the work. In Chapter 3, we prove a theorem that


characterizes correlations between a class of bivariate point processes that arise in the


study of the models from Chapter 4. In Chapter 5, we analyze the statistics of the circuit


illustrated in Fig. 1.3 for neuronal models of increasing complexity.


In Chapter 6, we use the analysis from Chapter 5 to develop an intuitive and mech-


anistic understanding of how correlations between inputs are transferred to correlations


between the activity of the neurons in the circuit pictured in Fig. 1.3. First, we give an intu-


itive explanation of why the ratio of input to output correlations generally increases with


the firing rates of the neurons, a known phenomenon we refer to as the correlation-rate


relationship [31]. We then show that the correlation-rate relationship does not imply that


correlations necessarily increase with firing rate since input correlations generally change


with firing rates. We also show that the correlation-rate relationship does not make it dif-


ficult to modulate correlations and rates independently on one another. Finally, we show


that the ratio of membrane potential correlation to input correlation generally decreases
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Membrane potential and spike train statistics depend distinctly on input statistics


Robert Rosenbaum1 and Krešimir Josić1, 2
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A description of how the activity of a population of neurons reflects the structure of its inputs


is essential for understanding neural coding. Many studies have examined how inputs determine


spiking statistics, while comparatively little is known about membrane potentials. We examine how


membrane potential statistics are related to input and spiking statistics. Surprisingly, firing rates and


membrane potentials are sensitive to input current modulations in distinct regimes. Additionally,


the correlation between the membrane potentials of two uncoupled cells and the correlation between


their spike trains reflect input correlations in distinct regimes. Our predictions are experimentally


testable, provide insight into the filtering properties of neurons, and indicate that care needs to be


taken when interpreting neuronal recordings that reflect a combination of subthreshold and spiking


activity.


Keywords: correlations, integrate and fire neurons, linear response, membrane potential, spike train


I. INTRODUCTION


To understand dynamics and information processing in
neuronal networks, it is important to examine how the
inputs to neurons shape their activity. Computational
and theoretical approaches to this problem typically fo-
cus on spiking activity. However, action potentials are a
sparse representation of a cell’s response, while the sub-
threshold membrane potential is continuously modulated
by a cell’s inputs. In addition, popular recording tech-
niques such as voltage sensitive dyes and local field po-
tentials capture a mixture of subthreshold and spiking
activity. While the multivariate statistics of membrane
potential traces have been examined experimentally [1–
4], a theoretical approach to the problem has not been
fully developed [5].


We provide theoretical tools to examine how the statis-
tics of inputs to neurons determine the marginal and joint
statistics of their membrane potential activity. This ap-
proach also allows us to study how membrane potential
statistics are related to spiking statistics. Counter to in-
tuition, we find that current coded signals are reliably
reflected by membrane potentials and firing rates in dis-
tinct regimes: Firing rates are most sensitive to modula-
tions of a cell’s input current when excitation is strong
and firing rates are high. In contrast, the mean mem-
brane potential is most sensitive to such modulations
when excitation is weak and firing rates low. In addition,
we find that when two uncoupled cells receive correlated
inputs, their spiking correlations and membrane poten-
tial correlations are reflective of the correlations between
their inputs in distinct regimes.


These findings illuminate some fundamental filtering
properties of neurons and have significant implications
for the interpretation of different types of experimental
recordings. For example, the correlation between two
signals obtained from voltage sensitive dyes or local field
potentials can exhibit a decrease in correlations when
spiking correlations increase.


II. METHODS


We model two cells receiving correlated, stochastic in-
put using a leaky integrate–and–fire (LIF) model. With-
out loss of generality, we scale and shift the voltage units
so that the membrane capacitance is Cm = 1 and the leak
current has reversal potential at zero. Thus the mem-
brane potential of cell k = 1, 2 obeys


dVk


dt
= − Vk


τm
+ Je ek(t)− Ji ik(t) (1)


where e1(t) =
�


j δ(t− tje1) and e2(t) =
�


j δ(t− tje2) are
correlated stationary point processes representing excita-
tory inputs with rate re, and similarly for the inhibitory
inputs i1,2(t) with rate ri. The term Je (Ji) represents
the synaptic strength of excitation (inhibition) and τm


the membrane time constant. Additionally, whenever
Vk(t) exceeds threshold at Vth, a spike is fired and the
membrane potential reset to Vre. Output spike trains are
given by sk(t) =


�
j δ(t− tjk), where tjk is the time of the


jth spike of cell k. We denote the output firing rates by
rs. For notational convenience, we also define the total
input currents ink(t) = Je ek(t)− Ji ik(t) with mean


µ = �ink(t)� = Jere − Jiri.


For simplicity, the dynamics and input statistics of the
two cells are assumed to be statistically identical in the
text, with a general treatment given in the appendices.


We quantify the covariance between spike trains and
membrane potentials using the cross-covariance Cκ(τ) =
cov(κ1(t), κ2(t + τ)), for κ ∈ {s, e, i, in, V } where
cov(x, y) = �xy� − �x��y�, �·� denotes expectation and
processes are assumed stationary and ergodic. The cross-
covariance between the total input currents is related to
the excitatory and inhibitory cross-covariances by


Cin(τ) = J2
e Ce(τ) + J2


i Ci(τ)− 2JeJiCei(τ), (2)


where Cei(τ) = cov(e1(t), i2(t + τ)) = cov(i1(t), e2(t +
τ)). Auto-covariances are defined similarly, Aκ(τ) =


ek(t) =
∑


j


δ(t − t
j
ek


)
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tuition, we find that current coded signals are reliably
reflected by membrane potentials and firing rates in dis-
tinct regimes: Firing rates are most sensitive to modula-
tions of a cell’s input current when excitation is strong
and firing rates are high. In contrast, the mean mem-
brane potential is most sensitive to such modulations
when excitation is weak and firing rates low. In addition,
we find that when two uncoupled cells receive correlated
inputs, their spiking correlations and membrane poten-
tial correlations are reflective of the correlations between
their inputs in distinct regimes.


These findings illuminate some fundamental filtering
properties of neurons and have significant implications
for the interpretation of different types of experimental
recordings. For example, the correlation between two
signals obtained from voltage sensitive dyes or local field
potentials can exhibit a decrease in correlations when
spiking correlations increase.


II. METHODS


We model two cells receiving correlated, stochastic in-
put using a leaky integrate–and–fire (LIF) model. With-
out loss of generality, we scale and shift the voltage units
so that the membrane capacitance is Cm = 1 and the leak
current has reversal potential at zero. Thus the mem-
brane potential of cell k = 1, 2 obeys


dVk


dt
= − Vk


τm
+ Je ek(t)− Ji ik(t) (1)


where e1(t) =
�


j δ(t− tje1) and e2(t) =
�


j δ(t− tje2) are
correlated stationary point processes representing excita-
tory inputs with rate re, and similarly for the inhibitory
inputs i1,2(t) with rate ri. The term Je (Ji) represents
the synaptic strength of excitation (inhibition) and τm


the membrane time constant. Additionally, whenever
Vk(t) exceeds threshold at Vth, a spike is fired and the
membrane potential reset to Vre. Output spike trains are
given by sk(t) =


�
j δ(t− tjk), where tjk is the time of the


jth spike of cell k. We denote the output firing rates by
rs. For notational convenience, we also define the total
input currents ink(t) = Je ek(t)− Ji ik(t) with mean


µ = �ink(t)� = Jere − Jiri.


For simplicity, the dynamics and input statistics of the
two cells are assumed to be statistically identical in the
text, with a general treatment given in the appendices.


We quantify the covariance between spike trains and
membrane potentials using the cross-covariance Cκ(τ) =
cov(κ1(t), κ2(t + τ)), for κ ∈ {s, e, i, in, V } where
cov(x, y) = �xy� − �x��y�, �·� denotes expectation and
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where Cei(τ) = cov(e1(t), i2(t + τ)) = cov(i1(t), e2(t +
τ)). Auto-covariances are defined similarly, Aκ(τ) =
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covariance between the total input currents is related to
the excitatory and inhibitory cross-covariances by


Cin(τ) = J2
e Ce(τ) + J2
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iIf n is the number of spikes of neuron i during a time T, the 
correlation coefficient of the output is


T


neuron 1


neuron 2


Correlations


RV (τ) =
Cov(V1(t), V2(t + τ))


√


Var(V1(t))Var(V2(t + τ))
ρs(T ) =


Cov(n1, n2)
√


Var(n1)Var(n2)
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Weak excitation limit


Threshold is crossed rarely, and the membrane potential is a filtered 
version of the input


2


cov(κk(t), κk(t+τ)). To quantify the correlation between


membrane potentials, we normalize the cross-covariance


to obtain the Pearson normalized cross-correlation (here-


after referred to simply as cross-correlation)


RV (τ) =
CV (τ)


AV (0)
=


cov(V1(t), V2(t + τ))�
var(V1(t))var(V2(t + τ))


, (3)


which satisfies |RV (τ)| ≤ 1 and where |RV V (0)| = 1 im-


plies that the membrane potentials are perfectly corre-


lated or anti-correlated, i.e. V1(t) = λV2(t).
The Pearson normalized cross-correlation between


point processes is not defined since they have infinite


variance (i.e., var(κk(t)) = ∞ for κ ∈ {e, i, in, s}) [6,


7]. We instead consider statistics of the spike counts,


Nκk(t1, t2) =
� t2


t1
κk(s)ds for κ ∈ {in, s, e, i} and


k = 1, 2. Define the normalized spike count vari-


ance σ2
(T ) = var(Nκk(t, t + T ))/T , covariance γκ(T ) =


cov(N1(t, t+T ), N2(t, t+T ))/T , and correlation ρκ(T ) =


γκ(T )/σ2
κ(T ).


We next provide a general and intuitive derivation of


spiking and membrane potential statistics in the limit of


weak and strong excitation. The relation between the two


is then examined outside of these limits using a diffusion


approximation.


III. WEAK EXCITATION LIMIT


We begin by examining the response properties of a


pair of LIFs in a regime where spiking is rare, for in-


stance when excitation is weaker than the combined cur-


rent from inhibition and leak (Jere � Jiri + Vth/τm).


In this limit we find that the mean membrane potentials


reliably reflect the mean input currents. In contrast the


cells’ firing rates depend only weakly on the mean input


current. Additionally, correlations between membrane


potentials reflect input correlations, but spiking correla-


tions are nearly zero.


In the limit of weak excitation, the membrane poten-


tials are given by Eq. (1) without thresholding, and hence


by linearly filtered versions of the inputs. Standard signal


processing identities can be used to obtain the membrane


potential statistics [8]. The stationary mean of the mem-


brane potentials is proportional to the mean of the input


current, �Vk� = µτm, so that the gain of the membrane


potential is given by


d�Vk�
dµ


= τm.


The auto- and cross-covariance functions are obtained


by applying a linear filter to the input auto- and cross-


covariance functions,


AV (τ) = (K ∗Ain)(τ) and CV (τ) = (K ∗ Cin)(τ), (4)


where K(τ) = τme−|τ |/τm/2. Thus, the integral correla-


tion coefficient of the input is preserved in the membrane


potentials in the sense that


�∞
−∞ CV (τ)dτ


�∞
−∞AV (τ)dτ


=


�∞
−∞ Cin(τ)dτ


�∞
−∞Ain(τ)dτ


= lim
T→∞


ρin(T ).


The stationary variance is var(Vk) = AV (0) =�∞
−∞Ain(τ)K(τ)dτ which gives the cross-correlation


function, c.f. Eq. (3).


Whereas membrane potential statistics reliably reflect


input statistics, the gain of the spike trains and the cor-


relation between spike trains are nearly zero when exci-


tation is weak


drs


dµ
≈ 0, Cs(τ) ≈ 0 and ρs(T ) ≈ 0. (5)


and asymptotic expansions are known for each [9–12].


The conclusion that spiking correlations vanish in the


limit of weak excitation requires an assumption that in-


put correlations are weak. However, spiking correlations


are found to be nearly zero when excitation is weak and


input correlations are chosen to be moderate in magni-


tude [9, 10].


The results in this section were obtained by assuming


that excitation is weak so that spiking is rare. However,


the results are valid any time active spiking conductances


have a negligible impact, such as when spiking is sup-


pressed either pharmacologically or by injecting a hyper-


polarizing current in experiments [2, 3]. See Sec. VI D


for further discussion.


IV. STRONG EXCITATION LIMIT


We now examine the response properties of two LIFs


when excitation is strong and firing rates are high. In this


regime the sensitivity to input currents is reversed: The


mean membrane potentials show a weak dependence, but


the firing rates reflect the mean input current reliably.


Similarly, membrane potential correlations are zero, but


spiking correlations reflect input correlations.


When excitation dominates the current across the


membrane (Jere � Jiri +Vth/τm), an approximation can


be obtained by ignoring the effects of inhibition and leak.


Eq. (1) is then replaced by the equation for a perfect in-


tegrator [9, 13],


dVk


dt
= Je ek(t), (6)


with the same threshold and reset conditions. This model


is analyzed in Appendix A and we review the results here.


Under weak ergodicity assumptions, the bivariate distri-


bution of (V1(t), V2(t + τ)) is uniform, generalizing the


univariate result in [14]. We also assume that Vth−Vre is


an integer multiple of Je, which simplifies the exposition,


but does not significantly change the results.
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after referred to simply as cross-correlation)
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plies that the membrane potentials are perfectly corre-
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The Pearson normalized cross-correlation between


point processes is not defined since they have infinite


variance (i.e., var(κk(t)) = ∞ for κ ∈ {e, i, in, s}) [6,


7]. We instead consider statistics of the spike counts,
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is then examined outside of these limits using a diffusion


approximation.
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We begin by examining the response properties of a


pair of LIFs in a regime where spiking is rare, for in-


stance when excitation is weaker than the combined cur-


rent from inhibition and leak (Jere � Jiri + Vth/τm).


In this limit we find that the mean membrane potentials


reliably reflect the mean input currents. In contrast the


cells’ firing rates depend only weakly on the mean input


current. Additionally, correlations between membrane


potentials reflect input correlations, but spiking correla-


tions are nearly zero.


In the limit of weak excitation, the membrane poten-


tials are given by Eq. (1) without thresholding, and hence


by linearly filtered versions of the inputs. Standard signal


processing identities can be used to obtain the membrane


potential statistics [8]. The stationary mean of the mem-


brane potentials is proportional to the mean of the input


current, �Vk� = µτm, so that the gain of the membrane


potential is given by


d�Vk�
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= τm.


The auto- and cross-covariance functions are obtained


by applying a linear filter to the input auto- and cross-


covariance functions,


AV (τ) = (K ∗Ain)(τ) and CV (τ) = (K ∗ Cin)(τ), (4)


where K(τ) = τme−|τ |/τm/2. Thus, the integral correla-
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potentials in the sense that
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−∞ CV (τ)dτ
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=
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The stationary variance is var(Vk) = AV (0) =�∞
−∞Ain(τ)K(τ)dτ which gives the cross-correlation


function, c.f. Eq. (3).


Whereas membrane potential statistics reliably reflect


input statistics, the gain of the spike trains and the cor-


relation between spike trains are nearly zero when exci-


tation is weak


drs


dµ
≈ 0, Cs(τ) ≈ 0 and ρs(T ) ≈ 0. (5)


and asymptotic expansions are known for each [9–12].


The conclusion that spiking correlations vanish in the


limit of weak excitation requires an assumption that in-


put correlations are weak. However, spiking correlations


are found to be nearly zero when excitation is weak and


input correlations are chosen to be moderate in magni-


tude [9, 10].


The results in this section were obtained by assuming


that excitation is weak so that spiking is rare. However,


the results are valid any time active spiking conductances


have a negligible impact, such as when spiking is sup-


pressed either pharmacologically or by injecting a hyper-


polarizing current in experiments [2, 3]. See Sec. VI D


for further discussion.


IV. STRONG EXCITATION LIMIT


We now examine the response properties of two LIFs


when excitation is strong and firing rates are high. In this


regime the sensitivity to input currents is reversed: The


mean membrane potentials show a weak dependence, but


the firing rates reflect the mean input current reliably.


Similarly, membrane potential correlations are zero, but


spiking correlations reflect input correlations.


When excitation dominates the current across the


membrane (Jere � Jiri +Vth/τm), an approximation can


be obtained by ignoring the effects of inhibition and leak.


Eq. (1) is then replaced by the equation for a perfect in-


tegrator [9, 13],


dVk


dt
= Je ek(t), (6)


with the same threshold and reset conditions. This model


is analyzed in Appendix A and we review the results here.


Under weak ergodicity assumptions, the bivariate distri-


bution of (V1(t), V2(t + τ)) is uniform, generalizing the


univariate result in [14]. We also assume that Vth−Vre is


an integer multiple of Je, which simplifies the exposition,


but does not significantly change the results.
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Threshold is crossed rarely, and the membrane potential is a filtered 
version of the input
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cov(κk(t), κk(t+τ)). To quantify the correlation between
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point processes is not defined since they have infinite
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spiking and membrane potential statistics in the limit of


weak and strong excitation. The relation between the two


is then examined outside of these limits using a diffusion


approximation.
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pair of LIFs in a regime where spiking is rare, for in-


stance when excitation is weaker than the combined cur-
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In this limit we find that the mean membrane potentials


reliably reflect the mean input currents. In contrast the


cells’ firing rates depend only weakly on the mean input


current. Additionally, correlations between membrane


potentials reflect input correlations, but spiking correla-


tions are nearly zero.


In the limit of weak excitation, the membrane poten-


tials are given by Eq. (1) without thresholding, and hence


by linearly filtered versions of the inputs. Standard signal


processing identities can be used to obtain the membrane


potential statistics [8]. The stationary mean of the mem-


brane potentials is proportional to the mean of the input


current, �Vk� = µτm, so that the gain of the membrane


potential is given by


d�Vk�
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= τm.


The auto- and cross-covariance functions are obtained


by applying a linear filter to the input auto- and cross-


covariance functions,
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=
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The stationary variance is var(Vk) = AV (0) =�∞
−∞Ain(τ)K(τ)dτ which gives the cross-correlation


function, c.f. Eq. (3).


Whereas membrane potential statistics reliably reflect


input statistics, the gain of the spike trains and the cor-


relation between spike trains are nearly zero when exci-


tation is weak


drs


dµ
≈ 0, Cs(τ) ≈ 0 and ρs(T ) ≈ 0. (5)


and asymptotic expansions are known for each [9–12].


The conclusion that spiking correlations vanish in the


limit of weak excitation requires an assumption that in-


put correlations are weak. However, spiking correlations


are found to be nearly zero when excitation is weak and


input correlations are chosen to be moderate in magni-


tude [9, 10].


The results in this section were obtained by assuming


that excitation is weak so that spiking is rare. However,


the results are valid any time active spiking conductances


have a negligible impact, such as when spiking is sup-


pressed either pharmacologically or by injecting a hyper-


polarizing current in experiments [2, 3]. See Sec. VI D


for further discussion.


IV. STRONG EXCITATION LIMIT


We now examine the response properties of two LIFs


when excitation is strong and firing rates are high. In this


regime the sensitivity to input currents is reversed: The


mean membrane potentials show a weak dependence, but


the firing rates reflect the mean input current reliably.


Similarly, membrane potential correlations are zero, but


spiking correlations reflect input correlations.


When excitation dominates the current across the


membrane (Jere � Jiri +Vth/τm), an approximation can


be obtained by ignoring the effects of inhibition and leak.


Eq. (1) is then replaced by the equation for a perfect in-


tegrator [9, 13],
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with the same threshold and reset conditions. This model


is analyzed in Appendix A and we review the results here.


Under weak ergodicity assumptions, the bivariate distri-


bution of (V1(t), V2(t + τ)) is uniform, generalizing the


univariate result in [14]. We also assume that Vth−Vre is


an integer multiple of Je, which simplifies the exposition,


but does not significantly change the results.
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have a negligible impact, such as when spiking is sup-


pressed either pharmacologically or by injecting a hyper-


polarizing current in experiments [2, 3]. See Sec. VI D


for further discussion.


IV. STRONG EXCITATION LIMIT


We now examine the response properties of two LIFs


when excitation is strong and firing rates are high. In this


regime the sensitivity to input currents is reversed: The


mean membrane potentials show a weak dependence, but


the firing rates reflect the mean input current reliably.


Similarly, membrane potential correlations are zero, but


spiking correlations reflect input correlations.


When excitation dominates the current across the


membrane (Jere � Jiri +Vth/τm), an approximation can


be obtained by ignoring the effects of inhibition and leak.


Eq. (1) is then replaced by the equation for a perfect in-


tegrator [9, 13],


dVk


dt
= Je ek(t), (6)


with the same threshold and reset conditions. This model


is analyzed in Appendix A and we review the results here.


Under weak ergodicity assumptions, the bivariate distri-


bution of (V1(t), V2(t + τ)) is uniform, generalizing the


univariate result in [14]. We also assume that Vth−Vre is


an integer multiple of Je, which simplifies the exposition,


but does not significantly change the results.
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ri = 1 and ĪL = 0.5. The filled circles indicate the boundary between the fluctuation and drift dominated regimes:
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cov(κk(t), κk(t+τ)). To quantify the correlation between


membrane potentials, we normalize the cross-covariance


to obtain the Pearson normalized cross-correlation (here-


after referred to simply as cross-correlation)


RV (τ) =
CV (τ)


AV (0)
=


cov(V1(t), V2(t + τ))�
var(V1(t))var(V2(t + τ))


, (3)


which satisfies |RV (τ)| ≤ 1 and where |RV V (0)| = 1 im-


plies that the membrane potentials are perfectly corre-


lated or anti-correlated, i.e. V1(t) = λV2(t).
The Pearson normalized cross-correlation between


point processes is not defined since they have infinite


variance (i.e., var(κk(t)) = ∞ for κ ∈ {e, i, in, s}) [6,


7]. We instead consider statistics of the spike counts,


Nκk(t1, t2) =
� t2


t1
κk(s)ds for κ ∈ {in, s, e, i} and


k = 1, 2. Define the normalized spike count vari-


ance σ2
(T ) = var(Nκk(t, t + T ))/T , covariance γκ(T ) =


cov(N1(t, t+T ), N2(t, t+T ))/T , and correlation ρκ(T ) =


γκ(T )/σ2
κ(T ).


We next provide a general and intuitive derivation of


spiking and membrane potential statistics in the limit of


weak and strong excitation. The relation between the two


is then examined outside of these limits using a diffusion


approximation.


III. WEAK EXCITATION LIMIT


We begin by examining the response properties of a


pair of LIFs in a regime where spiking is rare, for in-


stance when excitation is weaker than the combined cur-


rent from inhibition and leak (Jere � Jiri + Vth/τm).


In this limit we find that the mean membrane potentials


reliably reflect the mean input currents. In contrast the


cells’ firing rates depend only weakly on the mean input


current. Additionally, correlations between membrane


potentials reflect input correlations, but spiking correla-


tions are nearly zero.


In the limit of weak excitation, the membrane poten-


tials are given by Eq. (1) without thresholding, and hence


by linearly filtered versions of the inputs. Standard signal


processing identities can be used to obtain the membrane


potential statistics [8]. The stationary mean of the mem-


brane potentials is proportional to the mean of the input


current, �Vk� = µτm, so that the gain of the membrane


potential is given by


d�Vk�
dµ


= τm.


The auto- and cross-covariance functions are obtained


by applying a linear filter to the input auto- and cross-


covariance functions,


AV (τ) = (K ∗Ain)(τ) and CV (τ) = (K ∗ Cin)(τ), (4)


where K(τ) = τme−|τ |/τm/2. Thus, the integral correla-


tion coefficient of the input is preserved in the membrane


potentials in the sense that


�∞
−∞ CV (τ)dτ


�∞
−∞AV (τ)dτ


=


�∞
−∞ Cin(τ)dτ


�∞
−∞Ain(τ)dτ


= lim
T→∞


ρin(T ).


The stationary variance is var(Vk) = AV (0) =�∞
−∞Ain(τ)K(τ)dτ which gives the cross-correlation


function, c.f. Eq. (3).


Whereas membrane potential statistics reliably reflect


input statistics, the gain of the spike trains and the cor-


relation between spike trains are nearly zero when exci-


tation is weak


drs


dµ
≈ 0, Cs(τ) ≈ 0 and ρs(T ) ≈ 0. (5)


and asymptotic expansions are known for each [9–12].


The conclusion that spiking correlations vanish in the


limit of weak excitation requires an assumption that in-


put correlations are weak. However, spiking correlations


are found to be nearly zero when excitation is weak and


input correlations are chosen to be moderate in magni-


tude [9, 10].


The results in this section were obtained by assuming


that excitation is weak so that spiking is rare. However,


the results are valid any time active spiking conductances


have a negligible impact, such as when spiking is sup-


pressed either pharmacologically or by injecting a hyper-


polarizing current in experiments [2, 3]. See Sec. VI D


for further discussion.


IV. STRONG EXCITATION LIMIT


We now examine the response properties of two LIFs


when excitation is strong and firing rates are high. In this


regime the sensitivity to input currents is reversed: The


mean membrane potentials show a weak dependence, but


the firing rates reflect the mean input current reliably.


Similarly, membrane potential correlations are zero, but


spiking correlations reflect input correlations.


When excitation dominates the current across the


membrane (Jere � Jiri +Vth/τm), an approximation can


be obtained by ignoring the effects of inhibition and leak.


Eq. (1) is then replaced by the equation for a perfect in-


tegrator [9, 13],


dVk


dt
= Je ek(t), (6)


with the same threshold and reset conditions. This model


is analyzed in Appendix A and we review the results here.


Under weak ergodicity assumptions, the bivariate distri-


bution of (V1(t), V2(t + τ)) is uniform, generalizing the


univariate result in [14]. We also assume that Vth−Vre is


an integer multiple of Je, which simplifies the exposition,


but does not significantly change the results.
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cov(κk(t), κk(t+τ)). To quantify the correlation between


membrane potentials, we normalize the cross-covariance


to obtain the Pearson normalized cross-correlation (here-


after referred to simply as cross-correlation)


RV (τ) =
CV (τ)


AV (0)
=


cov(V1(t), V2(t + τ))�
var(V1(t))var(V2(t + τ))


, (3)


which satisfies |RV (τ)| ≤ 1 and where |RV V (0)| = 1 im-


plies that the membrane potentials are perfectly corre-


lated or anti-correlated, i.e. V1(t) = λV2(t).
The Pearson normalized cross-correlation between


point processes is not defined since they have infinite


variance (i.e., var(κk(t)) = ∞ for κ ∈ {e, i, in, s}) [6,


7]. We instead consider statistics of the spike counts,


Nκk(t1, t2) =
� t2


t1
κk(s)ds for κ ∈ {in, s, e, i} and


k = 1, 2. Define the normalized spike count vari-


ance σ2
(T ) = var(Nκk(t, t + T ))/T , covariance γκ(T ) =


cov(N1(t, t+T ), N2(t, t+T ))/T , and correlation ρκ(T ) =


γκ(T )/σ2
κ(T ).


We next provide a general and intuitive derivation of


spiking and membrane potential statistics in the limit of


weak and strong excitation. The relation between the two


is then examined outside of these limits using a diffusion


approximation.


III. WEAK EXCITATION LIMIT


We begin by examining the response properties of a


pair of LIFs in a regime where spiking is rare, for in-


stance when excitation is weaker than the combined cur-


rent from inhibition and leak (Jere � Jiri + Vth/τm).


In this limit we find that the mean membrane potentials


reliably reflect the mean input currents. In contrast the


cells’ firing rates depend only weakly on the mean input


current. Additionally, correlations between membrane


potentials reflect input correlations, but spiking correla-


tions are nearly zero.


In the limit of weak excitation, the membrane poten-


tials are given by Eq. (1) without thresholding, and hence


by linearly filtered versions of the inputs. Standard signal


processing identities can be used to obtain the membrane


potential statistics [8]. The stationary mean of the mem-


brane potentials is proportional to the mean of the input


current, �Vk� = µτm, so that the gain of the membrane


potential is given by


d�Vk�
dµ


= τm.


The auto- and cross-covariance functions are obtained


by applying a linear filter to the input auto- and cross-


covariance functions,


AV (τ) = (K ∗Ain)(τ) and CV (τ) = (K ∗ Cin)(τ), (4)


where K(τ) = τme−|τ |/τm/2. Thus, the integral correla-


tion coefficient of the input is preserved in the membrane


potentials in the sense that


�∞
−∞ CV (τ)dτ


�∞
−∞AV (τ)dτ


=


�∞
−∞ Cin(τ)dτ


�∞
−∞Ain(τ)dτ


= lim
T→∞


ρin(T ).


The stationary variance is var(Vk) = AV (0) =�∞
−∞Ain(τ)K(τ)dτ which gives the cross-correlation


function, c.f. Eq. (3).


Whereas membrane potential statistics reliably reflect


input statistics, the gain of the spike trains and the cor-


relation between spike trains are nearly zero when exci-


tation is weak


drs


dµ
≈ 0, Cs(τ) ≈ 0 and ρs(T ) ≈ 0. (5)


and asymptotic expansions are known for each [9–12].


The conclusion that spiking correlations vanish in the


limit of weak excitation requires an assumption that in-


put correlations are weak. However, spiking correlations


are found to be nearly zero when excitation is weak and


input correlations are chosen to be moderate in magni-


tude [9, 10].


The results in this section were obtained by assuming


that excitation is weak so that spiking is rare. However,


the results are valid any time active spiking conductances


have a negligible impact, such as when spiking is sup-


pressed either pharmacologically or by injecting a hyper-


polarizing current in experiments [2, 3]. See Sec. VI D


for further discussion.


IV. STRONG EXCITATION LIMIT


We now examine the response properties of two LIFs


when excitation is strong and firing rates are high. In this


regime the sensitivity to input currents is reversed: The


mean membrane potentials show a weak dependence, but


the firing rates reflect the mean input current reliably.


Similarly, membrane potential correlations are zero, but


spiking correlations reflect input correlations.


When excitation dominates the current across the


membrane (Jere � Jiri +Vth/τm), an approximation can


be obtained by ignoring the effects of inhibition and leak.


Eq. (1) is then replaced by the equation for a perfect in-


tegrator [9, 13],


dVk


dt
= Je ek(t), (6)


with the same threshold and reset conditions. This model


is analyzed in Appendix A and we review the results here.


Under weak ergodicity assumptions, the bivariate distri-


bution of (V1(t), V2(t + τ)) is uniform, generalizing the


univariate result in [14]. We also assume that Vth−Vre is


an integer multiple of Je, which simplifies the exposition,


but does not significantly change the results.
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cov(κk(t), κk(t+τ)). To quantify the correlation between


membrane potentials, we normalize the cross-covariance


to obtain the Pearson normalized cross-correlation (here-


after referred to simply as cross-correlation)
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AV (0)
=


cov(V1(t), V2(t + τ))�
var(V1(t))var(V2(t + τ))


, (3)


which satisfies |RV (τ)| ≤ 1 and where |RV V (0)| = 1 im-


plies that the membrane potentials are perfectly corre-


lated or anti-correlated, i.e. V1(t) = λV2(t).
The Pearson normalized cross-correlation between


point processes is not defined since they have infinite


variance (i.e., var(κk(t)) = ∞ for κ ∈ {e, i, in, s}) [6,


7]. We instead consider statistics of the spike counts,


Nκk(t1, t2) =
� t2


t1
κk(s)ds for κ ∈ {in, s, e, i} and


k = 1, 2. Define the normalized spike count vari-


ance σ2
(T ) = var(Nκk(t, t + T ))/T , covariance γκ(T ) =


cov(N1(t, t+T ), N2(t, t+T ))/T , and correlation ρκ(T ) =


γκ(T )/σ2
κ(T ).


We next provide a general and intuitive derivation of


spiking and membrane potential statistics in the limit of


weak and strong excitation. The relation between the two


is then examined outside of these limits using a diffusion


approximation.


III. WEAK EXCITATION LIMIT


We begin by examining the response properties of a


pair of LIFs in a regime where spiking is rare, for in-


stance when excitation is weaker than the combined cur-


rent from inhibition and leak (Jere � Jiri + Vth/τm).


In this limit we find that the mean membrane potentials


reliably reflect the mean input currents. In contrast the


cells’ firing rates depend only weakly on the mean input


current. Additionally, correlations between membrane


potentials reflect input correlations, but spiking correla-


tions are nearly zero.


In the limit of weak excitation, the membrane poten-


tials are given by Eq. (1) without thresholding, and hence


by linearly filtered versions of the inputs. Standard signal


processing identities can be used to obtain the membrane


potential statistics [8]. The stationary mean of the mem-


brane potentials is proportional to the mean of the input


current, �Vk� = µτm, so that the gain of the membrane


potential is given by


d�Vk�
dµ


= τm.


The auto- and cross-covariance functions are obtained


by applying a linear filter to the input auto- and cross-


covariance functions,


AV (τ) = (K ∗Ain)(τ) and CV (τ) = (K ∗ Cin)(τ), (4)


where K(τ) = τme−|τ |/τm/2. Thus, the integral correla-


tion coefficient of the input is preserved in the membrane


potentials in the sense that
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−∞ CV (τ)dτ
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−∞AV (τ)dτ


=
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−∞ Cin(τ)dτ
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−∞Ain(τ)dτ


= lim
T→∞


ρin(T ).


The stationary variance is var(Vk) = AV (0) =�∞
−∞Ain(τ)K(τ)dτ which gives the cross-correlation


function, c.f. Eq. (3).


Whereas membrane potential statistics reliably reflect


input statistics, the gain of the spike trains and the cor-


relation between spike trains are nearly zero when exci-


tation is weak


drs


dµ
≈ 0, Cs(τ) ≈ 0 and ρs(T ) ≈ 0. (5)


and asymptotic expansions are known for each [9–12].


The conclusion that spiking correlations vanish in the


limit of weak excitation requires an assumption that in-


put correlations are weak. However, spiking correlations


are found to be nearly zero when excitation is weak and


input correlations are chosen to be moderate in magni-


tude [9, 10].


The results in this section were obtained by assuming


that excitation is weak so that spiking is rare. However,


the results are valid any time active spiking conductances


have a negligible impact, such as when spiking is sup-


pressed either pharmacologically or by injecting a hyper-


polarizing current in experiments [2, 3]. See Sec. VI D


for further discussion.


IV. STRONG EXCITATION LIMIT


We now examine the response properties of two LIFs


when excitation is strong and firing rates are high. In this


regime the sensitivity to input currents is reversed: The


mean membrane potentials show a weak dependence, but


the firing rates reflect the mean input current reliably.


Similarly, membrane potential correlations are zero, but


spiking correlations reflect input correlations.


When excitation dominates the current across the


membrane (Jere � Jiri +Vth/τm), an approximation can


be obtained by ignoring the effects of inhibition and leak.


Eq. (1) is then replaced by the equation for a perfect in-


tegrator [9, 13],


dVk


dt
= Je ek(t), (6)


with the same threshold and reset conditions. This model


is analyzed in Appendix A and we review the results here.


Under weak ergodicity assumptions, the bivariate distri-


bution of (V1(t), V2(t + τ)) is uniform, generalizing the


univariate result in [14]. We also assume that Vth−Vre is


an integer multiple of Je, which simplifies the exposition,


but does not significantly change the results.
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cov(κk(t), κk(t+τ)). To quantify the correlation between


membrane potentials, we normalize the cross-covariance


to obtain the Pearson normalized cross-correlation (here-


after referred to simply as cross-correlation)


RV (τ) =
CV (τ)


AV (0)
=


cov(V1(t), V2(t + τ))�
var(V1(t))var(V2(t + τ))


, (3)


which satisfies |RV (τ)| ≤ 1 and where |RV V (0)| = 1 im-


plies that the membrane potentials are perfectly corre-


lated or anti-correlated, i.e. V1(t) = λV2(t).
The Pearson normalized cross-correlation between


point processes is not defined since they have infinite


variance (i.e., var(κk(t)) = ∞ for κ ∈ {e, i, in, s}) [6,


7]. We instead consider statistics of the spike counts,


Nκk(t1, t2) =
� t2


t1
κk(s)ds for κ ∈ {in, s, e, i} and


k = 1, 2. Define the normalized spike count vari-


ance σ2
(T ) = var(Nκk(t, t + T ))/T , covariance γκ(T ) =


cov(N1(t, t+T ), N2(t, t+T ))/T , and correlation ρκ(T ) =


γκ(T )/σ2
κ(T ).


We next provide a general and intuitive derivation of


spiking and membrane potential statistics in the limit of


weak and strong excitation. The relation between the two


is then examined outside of these limits using a diffusion


approximation.


III. WEAK EXCITATION LIMIT
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pair of LIFs in a regime where spiking is rare, for in-
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rent from inhibition and leak (Jere � Jiri + Vth/τm).


In this limit we find that the mean membrane potentials


reliably reflect the mean input currents. In contrast the


cells’ firing rates depend only weakly on the mean input


current. Additionally, correlations between membrane


potentials reflect input correlations, but spiking correla-


tions are nearly zero.


In the limit of weak excitation, the membrane poten-


tials are given by Eq. (1) without thresholding, and hence


by linearly filtered versions of the inputs. Standard signal


processing identities can be used to obtain the membrane


potential statistics [8]. The stationary mean of the mem-


brane potentials is proportional to the mean of the input


current, �Vk� = µτm, so that the gain of the membrane


potential is given by


d�Vk�
dµ


= τm.


The auto- and cross-covariance functions are obtained


by applying a linear filter to the input auto- and cross-


covariance functions,


AV (τ) = (K ∗Ain)(τ) and CV (τ) = (K ∗ Cin)(τ), (4)


where K(τ) = τme−|τ |/τm/2. Thus, the integral correla-


tion coefficient of the input is preserved in the membrane


potentials in the sense that
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=
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function, c.f. Eq. (3).


Whereas membrane potential statistics reliably reflect


input statistics, the gain of the spike trains and the cor-


relation between spike trains are nearly zero when exci-


tation is weak


drs
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≈ 0, Cs(τ) ≈ 0 and ρs(T ) ≈ 0. (5)


and asymptotic expansions are known for each [9–12].


The conclusion that spiking correlations vanish in the


limit of weak excitation requires an assumption that in-


put correlations are weak. However, spiking correlations


are found to be nearly zero when excitation is weak and


input correlations are chosen to be moderate in magni-


tude [9, 10].


The results in this section were obtained by assuming


that excitation is weak so that spiking is rare. However,


the results are valid any time active spiking conductances


have a negligible impact, such as when spiking is sup-


pressed either pharmacologically or by injecting a hyper-


polarizing current in experiments [2, 3]. See Sec. VI D


for further discussion.
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We now examine the response properties of two LIFs


when excitation is strong and firing rates are high. In this


regime the sensitivity to input currents is reversed: The


mean membrane potentials show a weak dependence, but


the firing rates reflect the mean input current reliably.


Similarly, membrane potential correlations are zero, but


spiking correlations reflect input correlations.


When excitation dominates the current across the


membrane (Jere � Jiri +Vth/τm), an approximation can


be obtained by ignoring the effects of inhibition and leak.


Eq. (1) is then replaced by the equation for a perfect in-


tegrator [9, 13],
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= Je ek(t), (6)


with the same threshold and reset conditions. This model


is analyzed in Appendix A and we review the results here.


Under weak ergodicity assumptions, the bivariate distri-


bution of (V1(t), V2(t + τ)) is uniform, generalizing the


univariate result in [14]. We also assume that Vth−Vre is


an integer multiple of Je, which simplifies the exposition,


but does not significantly change the results.
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current. Additionally, correlations between membrane


potentials reflect input correlations, but spiking correla-


tions are nearly zero.


In the limit of weak excitation, the membrane poten-


tials are given by Eq. (1) without thresholding, and hence


by linearly filtered versions of the inputs. Standard signal


processing identities can be used to obtain the membrane


potential statistics [8]. The stationary mean of the mem-


brane potentials is proportional to the mean of the input
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The auto- and cross-covariance functions are obtained


by applying a linear filter to the input auto- and cross-


covariance functions,


AV (τ) = (K ∗Ain)(τ) and CV (τ) = (K ∗ Cin)(τ), (4)


where K(τ) = τme−|τ |/τm/2. Thus, the integral correla-


tion coefficient of the input is preserved in the membrane


potentials in the sense that


�∞
−∞ CV (τ)dτ


�∞
−∞AV (τ)dτ


=


�∞
−∞ Cin(τ)dτ


�∞
−∞Ain(τ)dτ


= lim
T→∞


ρin(T ).


The stationary variance is var(Vk) = AV (0) =�∞
−∞Ain(τ)K(τ)dτ which gives the cross-correlation


function, c.f. Eq. (3).


Whereas membrane potential statistics reliably reflect


input statistics, the gain of the spike trains and the cor-


relation between spike trains are nearly zero when exci-
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drs


dµ
≈ 0, Cs(τ) ≈ 0 and ρs(T ) ≈ 0. (5)


and asymptotic expansions are known for each [9–12].


The conclusion that spiking correlations vanish in the
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put correlations are weak. However, spiking correlations


are found to be nearly zero when excitation is weak and


input correlations are chosen to be moderate in magni-


tude [9, 10].


The results in this section were obtained by assuming


that excitation is weak so that spiking is rare. However,


the results are valid any time active spiking conductances


have a negligible impact, such as when spiking is sup-


pressed either pharmacologically or by injecting a hyper-


polarizing current in experiments [2, 3]. See Sec. VI D


for further discussion.


IV. STRONG EXCITATION LIMIT
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When excitation dominates the current across the


membrane (Jere � Jiri +Vth/τm), an approximation can


be obtained by ignoring the effects of inhibition and leak.


Eq. (1) is then replaced by the equation for a perfect in-


tegrator [9, 13],


dVk


dt
= Je ek(t), (6)


with the same threshold and reset conditions. This model


is analyzed in Appendix A and we review the results here.


Under weak ergodicity assumptions, the bivariate distri-


bution of (V1(t), V2(t + τ)) is uniform, generalizing the


univariate result in [14]. We also assume that Vth−Vre is


an integer multiple of Je, which simplifies the exposition,


but does not significantly change the results.
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Here, η1(t), and η2(t) are unbiased Gaussian noise with


�ηk(t)ηk(t + τ)� = δ(τ) and 2D�η1(t)η2(t + τ)� = Cin(τ).


The parameter, D = (J2
e re+J2


i ri)/2, is the effective diffu-


sion coefficient of the input current. This approximation


is valid when ek(t) and ik(t) are independent Poisson pro-


cesses (but e1(t) and i2(t) need not be independent) and


Je, Ji � Vth − Vre. Although the inputs are assumed to


be Poisson, their pairwise cross-covariances need not be


delta functions [16, 17]. See [14, 18–20] for a more in-


depth look at the validity of the diffusion approximation.


Univariate and bivariate spiking statistics for this


model have been studied extensively and the univariate


moments are known in closed form [21, 22], but the statis-


tics of the membrane potentials have received compara-


tively little attention. Below, we use the Fokker-Planck


formulation from [23, 24] to derive membrane potential


statistics in terms of the input parameters and the output


spiking statistics.


A. Stationary mean and variance of the membrane
potentials


In Appendix B, we derive the steady state mean and


variance of the membrane potentials,


�Vk� = τm (µ− (Vth − Vre)rs) , (10)


var(Vk) = τmD −
�
(V 2


th − V 2
re)/2− τmµ(Vth − Vre)


�
τmrs


− (Vth − Vre)
2τ2


mr2
s . (11)


The stationary firing rate, rs, and the stationary density,


P0, are known in closed form and can also be obtained


by solving a boundary value problem [7, 23, 25].


The mean and variance of Vk(t) can also be obtained


by integrating the stationary density, but Eqs. (10) and


(11) are easier to evaluate and have an intuitive interpre-


tation: Taking rs → 0 gives the mean and variance in the


weak excitation limit (compare to Sec. III). The remain-


ing terms quantify the effect of thresholding in terms of


the firing rate.


The mean membrane potential and firing rate are


shown as a function of re in Fig. 1A. When re is small,


rs ≈ 0 and �Vk� increases approximately linearly with


re, consistent with the discussion in Sec. III. When re


is larger, rs increases approximately linearly with re and


�Vk� ≈ (Vth + Vre)/2, consistent with Sec. IV.


B. Membrane potentials and firing rates are
sensitive to input current modulations in distinct


regimes


We now examine the sensitivity of the firing rate and


mean membrane potential to modulations of the input


current for the diffusion approximation. This extends the


results in the limiting cases in Secs. III and IV, where we


found that the firing rate and mean membrane poten-


tial are sensitive to modulations of the input current in


distinct regimes.


FIG. 2: (Color online) (A) Cross-covariance between spike


trains as re increases. Inset compares linear response cal-


culation (solid) to the strong excitation limit (dashed, from


Eq. (8)) when re = 4.5KHz. (B) Cross-covariance between


membrane potentials as re increases. Inset compares lin-


ear response calculation (solid) to the weak excitation limit


(dashed, from Eq. (4)) when re = 2.15KHz. Parameters are


the same as in Fig. 1 with input cross-covariances Ce(τ) =


ρinree
−|τ |/τin/τin, Ci(τ) = ρinrie


−|τ |/τin/τin, and Cei(τ) = 0


so that, from Eq. (2), Cin(τ) = ρinDe−|τ |/τin/τin with input


correlation magnitude ρin = 0.1 and timescale τin = 5ms.


Axes have units ms for τ , KHz for re, Hz
2


for Cs(τ), and


(Vth−Vre)
2


for CV (τ). Firing rates vary range from 0.1Hz to


58Hz.


The gain of the membrane potential is given by taking


the derivative of Eq. (10) with respect to µ to give


d�Vk�
dµ


= τm


�
1− (Vth − Vre)


drs


dµ


�
. (12)


This expression and Fig. 1A indicate a dichotomy be-


tween the regimes where rs and �Vk� depend sensitively


on the input bias: When excitation is weak, the gain of


the firing rates is nearly zero and the gain of the mem-


brane potentials is maximal,


drs


dµ
≈ 0 and


d�Vk�
dµ


≈ τm,


consistent with the results in Sec. III.When excitation is


strong, the gain of the firing rate is maximal and the gain


of the membrane potentials is approximately zero,


drs


dµ
≈ (Vth − Vre)


−1
and


d�Vk�
dµ


≈ 0,


consistent with the results in Sec. IV. Eq. (12) interpo-


lates these two regimes.


We now use linear response theory to analyze the sensi-


tivity of the neuronal responses to dynamic modulations


of the input current by examining the response to the


bias current µ(t) = µ0 + �eiωt
in Eq. (9). Using a com-


plex perturbation allows us to derive the amplitude and


phase shift simultaneously [23].


The susceptibility functions, χV (ω) and χs(ω), of the


mean membrane potential and firing rate are defined by
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This expression and Fig. 1A indicate a dichotomy be-


tween the regimes where rs and �Vk� depend sensitively


on the input bias: When excitation is weak, the gain of


the firing rates is nearly zero and the gain of the mem-


brane potentials is maximal,


drs
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≈ 0 and
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≈ τm,


consistent with the results in Sec. III.When excitation is


strong, the gain of the firing rate is maximal and the gain


of the membrane potentials is approximately zero,


drs


dµ
≈ (Vth − Vre)


−1
and


d�Vk�
dµ


≈ 0,


consistent with the results in Sec. IV. Eq. (12) interpo-


lates these two regimes.


We now use linear response theory to analyze the sensi-


tivity of the neuronal responses to dynamic modulations


of the input current by examining the response to the


bias current µ(t) = µ0 + �eiωt
in Eq. (9). Using a com-


plex perturbation allows us to derive the amplitude and


phase shift simultaneously [23].


The susceptibility functions, χV (ω) and χs(ω), of the


mean membrane potential and firing rate are defined by


This is reflected in the covariances
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FIG. 3: (Color online) Spike count correlations (A) and nor-
malized membrane potential cross-correlation (B) at various
firing rates (see inset). Linear response approximations (solid)
are compared to simulations with Poisson inputs (dashed).
Firing rates were modulated by changing re. All other pa-
rameters are as in Fig. 2.


the asymptotic relations [26]


�Vk(t)� = �V0�+ � χV (ω)eiωt
+ o(�)


rs(t) = r0 + � χs(ω)eiωt
+ o(�)


where �V0� and r0 are the stationary mean membrane


potential and firing rate when � = 0.


The function χs(ω) is known in closed form and its


properties have been studied extensively [7, 23, 25]. In


Appendix B, we derive the membrane potential suscep-


tibility in terms of χs(ω) as


χV (ω) =
τm


1 + iωτm


�
1− (Vth − Vre) χs(ω)


�
. (13)


Note that taking ω = 0 in Eq. (13) recovers Eq. (12)


since χs(0) = drs/dµ and χV (0) = d�Vk�/dµ. Taking


the norm squared on either side of Eq. (13) relates the


sensitivity of the firing rate and membrane potential to


modulations of the input current at frequency ω,


��χV (ω)
��2 = �K(ω)


��1− (Vth − Vre)χs(ω)
��2, (14)


where �K(ω) =
�∞
−∞K(t)e−iωtdt = τ2


m/(1 + τ2
mω2) is the


Fourier transform of the kernel K(t) from Sec. III.


Figs. 1B and 1C compare the amplitude of the spiking


and membrane potential susceptibility. When excitation


is weak,


|χs(ω)| ≈ 0 and |χV (ω)| ≈
�


�K(ω).


When excitation is strong,


|χs(ω)| ≈ (Vth − Vre)
−1


and |χV (ω)| ≈ 0.


Thus, spiking and subthreshold dynamics reliably reflect


dynamic input modulations in distinct regimes.


C. Membrane potential and spiking correlations
reflect input correlations in distinct regimes


We now examine the spiking and membrane potential


correlations using the diffusion approximation. Confirm-


ing the results in Secs. III and IV, we find that spiking


and membrane potential correlations reflect input corre-


lations in distinct regimes.


When input correlations are weak, linear response the-


ory can be used to derive the following approximation of


the output cross-covariance function [10, 11, 27, 28]


�Cs(ω) ≈ |χs(ω)|2 �Cin(ω) (15)


and, by an identical argument,


�CV (ω) ≈ |χV (ω)|2 �Cin(ω). (16)


The cross-covariances can then be obtained by invert-


ing the Fourier Transform. Combining Eq. (14) with


Eqs. (15-16) provides insight into the relationship be-


tween spiking and subthreshold correlations. When ex-


citation is weak,


�Cs(ω) ≈ 0 and �CV (ω) ≈ �K(ω) �Cin(ω),


consistent the results in Sec. III (see Eqns. (4) and (5)).


When excitation is strong,


�Cs(ω) ≈ (Vth − Vre)
−2 �Cin(ω) and �CV (ω) ≈ 0,


consistent with the results in Sec. IV (see Eqns. (7) and


(8)). Eq. (14) interpolates these two limits. Fig. 2 shows


how CV (τ) and Cs(τ) change with re and confirms that


the cross-covariance between the membrane potentials


and the cross-covariance between the spike trains reflect


input correlations in opposite regimes.


Cross-covariances are not normalized to account for


noise magnitude. In Fig. 3, we show how spike count


correlations and normalized membrane potential cross-


correlations change with firing rate when re is increased.


In general, spike count correlations increase with re and


rs, while membrane potential cross-correlations decrease,


consistent with recordings from the rat hippocampus [4].


Fig. 3 shows that the linear response and diffusion ap-


proximations provide an excellent agreement to results


obtained via direct simulation of Eq. (1).


So far, we have examined how changes in re affect cor-


relations. In Fig. 4, we show that the overall trends are


the same if ri is varied simultaneously, but the decrease


in membrane potential correlations is less dramatic.


D. Correlation timescales


In Fig. 2, the timescale of Cs(τ) when excitation


is strong appears faster than the timescale of CV (τ)


when excitation is weak. The membrane potential cross-


covariance is a low-pass filtered version on the input


cross-covariance (see Eq. (4) and also compare Eq. (16)


with Fig. 1C). On the other hand, the input cross-


covariance is transferred faithfully to the spiking cross-


covariance when excitation is strong (see Eq. (8) and


also compare Eq. (15) with Fig. 1B). Thus, whenever


the timescale of Cin(τ) is faster than the membrane time
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Linear response kernel, A(t)


Figure 1: A) Illustrating Eq. (4). i) The input to the neuron is a spike train which is convolved with


a synaptic kernel. ii) The output firing rate, r(t), is obtained by averaging over realizations of the


output spike train with fixed input, and independent realizations of noise, ξ(t). The rate obtained


using Monte Carlo simulations (shaded in gray) matches predictions of linear response theory


obtained using Eq. (4) (black). iii) Raster plot of 100 realizations of output spike trains. A dot in a


bin represents a spike in that bin on a single trial. iv) A sample voltage path for the post-synaptic


cell. B) An example recurrent network. C-E) A sequence of graphs determines the successive


approximations to the output of neuron 1. Processes defined by the same iteration of Eq. (12)


have equal color. C) In the first iteration of Eq. (12), the output of neuron 1 is approximated


using the unperturbed outputs of its neighbours. D) In the second iteration the results of the first


iteration are used to define the inputs to the neuron. For instance, the process y1
2 depends on the


base process y0
1 which represents the unperturbed output of neuron 1. Neuron 4 receives no inputs


from the rest of the network, and all approximations involve only its unperturbed output, y0
4. E)


Cells 3 and 4 are not part of recurrent paths, and their contributions to the approximation are


fixed after the second iteration. However, the recurrent connection between cells 1 and 2 implies


that subsequent approximations involve contributions of directed chains of increasing length.
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Additionally, we can interpret the covariance as the conditional probability that cell j spikes at


time t + τ given that cell i spiked at time t. The conditional intensity,


Hij(τ) = lim
∆t→0


1


∆t
Pr


�
Nyj (t + τ, t + τ + ∆t) > 0 | Nyi(t, t + ∆t) > 0


�
,


is the firing rate of cell j conditioned on a spike in cell i at τ units in the past. We then have


Cij(τ) = ri(Hij(τ) − rj). We also use the total correlation coefficient ρij(∞) = limτ→∞ ρij(τ) to


characterize dependencies between the processes yi and yj over arbitrarily long timescales.


Linear response for individual cells


Neuronal network models are typically described by a complex system of coupled nonlinear stochas-


tic differential equations. Their behavior is therefore difficult to analyze directly. We will use linear


response theory [Brunel et al., 2001, Gabbiani and Cox, 2010, Lindner and Schimansky-Geier, 2001,


Risken, 1996] to approximate the cross-correlations between the outputs of neurons in a network.


We first review the linear approximation to the response of a single cell. We illustrate the ap-


proach using current-based IF neurons, and explain how it can be generalized to other models in


the Discussion.


The membrane potential of an IF neuron receiving input X(t), with vanishing temporal average,


�X(t)� = 0, evolves according to


τ v̇ = −(v − EL) + ψ(v) + E +


√
σ2τξ(t) + X(t). (3)


The time-dependent firing rate, r(t), is determined by averaging the resulting spike train, y(t) =�
j δ(t − tj), across different realizations of noise, ξ(t), for a fixed input X(t). Linear response


approximates the firing rate by


r(t) = r0 + (A ∗X)(t), (4)


where r0 is the stationary firing rate in the absence of the signal X(t). The linear response kernel,


A(t), characterizes the firing rate response to first order in the strength of the input X(t). A rescal-


ing of the function A(t) gives the spike-triggered average of the cell, to first order in input strength,


and is hence equivalent to the optimal Weiner kernel in the presence of the signal ξ(t). [Barreiro


et al., 2010, Gabbiani and Cox, 2010] In Fig. 1A, we compare the approximate firing rate obtained


from Eq. (4) to that obtained numerically from Monte Carlo simulations.


The linear response kernel A(t) depends implicitly on model parameters, but is independent


of the statistics of the input, X(t). In particular, A(t) is sensitive to the value of the mean input


current, E. We emphasize that the presence of noise in Eq. (3) is essential to the theory.


Linear response in recurrent networks


The linear response kernel can be used to approximate the response of a cell to an external input.


However, the situation is more complicated in a network where a neuron can affect its own activity


through recurrent connections. To extend the linear response approximation to networks we follow


the approach introduced by Lindner et al. [2005]. Instead of using the linear response kernel to


approximate the firing rate of a cell, we use it to approximate a realization of its output


y(t) ≈ y1
(t) = y0


(t) + (A ∗X)(t). (5)


Here y0
(t) represents a realization of the spike train generated by an integrate-and-fire neuron


obeying Eq. (3) with X(t) = 0.
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FIG. 3: (Color online) Spike count correlations (A) and nor-
malized membrane potential cross-correlation (B) at various
firing rates (see inset). Linear response approximations (solid)
are compared to simulations with Poisson inputs (dashed).
Firing rates were modulated by changing re. All other pa-
rameters are as in Fig. 2.


the asymptotic relations [26]


�Vk(t)� = �V0�+ � χV (ω)eiωt
+ o(�)


rs(t) = r0 + � χs(ω)eiωt
+ o(�)


where �V0� and r0 are the stationary mean membrane


potential and firing rate when � = 0.


The function χs(ω) is known in closed form and its


properties have been studied extensively [7, 23, 25]. In


Appendix B, we derive the membrane potential suscep-


tibility in terms of χs(ω) as


χV (ω) =
τm


1 + iωτm


�
1− (Vth − Vre) χs(ω)


�
. (13)


Note that taking ω = 0 in Eq. (13) recovers Eq. (12)


since χs(0) = drs/dµ and χV (0) = d�Vk�/dµ. Taking


the norm squared on either side of Eq. (13) relates the


sensitivity of the firing rate and membrane potential to


modulations of the input current at frequency ω,


��χV (ω)
��2 = �K(ω)


��1− (Vth − Vre)χs(ω)
��2, (14)


where �K(ω) =
�∞
−∞K(t)e−iωtdt = τ2


m/(1 + τ2
mω2) is the


Fourier transform of the kernel K(t) from Sec. III.


Figs. 1B and 1C compare the amplitude of the spiking


and membrane potential susceptibility. When excitation


is weak,


|χs(ω)| ≈ 0 and |χV (ω)| ≈
�


�K(ω).


When excitation is strong,


|χs(ω)| ≈ (Vth − Vre)
−1


and |χV (ω)| ≈ 0.


Thus, spiking and subthreshold dynamics reliably reflect


dynamic input modulations in distinct regimes.


C. Membrane potential and spiking correlations
reflect input correlations in distinct regimes


We now examine the spiking and membrane potential


correlations using the diffusion approximation. Confirm-


ing the results in Secs. III and IV, we find that spiking


and membrane potential correlations reflect input corre-


lations in distinct regimes.


When input correlations are weak, linear response the-


ory can be used to derive the following approximation of


the output cross-covariance function [10, 11, 27, 28]


�Cs(ω) ≈ |χs(ω)|2 �Cin(ω) (15)


and, by an identical argument,


�CV (ω) ≈ |χV (ω)|2 �Cin(ω). (16)


The cross-covariances can then be obtained by invert-


ing the Fourier Transform. Combining Eq. (14) with


Eqs. (15-16) provides insight into the relationship be-


tween spiking and subthreshold correlations. When ex-


citation is weak,


�Cs(ω) ≈ 0 and �CV (ω) ≈ �K(ω) �Cin(ω),


consistent the results in Sec. III (see Eqns. (4) and (5)).


When excitation is strong,


�Cs(ω) ≈ (Vth − Vre)
−2 �Cin(ω) and �CV (ω) ≈ 0,


consistent with the results in Sec. IV (see Eqns. (7) and


(8)). Eq. (14) interpolates these two limits. Fig. 2 shows


how CV (τ) and Cs(τ) change with re and confirms that


the cross-covariance between the membrane potentials


and the cross-covariance between the spike trains reflect


input correlations in opposite regimes.


Cross-covariances are not normalized to account for


noise magnitude. In Fig. 3, we show how spike count


correlations and normalized membrane potential cross-


correlations change with firing rate when re is increased.


In general, spike count correlations increase with re and


rs, while membrane potential cross-correlations decrease,


consistent with recordings from the rat hippocampus [4].


Fig. 3 shows that the linear response and diffusion ap-


proximations provide an excellent agreement to results


obtained via direct simulation of Eq. (1).


So far, we have examined how changes in re affect cor-


relations. In Fig. 4, we show that the overall trends are


the same if ri is varied simultaneously, but the decrease


in membrane potential correlations is less dramatic.


D. Correlation timescales


In Fig. 2, the timescale of Cs(τ) when excitation


is strong appears faster than the timescale of CV (τ)


when excitation is weak. The membrane potential cross-


covariance is a low-pass filtered version on the input


cross-covariance (see Eq. (4) and also compare Eq. (16)


with Fig. 1C). On the other hand, the input cross-


covariance is transferred faithfully to the spiking cross-


covariance when excitation is strong (see Eq. (8) and


also compare Eq. (15) with Fig. 1B). Thus, whenever


the timescale of Cin(τ) is faster than the membrane time
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FIG. 1: (Color online) (A) Firing rate (rs, dashed red, top), mean membrane potential (�V �, solid blue, top) and gains (drs/dµ,


dashed red, bottom; d�V �/dµ, solid blue, bottom) as functions of the excitatory input rate, re. (B) Susceptibility magnitude of


the firing rate. (C) Susceptibility magnitude of the mean membrane potential. As the level of excitation increases, firing rates


become more sensitive and membrane potentials become less sensitive to perturbations. In all plots, ri = 2KHz and τm = 20ms.


Voltage is scaled so that Vre = 0 and Vth = 1 with Je = Ji = 1/30. Mean membrane potential has units (Vth − Vre)
−1


, ω has


units Hz, and susceptibility functions have units (Vth − Vre)
−1


for χs and ms for χV .


The mean membrane potential is given by �Vk� =


(Vth + Vre)/2. Thus, the gain of the membrane poten-


tials is zero in this limit,


d�Vk�
dµ


= 0.


Two random variables whose joint distribution is uni-


form are necessarily independent, and therefore V1(t) is


independent from V2(t + τ), and so


CV (τ) = RV (τ) = 0 (7)


for all τ . It is worth noting that this result is not valid


when the cells’ inputs are perfectly correlated, since iden-


tical inputs imply that the bivariate membrane potential


process is not ergodic on its state space.


Whereas the gain and correlation of the membrane po-


tentials are zero in the limit of strong excitation, the spike


trains reliably reflect the inputs. The firing rate is given


by rs = re/θ = µ/(Vth − Vre) where θ = (Vth − Vre)/Je


is the number of inputs required to reach threshold from


reset. This gives the gain,


drs


dµ
= (Vth − Vre)


−1.


Perhaps counterintuitively, the membrane potentials


for this model are independent, but the output spike


trains are correlated. This is possible because the times


at which the membrane potentials jump are correlated


even though the states that they occupy are not. To see


this, suppose that Ce(τ) > 0 and that cell 1 spikes at time


t. Then cell 1 necessarily received an excitatory input at


time t. Although conditioning on a spike in cell 1 does


not affect the distribution of V2(t+τ), the fact that cell 1


received an input at time t increases the probability that


cell 2 receives an input near time t + τ , since Ce(τ) > 0.


This in turn increases the probability that cell 2 spikes


near time t + τ . In Appendix A, this argument is used


to derive the output cross-covariance function,


Cs(τ) = θ−2Ce(τ) = (Vth − Vre)
−2Cin(τ). (8)


Spike count statistics over large time windows are


known in closed form for this model [9, 15]. Vari-


ances and covariances are scaled, limT→∞ σ2
s(T ) =


(Vth−Vre)
−2


limT→∞ σ2
in(T ) and limT→∞ γs(T ) = (Vth−


Vre)
−2


limT→∞ γin(T ) so that spiking correlations over


large time windows equal input correlations,


lim
T→∞


ρs(T ) = lim
T→∞


ρin(T ).


However, spike count correlations over small windows are


reduced since, to first order in T ,


ρs(T ) ≈ Cs(0)


rs
T =


θ−2Ce(0)


θ−1re
T ≈ θ−1ρin(T ).


The model defined by Eq. (6) is a simplification of real-


istic neuronal dynamics, even when excitation is strong.


However, we show next that these results accurately pre-


dict the statistics of two LIFs receiving strong excitation.


V. ANALYSIS OF THE DIFFUSION
APPROXIMATION


The model given by Eq. (1) is difficult to analyze out-


side of the two limits discussed above, so we instead con-


sider a diffusion approximation,


dVk


dt
= − Vk


τm
+ µ +


√
2D ηk(t). (9)


|χs(ω)| |χV (ω)|
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FIG. 3: (Color online) Spike count correlations (A) and nor-
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firing rates (see inset). Linear response approximations (solid)
are compared to simulations with Poisson inputs (dashed).
Firing rates were modulated by changing re. All other pa-
rameters are as in Fig. 2.


the asymptotic relations [26]


�Vk(t)� = �V0�+ � χV (ω)eiωt
+ o(�)


rs(t) = r0 + � χs(ω)eiωt
+ o(�)


where �V0� and r0 are the stationary mean membrane


potential and firing rate when � = 0.


The function χs(ω) is known in closed form and its


properties have been studied extensively [7, 23, 25]. In


Appendix B, we derive the membrane potential suscep-


tibility in terms of χs(ω) as


χV (ω) =
τm


1 + iωτm


�
1− (Vth − Vre) χs(ω)


�
. (13)


Note that taking ω = 0 in Eq. (13) recovers Eq. (12)


since χs(0) = drs/dµ and χV (0) = d�Vk�/dµ. Taking


the norm squared on either side of Eq. (13) relates the


sensitivity of the firing rate and membrane potential to


modulations of the input current at frequency ω,


��χV (ω)
��2 = �K(ω)


��1− (Vth − Vre)χs(ω)
��2, (14)


where �K(ω) =
�∞
−∞K(t)e−iωtdt = τ2


m/(1 + τ2
mω2) is the


Fourier transform of the kernel K(t) from Sec. III.


Figs. 1B and 1C compare the amplitude of the spiking


and membrane potential susceptibility. When excitation


is weak,


|χs(ω)| ≈ 0 and |χV (ω)| ≈
�


�K(ω).


When excitation is strong,


|χs(ω)| ≈ (Vth − Vre)
−1


and |χV (ω)| ≈ 0.


Thus, spiking and subthreshold dynamics reliably reflect


dynamic input modulations in distinct regimes.


C. Membrane potential and spiking correlations
reflect input correlations in distinct regimes


We now examine the spiking and membrane potential


correlations using the diffusion approximation. Confirm-


ing the results in Secs. III and IV, we find that spiking


and membrane potential correlations reflect input corre-


lations in distinct regimes.


When input correlations are weak, linear response the-


ory can be used to derive the following approximation of


the output cross-covariance function [10, 11, 27, 28]


�Cs(ω) ≈ |χs(ω)|2 �Cin(ω) (15)


and, by an identical argument,


�CV (ω) ≈ |χV (ω)|2 �Cin(ω). (16)


The cross-covariances can then be obtained by invert-


ing the Fourier Transform. Combining Eq. (14) with


Eqs. (15-16) provides insight into the relationship be-


tween spiking and subthreshold correlations. When ex-


citation is weak,


�Cs(ω) ≈ 0 and �CV (ω) ≈ �K(ω) �Cin(ω),


consistent the results in Sec. III (see Eqns. (4) and (5)).


When excitation is strong,


�Cs(ω) ≈ (Vth − Vre)
−2 �Cin(ω) and �CV (ω) ≈ 0,


consistent with the results in Sec. IV (see Eqns. (7) and
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how CV (τ) and Cs(τ) change with re and confirms that


the cross-covariance between the membrane potentials


and the cross-covariance between the spike trains reflect


input correlations in opposite regimes.


Cross-covariances are not normalized to account for


noise magnitude. In Fig. 3, we show how spike count


correlations and normalized membrane potential cross-


correlations change with firing rate when re is increased.


In general, spike count correlations increase with re and


rs, while membrane potential cross-correlations decrease,


consistent with recordings from the rat hippocampus [4].


Fig. 3 shows that the linear response and diffusion ap-


proximations provide an excellent agreement to results


obtained via direct simulation of Eq. (1).


So far, we have examined how changes in re affect cor-


relations. In Fig. 4, we show that the overall trends are


the same if ri is varied simultaneously, but the decrease
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D. Correlation timescales


In Fig. 2, the timescale of Cs(τ) when excitation


is strong appears faster than the timescale of CV (τ)


when excitation is weak. The membrane potential cross-


covariance is a low-pass filtered version on the input
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with Fig. 1C). On the other hand, the input cross-


covariance is transferred faithfully to the spiking cross-


covariance when excitation is strong (see Eq. (8) and


also compare Eq. (15) with Fig. 1B). Thus, whenever


the timescale of Cin(τ) is faster than the membrane time


|χs(ω)| ≈ 0 and |χV (ω)| ≈ τm/
√


(1 + τ2
mω2)


This gives us an analytically tractable expression for the covariances


Approximate cross-covariance functions
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We now examine the spiking and membrane potential


correlations using the diffusion approximation. Confirm-


ing the results in Secs. III and IV, we find that spiking


and membrane potential correlations reflect input corre-


lations in distinct regimes.


When input correlations are weak, linear response the-


ory can be used to derive the following approximation of


the output cross-covariance function [10, 11, 27, 28]


�Cs(ω) ≈ |χs(ω)|2 �Cin(ω) (15)


and, by an identical argument,


�CV (ω) ≈ |χV (ω)|2 �Cin(ω). (16)


The cross-covariances can then be obtained by invert-


ing the Fourier Transform. Combining Eq. (14) with


Eqs. (15-16) provides insight into the relationship be-


tween spiking and subthreshold correlations. When ex-


citation is weak,


�Cs(ω) ≈ 0 and �CV (ω) ≈ �K(ω) �Cin(ω),


consistent the results in Sec. III (see Eqns. (4) and (5)).


When excitation is strong,


�Cs(ω) ≈ (Vth − Vre)
−2 �Cin(ω) and �CV (ω) ≈ 0,


consistent with the results in Sec. IV (see Eqns. (7) and


(8)). Eq. (14) interpolates these two limits. Fig. 2 shows


how CV (τ) and Cs(τ) change with re and confirms that


the cross-covariance between the membrane potentials


and the cross-covariance between the spike trains reflect


input correlations in opposite regimes.


Cross-covariances are not normalized to account for


noise magnitude. In Fig. 3, we show how spike count


correlations and normalized membrane potential cross-


correlations change with firing rate when re is increased.


In general, spike count correlations increase with re and


rs, while membrane potential cross-correlations decrease,


consistent with recordings from the rat hippocampus [4].


Fig. 3 shows that the linear response and diffusion ap-


proximations provide an excellent agreement to results


obtained via direct simulation of Eq. (1).


So far, we have examined how changes in re affect cor-


relations. In Fig. 4, we show that the overall trends are


the same if ri is varied simultaneously, but the decrease


in membrane potential correlations is less dramatic.


D. Correlation timescales


In Fig. 2, the timescale of Cs(τ) when excitation


is strong appears faster than the timescale of CV (τ)


when excitation is weak. The membrane potential cross-


covariance is a low-pass filtered version on the input


cross-covariance (see Eq. (4) and also compare Eq. (16)


with Fig. 1C). On the other hand, the input cross-


covariance is transferred faithfully to the spiking cross-


covariance when excitation is strong (see Eq. (8) and


also compare Eq. (15) with Fig. 1B). Thus, whenever


the timescale of Cin(τ) is faster than the membrane time
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FIG. 3: (Color online) Spike count correlations (A) and nor-
malized membrane potential cross-correlation (B) at various
firing rates (see inset). Linear response approximations (solid)
are compared to simulations with Poisson inputs (dashed).
Firing rates were modulated by changing re. All other pa-
rameters are as in Fig. 2.
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properties have been studied extensively [7, 23, 25]. In
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Note that taking ω = 0 in Eq. (13) recovers Eq. (12)
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the norm squared on either side of Eq. (13) relates the
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mω2) is the


Fourier transform of the kernel K(t) from Sec. III.
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|χs(ω)| ≈ 0 and |χV (ω)| ≈
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�K(ω).


When excitation is strong,


|χs(ω)| ≈ (Vth − Vre)
−1


and |χV (ω)| ≈ 0.


Thus, spiking and subthreshold dynamics reliably reflect


dynamic input modulations in distinct regimes.


C. Membrane potential and spiking correlations
reflect input correlations in distinct regimes


We now examine the spiking and membrane potential


correlations using the diffusion approximation. Confirm-


ing the results in Secs. III and IV, we find that spiking


and membrane potential correlations reflect input corre-


lations in distinct regimes.


When input correlations are weak, linear response the-


ory can be used to derive the following approximation of


the output cross-covariance function [10, 11, 27, 28]


�Cs(ω) ≈ |χs(ω)|2 �Cin(ω) (15)


and, by an identical argument,


�CV (ω) ≈ |χV (ω)|2 �Cin(ω). (16)


The cross-covariances can then be obtained by invert-


ing the Fourier Transform. Combining Eq. (14) with


Eqs. (15-16) provides insight into the relationship be-


tween spiking and subthreshold correlations. When ex-


citation is weak,


�Cs(ω) ≈ 0 and �CV (ω) ≈ �K(ω) �Cin(ω),


consistent the results in Sec. III (see Eqns. (4) and (5)).


When excitation is strong,


�Cs(ω) ≈ (Vth − Vre)
−2 �Cin(ω) and �CV (ω) ≈ 0,


consistent with the results in Sec. IV (see Eqns. (7) and


(8)). Eq. (14) interpolates these two limits. Fig. 2 shows


how CV (τ) and Cs(τ) change with re and confirms that


the cross-covariance between the membrane potentials


and the cross-covariance between the spike trains reflect


input correlations in opposite regimes.


Cross-covariances are not normalized to account for


noise magnitude. In Fig. 3, we show how spike count


correlations and normalized membrane potential cross-


correlations change with firing rate when re is increased.


In general, spike count correlations increase with re and


rs, while membrane potential cross-correlations decrease,


consistent with recordings from the rat hippocampus [4].


Fig. 3 shows that the linear response and diffusion ap-


proximations provide an excellent agreement to results


obtained via direct simulation of Eq. (1).


So far, we have examined how changes in re affect cor-


relations. In Fig. 4, we show that the overall trends are


the same if ri is varied simultaneously, but the decrease


in membrane potential correlations is less dramatic.


D. Correlation timescales


In Fig. 2, the timescale of Cs(τ) when excitation


is strong appears faster than the timescale of CV (τ)


when excitation is weak. The membrane potential cross-


covariance is a low-pass filtered version on the input


cross-covariance (see Eq. (4) and also compare Eq. (16)


with Fig. 1C). On the other hand, the input cross-


covariance is transferred faithfully to the spiking cross-


covariance when excitation is strong (see Eq. (8) and


also compare Eq. (15) with Fig. 1B). Thus, whenever


the timescale of Cin(τ) is faster than the membrane time
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Here, η1(t), and η2(t) are unbiased Gaussian noise with


�ηk(t)ηk(t + τ)� = δ(τ) and 2D�η1(t)η2(t + τ)� = Cin(τ).


The parameter, D = (J2
e re+J2


i ri)/2, is the effective diffu-


sion coefficient of the input current. This approximation


is valid when ek(t) and ik(t) are independent Poisson pro-


cesses (but e1(t) and i2(t) need not be independent) and


Je, Ji � Vth − Vre. Although the inputs are assumed to


be Poisson, their pairwise cross-covariances need not be


delta functions [16, 17]. See [14, 18–20] for a more in-


depth look at the validity of the diffusion approximation.


Univariate and bivariate spiking statistics for this


model have been studied extensively and the univariate


moments are known in closed form [21, 22], but the statis-


tics of the membrane potentials have received compara-


tively little attention. Below, we use the Fokker-Planck


formulation from [23, 24] to derive membrane potential


statistics in terms of the input parameters and the output


spiking statistics.


A. Stationary mean and variance of the membrane
potentials


In Appendix B, we derive the steady state mean and


variance of the membrane potentials,


�Vk� = τm (µ− (Vth − Vre)rs) , (10)


var(Vk) = τmD −
�
(V 2


th − V 2
re)/2− τmµ(Vth − Vre)


�
τmrs


− (Vth − Vre)
2τ2


mr2
s . (11)


The stationary firing rate, rs, and the stationary density,


P0, are known in closed form and can also be obtained


by solving a boundary value problem [7, 23, 25].


The mean and variance of Vk(t) can also be obtained


by integrating the stationary density, but Eqs. (10) and


(11) are easier to evaluate and have an intuitive interpre-


tation: Taking rs → 0 gives the mean and variance in the


weak excitation limit (compare to Sec. III). The remain-


ing terms quantify the effect of thresholding in terms of


the firing rate.


The mean membrane potential and firing rate are


shown as a function of re in Fig. 1A. When re is small,


rs ≈ 0 and �Vk� increases approximately linearly with


re, consistent with the discussion in Sec. III. When re


is larger, rs increases approximately linearly with re and


�Vk� ≈ (Vth + Vre)/2, consistent with Sec. IV.


B. Membrane potentials and firing rates are
sensitive to input current modulations in distinct


regimes


We now examine the sensitivity of the firing rate and


mean membrane potential to modulations of the input


current for the diffusion approximation. This extends the


results in the limiting cases in Secs. III and IV, where we


found that the firing rate and mean membrane poten-


tial are sensitive to modulations of the input current in


distinct regimes.


FIG. 2: (Color online) (A) Cross-covariance between spike


trains as re increases. Inset compares linear response cal-


culation (solid) to the strong excitation limit (dashed, from


Eq. (8)) when re = 4.5KHz. (B) Cross-covariance between


membrane potentials as re increases. Inset compares lin-


ear response calculation (solid) to the weak excitation limit


(dashed, from Eq. (4)) when re = 2.15KHz. Parameters are


the same as in Fig. 1 with input cross-covariances Ce(τ) =


ρinree
−|τ |/τin/τin, Ci(τ) = ρinrie


−|τ |/τin/τin, and Cei(τ) = 0


so that, from Eq. (2), Cin(τ) = ρinDe−|τ |/τin/τin with input


correlation magnitude ρin = 0.1 and timescale τin = 5ms.


Axes have units ms for τ , KHz for re, Hz
2


for Cs(τ), and


(Vth−Vre)
2


for CV (τ). Firing rates vary range from 0.1Hz to


58Hz.


The gain of the membrane potential is given by taking


the derivative of Eq. (10) with respect to µ to give


d�Vk�
dµ


= τm


�
1− (Vth − Vre)


drs


dµ


�
. (12)


This expression and Fig. 1A indicate a dichotomy be-


tween the regimes where rs and �Vk� depend sensitively


on the input bias: When excitation is weak, the gain of


the firing rates is nearly zero and the gain of the mem-


brane potentials is maximal,


drs


dµ
≈ 0 and


d�Vk�
dµ


≈ τm,


consistent with the results in Sec. III.When excitation is


strong, the gain of the firing rate is maximal and the gain


of the membrane potentials is approximately zero,


drs


dµ
≈ (Vth − Vre)


−1
and


d�Vk�
dµ


≈ 0,


consistent with the results in Sec. IV. Eq. (12) interpo-


lates these two regimes.


We now use linear response theory to analyze the sensi-


tivity of the neuronal responses to dynamic modulations


of the input current by examining the response to the


bias current µ(t) = µ0 + �eiωt
in Eq. (9). Using a com-


plex perturbation allows us to derive the amplitude and


phase shift simultaneously [23].


The susceptibility functions, χV (ω) and χs(ω), of the


mean membrane potential and firing rate are defined by


4


Here, η1(t), and η2(t) are unbiased Gaussian noise with


�ηk(t)ηk(t + τ)� = δ(τ) and 2D�η1(t)η2(t + τ)� = Cin(τ).


The parameter, D = (J2
e re+J2


i ri)/2, is the effective diffu-


sion coefficient of the input current. This approximation


is valid when ek(t) and ik(t) are independent Poisson pro-


cesses (but e1(t) and i2(t) need not be independent) and


Je, Ji � Vth − Vre. Although the inputs are assumed to


be Poisson, their pairwise cross-covariances need not be


delta functions [16, 17]. See [14, 18–20] for a more in-


depth look at the validity of the diffusion approximation.


Univariate and bivariate spiking statistics for this


model have been studied extensively and the univariate


moments are known in closed form [21, 22], but the statis-


tics of the membrane potentials have received compara-


tively little attention. Below, we use the Fokker-Planck


formulation from [23, 24] to derive membrane potential


statistics in terms of the input parameters and the output


spiking statistics.


A. Stationary mean and variance of the membrane
potentials


In Appendix B, we derive the steady state mean and


variance of the membrane potentials,


�Vk� = τm (µ− (Vth − Vre)rs) , (10)


var(Vk) = τmD −
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s . (11)


The stationary firing rate, rs, and the stationary density,


P0, are known in closed form and can also be obtained


by solving a boundary value problem [7, 23, 25].


The mean and variance of Vk(t) can also be obtained


by integrating the stationary density, but Eqs. (10) and


(11) are easier to evaluate and have an intuitive interpre-


tation: Taking rs → 0 gives the mean and variance in the


weak excitation limit (compare to Sec. III). The remain-


ing terms quantify the effect of thresholding in terms of


the firing rate.


The mean membrane potential and firing rate are


shown as a function of re in Fig. 1A. When re is small,


rs ≈ 0 and �Vk� increases approximately linearly with


re, consistent with the discussion in Sec. III. When re


is larger, rs increases approximately linearly with re and


�Vk� ≈ (Vth + Vre)/2, consistent with Sec. IV.


B. Membrane potentials and firing rates are
sensitive to input current modulations in distinct


regimes


We now examine the sensitivity of the firing rate and


mean membrane potential to modulations of the input


current for the diffusion approximation. This extends the


results in the limiting cases in Secs. III and IV, where we


found that the firing rate and mean membrane poten-


tial are sensitive to modulations of the input current in


distinct regimes.


FIG. 2: (Color online) (A) Cross-covariance between spike


trains as re increases. Inset compares linear response cal-


culation (solid) to the strong excitation limit (dashed, from


Eq. (8)) when re = 4.5KHz. (B) Cross-covariance between


membrane potentials as re increases. Inset compares lin-


ear response calculation (solid) to the weak excitation limit


(dashed, from Eq. (4)) when re = 2.15KHz. Parameters are


the same as in Fig. 1 with input cross-covariances Ce(τ) =


ρinree
−|τ |/τin/τin, Ci(τ) = ρinrie


−|τ |/τin/τin, and Cei(τ) = 0


so that, from Eq. (2), Cin(τ) = ρinDe−|τ |/τin/τin with input


correlation magnitude ρin = 0.1 and timescale τin = 5ms.


Axes have units ms for τ , KHz for re, Hz
2


for Cs(τ), and


(Vth−Vre)
2


for CV (τ). Firing rates vary range from 0.1Hz to


58Hz.


The gain of the membrane potential is given by taking


the derivative of Eq. (10) with respect to µ to give


d�Vk�
dµ


= τm


�
1− (Vth − Vre)


drs


dµ


�
. (12)


This expression and Fig. 1A indicate a dichotomy be-


tween the regimes where rs and �Vk� depend sensitively


on the input bias: When excitation is weak, the gain of


the firing rates is nearly zero and the gain of the mem-


brane potentials is maximal,


drs


dµ
≈ 0 and


d�Vk�
dµ


≈ τm,


consistent with the results in Sec. III.When excitation is


strong, the gain of the firing rate is maximal and the gain


of the membrane potentials is approximately zero,


drs


dµ
≈ (Vth − Vre)


−1
and


d�Vk�
dµ


≈ 0,


consistent with the results in Sec. IV. Eq. (12) interpo-


lates these two regimes.


We now use linear response theory to analyze the sensi-


tivity of the neuronal responses to dynamic modulations


of the input current by examining the response to the


bias current µ(t) = µ0 + �eiωt
in Eq. (9). Using a com-


plex perturbation allows us to derive the amplitude and


phase shift simultaneously [23].


The susceptibility functions, χV (ω) and χs(ω), of the


mean membrane potential and firing rate are defined by
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FIG. 3: (Color online) Spike count correlations (A) and nor-
malized membrane potential cross-correlation (B) at various
firing rates (see inset). Linear response approximations (solid)
are compared to simulations with Poisson inputs (dashed).
Firing rates were modulated by changing re. All other pa-
rameters are as in Fig. 2.


the asymptotic relations [26]


�Vk(t)� = �V0�+ � χV (ω)eiωt
+ o(�)


rs(t) = r0 + � χs(ω)eiωt
+ o(�)


where �V0� and r0 are the stationary mean membrane


potential and firing rate when � = 0.


The function χs(ω) is known in closed form and its


properties have been studied extensively [7, 23, 25]. In


Appendix B, we derive the membrane potential suscep-


tibility in terms of χs(ω) as


χV (ω) =
τm


1 + iωτm


�
1− (Vth − Vre) χs(ω)


�
. (13)


Note that taking ω = 0 in Eq. (13) recovers Eq. (12)


since χs(0) = drs/dµ and χV (0) = d�Vk�/dµ. Taking


the norm squared on either side of Eq. (13) relates the


sensitivity of the firing rate and membrane potential to


modulations of the input current at frequency ω,


��χV (ω)
��2 = �K(ω)


��1− (Vth − Vre)χs(ω)
��2, (14)


where �K(ω) =
�∞
−∞K(t)e−iωtdt = τ2


m/(1 + τ2
mω2) is the


Fourier transform of the kernel K(t) from Sec. III.


Figs. 1B and 1C compare the amplitude of the spiking


and membrane potential susceptibility. When excitation


is weak,


|χs(ω)| ≈ 0 and |χV (ω)| ≈
�


�K(ω).


When excitation is strong,


|χs(ω)| ≈ (Vth − Vre)
−1


and |χV (ω)| ≈ 0.


Thus, spiking and subthreshold dynamics reliably reflect


dynamic input modulations in distinct regimes.


C. Membrane potential and spiking correlations
reflect input correlations in distinct regimes


We now examine the spiking and membrane potential


correlations using the diffusion approximation. Confirm-


ing the results in Secs. III and IV, we find that spiking


and membrane potential correlations reflect input corre-


lations in distinct regimes.


When input correlations are weak, linear response the-


ory can be used to derive the following approximation of


the output cross-covariance function [10, 11, 27, 28]


�Cs(ω) ≈ |χs(ω)|2 �Cin(ω) (15)


and, by an identical argument,


�CV (ω) ≈ |χV (ω)|2 �Cin(ω). (16)


The cross-covariances can then be obtained by invert-


ing the Fourier Transform. Combining Eq. (14) with


Eqs. (15-16) provides insight into the relationship be-


tween spiking and subthreshold correlations. When ex-


citation is weak,


�Cs(ω) ≈ 0 and �CV (ω) ≈ �K(ω) �Cin(ω),


consistent the results in Sec. III (see Eqns. (4) and (5)).


When excitation is strong,


�Cs(ω) ≈ (Vth − Vre)
−2 �Cin(ω) and �CV (ω) ≈ 0,


consistent with the results in Sec. IV (see Eqns. (7) and


(8)). Eq. (14) interpolates these two limits. Fig. 2 shows


how CV (τ) and Cs(τ) change with re and confirms that


the cross-covariance between the membrane potentials


and the cross-covariance between the spike trains reflect


input correlations in opposite regimes.


Cross-covariances are not normalized to account for


noise magnitude. In Fig. 3, we show how spike count


correlations and normalized membrane potential cross-


correlations change with firing rate when re is increased.


In general, spike count correlations increase with re and


rs, while membrane potential cross-correlations decrease,


consistent with recordings from the rat hippocampus [4].


Fig. 3 shows that the linear response and diffusion ap-


proximations provide an excellent agreement to results


obtained via direct simulation of Eq. (1).


So far, we have examined how changes in re affect cor-


relations. In Fig. 4, we show that the overall trends are


the same if ri is varied simultaneously, but the decrease


in membrane potential correlations is less dramatic.


D. Correlation timescales


In Fig. 2, the timescale of Cs(τ) when excitation


is strong appears faster than the timescale of CV (τ)


when excitation is weak. The membrane potential cross-


covariance is a low-pass filtered version on the input


cross-covariance (see Eq. (4) and also compare Eq. (16)


with Fig. 1C). On the other hand, the input cross-


covariance is transferred faithfully to the spiking cross-


covariance when excitation is strong (see Eq. (8) and


also compare Eq. (15) with Fig. 1B). Thus, whenever


the timescale of Cin(τ) is faster than the membrane time


|χs(ω)| ≈ 0 and |χV (ω)| ≈ τm/
√


(1 + τ2
mω2)


This gives us an analytically tractable expression for the covariances


Approximate cross-covariance functions
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FIG. 6: (Color online) (A): Mean membrane potential and an approximation to the gain (found by taking ∆�V �/∆µ for the


points sampled) for the spiking EIF model as a function of re. Dots show sampled points, which are interpolated linearly. (B):
Membrane potential cross-correlation for a spiking EIF model plotted for various values of re. (C): A sample voltage trace


(taken at re = 2.7KHz) and the trajectory of a single spike for the spiking EIF. (D): Cross-correlations between two pooled


recordings of 200 membrane potential traces, obtained by applying Eq. (17) to the cross-correlations in (B) with n = 200. Note


that correlations are at least an order of magnitude larger here than in (B) due to pooling. Input parameters are as in Fig. 2.


Je,k, . . . , Vre,k + θkJe,k} where θk = �(Vth,k − Vre,k)/Je,k�
is the number of input spikes to bring cell k from reset


to threshold and �·� gives the integer part of the argu-


ment. Thus, the bivariate membrane potential process,


(V1(t), V2(t)) has state space Γ = Γ1 × Γ2.


Cell k spikes after every θ excitatory inputs. Thus, the


firing rate is easily seen to be rs,k = re,k/θk.


The membrane potential at any two points in time are


related by


Vk(t1) = Vk(t0)⊕k Je,kNek(t0, t1) (A1)


where Nek(t0, t1) =
� t1


t0
ek(t)dt is the number of excita-


tory inputs in the open interval (t0, t1) and ⊕k represents


modular addition on the discrete state space Γk.


We now show that the membrane potentials sampled


at any two points in time have a bivariate uniform dis-


tribution.


Theorem 1. Consider the two-cell integrate–and–fire
model defined by Eq. (6) with resets at Vre,k and thresh-
olds at Vth,k. Assume that the membrane potential pro-
cess is ergodic with finite memory in the sense that
there exists a steady state probability mass function p :


Γ× R2 → R+ such that


p(v1, v2; t1, t2) = lim
t→∞


Pr
�
V1(t1 + t) = v1, V2(t2 + t) = v2


|V1(0) = u1, V2(0) = u2


�


and p(v1, v2; t1, t2) > 0 for all t1, t2 ∈ R+ and
(v1, v2), (u1, u2) ∈ Π. Then p is uniform with


p(v1, v2; t1, t2) = (θ1θ2)
−1


for all t1, t2 ∈ R+ and (v1, v2) ∈ Π.


Proof. Suppose (v1, v2), (w1, w2) ∈ Π and t1, t2 ∈ R+
.


From Eq. (A1), the event that (V1(t1 + t), V2(t2 + t)) =


(v1, v2) given (V1(0), V2(0)) = (0, 0) has the same prob-


ability as the event that Je,k (Nek(tk + t) mod θk) =


Vk(tk + t) for k = 1, 2. By the same reasoning, this


is in turn has the same probability as the event that


(V1(t1 + t), V2(t2 + t)) = (w1, w2) given (V1(0), V2(0)) =


(w1 ⊕1 −v1, w2 ⊕2 −v2). Thus,


p(v1, v2;t1, t2) = lim
t→∞


Pr
�
V1(t1 + t) = v1, V2(t2 + t) = v2


|V1(0) = 0, V2(0) = 0
�


= Pr
�
V1(t1 + t) = w1, V2(t2 + t) = w2


|V1(0) = w1 ⊕1 −v1, V2(0) = w2 ⊕2 −v2


�


= p(w1, w2; t1, t2)


and therefore p is uniform. Since p is a probability mass


function with respect to its first two arguments, we may


conclude that


p(v1, v2; t1t2) =
1


card(Π)
=


1


θ1θ2
.


The assumption of ergodicity with finite memory made


in Theorem 1 essentially states that the bivariate distri-


bution of the membrane potentials approaches a steady


state that does not depend on initial conditions. We


expect this assumption to hold when inputs are not per-


fectly correlated and do not have infinite memory. For


example, if inputs are delta-correlated Poisson processes,


this assumption is straightforward to verify. However,


if inputs exhibit infinite-timescale deterministic trends,


then the assumption is violated. For example, a dou-


bly stochastic Poisson process with periodic rate and a


random phase is stationary, but violates this assumption.


Since the components of a bivariate uniform distribu-


tion are independent, we may conclude from Theorem 1


that V1(t1) is independent from V2(t2) for any times t1
and t2. From this fact, we can derive the output cross-


covariance function as follows. First note that the cross-
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FIG. 6: (Color online) (A): Mean membrane potential and an approximation to the gain (found by taking ∆�V �/∆µ for the


points sampled) for the spiking EIF model as a function of re. Dots show sampled points, which are interpolated linearly. (B):
Membrane potential cross-correlation for a spiking EIF model plotted for various values of re. (C): A sample voltage trace


(taken at re = 2.7KHz) and the trajectory of a single spike for the spiking EIF. (D): Cross-correlations between two pooled


recordings of 200 membrane potential traces, obtained by applying Eq. (17) to the cross-correlations in (B) with n = 200. Note


that correlations are at least an order of magnitude larger here than in (B) due to pooling. Input parameters are as in Fig. 2.
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firing rate is easily seen to be rs,k = re,k/θk.
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modular addition on the discrete state space Γk.


We now show that the membrane potentials sampled
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The central assumption we make is that a cell acts approximately as a linear filter of its inputs.


Note that Eq. (5) defines a mixed point and continuous process, but averaging y(t) in Eq. (5) over


realizations of y0
gives Eq. (4) [Vilela and Lindner, 2009]. Hence, Eq. (5) can be viewed as a natural


generalization of Eq. (4) where the unperturbed output of the cell is represented as a point process,


y0
(t), instead of the firing rate, r0.


We first use Eq. (5) to describe spontaneously evolving networks where ηi(t) = 0. Eq. (1) can


then be rewritten as


τiv̇i = −(vi − EL,i) + ψ(vi) + E�
i +


�
σ2


i τiξi(t) + (fi(t)− �fi�), (6)


where �·� represents the temporal average, and E�
i = Ei + �fi�.


As a first approximation of the spiking output of cells in the coupled network, we start with


realizations of spike trains, y0
i , generated by IF neurons obeying Eq. (6) with fi(t) = �fi(t)�. This is


equivalent to considering neurons isolated from the network, with adjusted DC inputs (due to mean


network interactions). Following the approximation given by Eq. (5), we use a frozen realization of


all y0
i to find a correction to the output of each cell, with X(t) set to the mean-adjusted synaptic


input,


X(t) = fi(t)− �fi(t)�.


As noted previously, the linear response kernel is sensitive to changes in the mean input current. It


is therefore important to include the average synaptic input in the definition of the effective mean


input, E�
i.


The input from cell j to cell i is filtered by the synaptic kernel Jij(t). The linear response of


cell i to a spike in cell j is therefore captured by the interaction kernel Kij defined by


Kij(t) ≡ (Ai ∗ Jij)(t). (7)


The output of cell i in response to mean-adjusted input, y0
j (t)−rj , from cell j can be approximated


to first order in input strength using the linear response corrections


y1
i (t) = y0


i (t) +


�


j


(Kij ∗ [y0
j − rj ])(t). (8)


The method of calculating the stationary rates, rj , is given in the Methods.


We can use Eq. (8) to approximate the cross-correlation between a pre-synaptic cell with index


j and post-synaptic cell with index i. By averaging over realizations of the independent process y0
j ,


we find (See Methods)


E
�
(y1


i (t + τ)− ri)(y
0
j (t)− rj)


�
= δijC0


ii(τ) + (Kij ∗C0
jj)(τ), (9)


where C0
is the matrix of auto-correlation functions for the processes y0


i ,


C0
ii(τ) = E[(y0


i (t + τ)− ri)(y
0
i (t)− ri)].


We next extend this approach to approximate the full impact of recurrent connections in the


network. The cross-correlation between the processes y1
i (t) in Eq. (8) gives a first approximation


to the cross-correlation function between the cells (See Methods),


Cij(τ) ≈ C1
ij(τ) = E


�
(y1


i (t + τ)− ri)(y
1
j (t)− rj)


�


= δijC0
ii(τ) + (Kij ∗C0


jj)(τ) + (K−
ji ∗C0


ii)(τ) +


�


k


(Kik ∗K−
jk ∗C0


kk)(τ), (10)


5


the correlation structure of a network.


Network model


To illustrate the results we consider a network of N nonlinear integrate-and-fire (IF) neurons with


membrane potentials modeled by


τiv̇i = −(vi − EL,i) + ψ(vi) + Ei +


�
σ2


i τiξi(t) + fi(t) + ηi(t). (1)


Here Ei represents the mean input from parts of the system not explicitly modeled. A spike-


generating current ψ(vi) may be included to emulate the rapid onset of action potentials. Un-


less otherwise specified, we utilize the exponential IF model (EIF), so that ψ(v) ≡ ∆T exp[(v −
vT )/∆T ] [Fourcaud-Trocmé et al., 2003]. Cells are subject to internally induced fluctuations due to


channel noise [White et al., 2000], and externally induced fluctuations due to inputs not explicitly


modelled [Renart et al., 2004]. We model both by independent, Gaussian, white noise processes,�
σ2


i τiξi(t) [Burkitt, 2006]. An external signal to cell i is represented by ηi(t).


Upon reaching a threshold vth, an action potential is generated, the membrane potential is reset


to vr, and held constant for an absolute refractory period τref . The output of cell i is characterized


by the times, ti,k, at which its membrane potential reaches threshold, resulting in an output spike


train yi(t) =
�


k δ(t− ti,k). Synaptic interactions are modeled by delayed α-functions


fi(t) =


�


j


(Jij ∗ yj)(t), where Jij(t) =







Wij


�
t−τD,j


τ2
S,j


�
exp


�
− t−τD,j


τS,j


�
t ≥ τD,j


0 t < τD,j


. (2)


The N × N matrix J contains the synaptic kernels, while the matrix W contains the synaptic


weights, and hence defines the network architecture. In particular, Wij = 0 represents the absence


of a synaptic connection from cell j to cell i.


Table 1 provides an overview of all parameters and variables.


Measures of spike time correlation


We quantify dependencies between the responses of cells in the network using the spike train auto-


and cross-correlation functions [Gabbiani and Cox, 2010]. For a pair of spike trains, yi(t), yj(t), the


cross-correlation function Cij(τ) is defined as


Cij(τ) = cov (yi(t + τ), yj(t)) .


The auto-correlation function Cii(t) is the cross-correlation between a spike train and itself, and


C(t) is the matrix of cross-correlation functions. Denoting by Nyi(t1, t2) =
� t2
t1


yi(s)ds the number


of spikes over a time window [t1, t2], the spike count correlation, ρij(τ), over windows of length τ
is defined as,


ρij(τ) =
cov


�
Nyi(t, t + τ), Nyj (t, t + τ)


�
�


var (Nyi(t, t + τ)) var
�
Nyj (t, t + τ)


� .


We assume stationarity of the spiking processes so that ρij does not depend on t. The spike count


covariance is related to the cross-correlation function by [Bair et al., 2001, Shadlen and Newsome,


1998b]


cov
�
Nyi(t, t + τ), Nyj (t, t + τ)


�
=


� τ


−τ
Cij(s)(τ − |s|)ds.
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Linear response kernel, A(t)


Figure 1: A) Illustrating Eq. (4). i) The input to the neuron is a spike train which is convolved with


a synaptic kernel. ii) The output firing rate, r(t), is obtained by averaging over realizations of the


output spike train with fixed input, and independent realizations of noise, ξ(t). The rate obtained


using Monte Carlo simulations (shaded in gray) matches predictions of linear response theory


obtained using Eq. (4) (black). iii) Raster plot of 100 realizations of output spike trains. A dot in a


bin represents a spike in that bin on a single trial. iv) A sample voltage path for the post-synaptic


cell. B) An example recurrent network. C-E) A sequence of graphs determines the successive


approximations to the output of neuron 1. Processes defined by the same iteration of Eq. (12)


have equal color. C) In the first iteration of Eq. (12), the output of neuron 1 is approximated


using the unperturbed outputs of its neighbours. D) In the second iteration the results of the first


iteration are used to define the inputs to the neuron. For instance, the process y1
2 depends on the


base process y0
1 which represents the unperturbed output of neuron 1. Neuron 4 receives no inputs


from the rest of the network, and all approximations involve only its unperturbed output, y0
4. E)


Cells 3 and 4 are not part of recurrent paths, and their contributions to the approximation are


fixed after the second iteration. However, the recurrent connection between cells 1 and 2 implies


that subsequent approximations involve contributions of directed chains of increasing length.
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Additionally, we can interpret the covariance as the conditional probability that cell j spikes at


time t + τ given that cell i spiked at time t. The conditional intensity,


Hij(τ) = lim
∆t→0


1


∆t
Pr


�
Nyj (t + τ, t + τ + ∆t) > 0 | Nyi(t, t + ∆t) > 0


�
,


is the firing rate of cell j conditioned on a spike in cell i at τ units in the past. We then have


Cij(τ) = ri(Hij(τ) − rj). We also use the total correlation coefficient ρij(∞) = limτ→∞ ρij(τ) to


characterize dependencies between the processes yi and yj over arbitrarily long timescales.


Linear response for individual cells


Neuronal network models are typically described by a complex system of coupled nonlinear stochas-


tic differential equations. Their behavior is therefore difficult to analyze directly. We will use linear


response theory [Brunel et al., 2001, Gabbiani and Cox, 2010, Lindner and Schimansky-Geier, 2001,


Risken, 1996] to approximate the cross-correlations between the outputs of neurons in a network.


We first review the linear approximation to the response of a single cell. We illustrate the ap-


proach using current-based IF neurons, and explain how it can be generalized to other models in


the Discussion.


The membrane potential of an IF neuron receiving input X(t), with vanishing temporal average,


�X(t)� = 0, evolves according to


τ v̇ = −(v − EL) + ψ(v) + E +


√
σ2τξ(t) + X(t). (3)


The time-dependent firing rate, r(t), is determined by averaging the resulting spike train, y(t) =�
j δ(t − tj), across different realizations of noise, ξ(t), for a fixed input X(t). Linear response


approximates the firing rate by


r(t) = r0 + (A ∗X)(t), (4)


where r0 is the stationary firing rate in the absence of the signal X(t). The linear response kernel,


A(t), characterizes the firing rate response to first order in the strength of the input X(t). A rescal-


ing of the function A(t) gives the spike-triggered average of the cell, to first order in input strength,


and is hence equivalent to the optimal Weiner kernel in the presence of the signal ξ(t). [Barreiro


et al., 2010, Gabbiani and Cox, 2010] In Fig. 1A, we compare the approximate firing rate obtained


from Eq. (4) to that obtained numerically from Monte Carlo simulations.


The linear response kernel A(t) depends implicitly on model parameters, but is independent


of the statistics of the input, X(t). In particular, A(t) is sensitive to the value of the mean input


current, E. We emphasize that the presence of noise in Eq. (3) is essential to the theory.


Linear response in recurrent networks


The linear response kernel can be used to approximate the response of a cell to an external input.


However, the situation is more complicated in a network where a neuron can affect its own activity


through recurrent connections. To extend the linear response approximation to networks we follow


the approach introduced by Lindner et al. [2005]. Instead of using the linear response kernel to


approximate the firing rate of a cell, we use it to approximate a realization of its output


y(t) ≈ y1
(t) = y0


(t) + (A ∗X)(t). (5)


Here y0
(t) represents a realization of the spike train generated by an integrate-and-fire neuron


obeying Eq. (3) with X(t) = 0.
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Can we estimate the correlation structure?


back. The analytical solution described well the phenomenon
of oscillations caused by the interaction of correlated stimuli
and internal feedback in neural networks of weakly electric
fish.


Our intentions in the present paper are as follows. First,
we will generalize our theory to finite network size. We also
develop expressions for other spectral quantities of interest
which are accessible experimentally, such as the cross spec-
tra between stimulus and single spike train or between the
spike trains of distinct neurons. Furthermore, we want to
explore the parameter space of the model including varia-
tions of system size, of the delay time, and of the internal
noise intensity. We will show that an oscillation is already
present for a single neuron and that the oscillation induced in
a large network is enhanced by increasing the delay time and
decreasing the internal noise intensity. We will also discuss
the kind of synchrony in firing induced by the correlated
input and the feedback, respectively.


Our paper is organized as follows. In Sec. II we introduce
the neuron and network models as well as the spectral statis-
tics we are interested in. In Sec. III we calculate the spectral
measures for the case of a band-limited input stimulus !Sec.
III A" and a white-noise stimulus of unlimited bandwidth
!Sec. III B"; in this section we also state the analytical results
for a single leaky integrate-and-fire neuron !Sec. III C" that
enable us to give explicit expressions for the spectral mea-
sures. Simulation results are compared to the theoretical ones
in Sec. IV: the role of the network size will be studied in Sec.
IV A; effects of varying the delay time and internal noise
strength are explored in Sec. IV B; finally, the issue of net-
work synchronization is addressed in Sec. IV C. We will
summarize our results and draw some conclusions in Sec. V.


II. MODEL AND SPECTRAL STATISTICS


We consider a neural network with global inhibitory cou-
pling as sketched in Fig. 1. The membrane voltage of the
single neuron follows leaky-integrate-and-fire dynamics


v̇i = − vi + Ii!t" , !1"


with i=1,… ,N. Here time is measured in units of the mem-
brane time constant, the resistance of the cell membrane is


lumped into the current, and the voltage variable and current
are rescaled by a typical value such that all variables and
parameters are nondimensional. The dynamics Eq. !1" is
complemented by the well-known fire-and-reset rule: when-
ever the voltage reaches a prescribed constant threshold vT,
the neuron fires and the voltage is kept fixed for an absolute
refractory period !R and then reset to a value vR. In the
following we set vT=1 and vR=0. The output of the ith LIF
neuron is a " spike train determined by the jth instants of
threshold crossing of the ith neuron ti,j


yi!t" = #
j


"!t − ti,j" . !2"


The input current Ii!t" consists of the following components
$11%:


Ii!t" = # + $i!t" + &1 − c%i!t" + &c%c!t" + f!t" . !3"


The constant base current # and the internal noise $i!t" of
intensity D belong to the autonomous stochastic dynamics of
the neuron itself. The internal noise processes of distinct neu-
rons are Gaussian and uncorrelated !in time and among neu-
rons"


'$i!t"( = 0, '$i!t"$ j!t!"( = 2D"i,j"!t − t!" . !4"


The noise processes %i!t" and %c!t" are also uncorrelated
among each other and represent the external inputs, which
are specific for each or common to all neurons, respectively.
The power spectrum of these processes is Sst!&" $all pro-
cesses %i!t" , %c!t" share the same statistics%. We note that
because of the scaling by the factors &1−c and &c in Eq. !3"
the total external input has a fixed intensity irrespective of
the value of the correlation parameter c. The latter parameter
can be varied between 0 and 1; c sets the spatial correlation
coefficient of the external noise: for c=0 all external noise is
uncorrelated among neurons whereas for c=1 each neuron
receives an identical external stimulus.


The last term in Eq. !3" stands for the delayed inhibitory
feedback of all spike trains generated by the network


f!t" =
G


N
)


!D


'


d!
! − !D


!S
2 exp*−


! − !D


!S
+#


i=1


N


yi!t − !" . !5"


This represents a convolution of the sum of all spike trains
with a delayed ( function. The feedback strength G)0 is
negative, indicating an inhibitory feedback; the decay time !S
is related to the typical synaptic transmission time and is the
inverse of the rate ( used in our previous work $11%. Note
that the arguments !D have been inadvertently omitted in Eq.
!3" in $11%.


In our modeling of pyramidal cells in the ELL of the
weakly electric fish $10,11%, the feedback kernel represents a
distant neural population. This so-called NP nucleus receives
the spikes generated by the ELL network and feeds them
back after a convolution !corresponding mainly to the syn-
aptic transmission to and from the distant population" and a
transmission delay !D. We note that the above network dy-
namics applies to an even simpler situation, namely, to a
network with delayed inhibitory all-to-all pulse coupling.


FIG. 1. The network model. Pyramidal cells !circles" receive
correlated and uncorrelated external stimuli as well as inhibitory
feedback of their spike trains. This feedback consists of the sum of
all spike trains convoluted by an ( function with time constant !S
and delayed by a constant !D corresponding to the finite axonal
transmission time.
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response theory [Brunel et al., 2001, Gabbiani and Cox, 2010, Lindner and Schimansky-Geier, 2001,


Risken, 1996] to approximate the cross-correlations between the outputs of neurons in a network.


We first review the linear approximation to the response of a single cell. We illustrate the ap-


proach using current-based IF neurons, and explain how it can be generalized to other models in


the Discussion.


The membrane potential of an IF neuron receiving input X(t), with vanishing temporal average,


�X(t)� = 0, evolves according to
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j δ(t − tj), across different realizations of noise, ξ(t), for a fixed input X(t). Linear response


approximates the firing rate by


r(t) = r0 + (A ∗X)(t), (4)


where r0 is the stationary firing rate in the absence of the signal X(t). The linear response kernel,


A(t), characterizes the firing rate response to first order in the strength of the input X(t). A rescal-


ing of the function A(t) gives the spike-triggered average of the cell, to first order in input strength,


and is hence equivalent to the optimal Weiner kernel in the presence of the signal ξ(t). [Barreiro


et al., 2010, Gabbiani and Cox, 2010] In Fig. 1A, we compare the approximate firing rate obtained


from Eq. (4) to that obtained numerically from Monte Carlo simulations.


The linear response kernel A(t) depends implicitly on model parameters, but is independent


of the statistics of the input, X(t). In particular, A(t) is sensitive to the value of the mean input


current, E. We emphasize that the presence of noise in Eq. (3) is essential to the theory.


Linear response in recurrent networks


The linear response kernel can be used to approximate the response of a cell to an external input.


However, the situation is more complicated in a network where a neuron can affect its own activity


through recurrent connections. To extend the linear response approximation to networks we follow


the approach introduced by Lindner et al. [2005]. Instead of using the linear response kernel to


approximate the firing rate of a cell, we use it to approximate a realization of its output


y(t) ≈ y1
(t) = y0


(t) + (A ∗X)(t). (5)


Here y0
(t) represents a realization of the spike train generated by an integrate-and-fire neuron


obeying Eq. (3) with X(t) = 0.
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Linear response gives the output rate as


y(t) =
∑


i


δ(t − ti)


But this is of no use in computing the cross correlation function 


the correlation structure of a network.


Network model


To illustrate the results we consider a network of N nonlinear integrate-and-fire (IF) neurons with


membrane potentials modeled by


τiv̇i = −(vi − EL,i) + ψ(vi) + Ei +


�
σ2


i τiξi(t) + fi(t) + ηi(t). (1)


Here Ei represents the mean input from parts of the system not explicitly modeled. A spike-


generating current ψ(vi) may be included to emulate the rapid onset of action potentials. Un-


less otherwise specified, we utilize the exponential IF model (EIF), so that ψ(v) ≡ ∆T exp[(v −
vT )/∆T ] [Fourcaud-Trocmé et al., 2003]. Cells are subject to internally induced fluctuations due to


channel noise [White et al., 2000], and externally induced fluctuations due to inputs not explicitly


modelled [Renart et al., 2004]. We model both by independent, Gaussian, white noise processes,�
σ2


i τiξi(t) [Burkitt, 2006]. An external signal to cell i is represented by ηi(t).


Upon reaching a threshold vth, an action potential is generated, the membrane potential is reset


to vr, and held constant for an absolute refractory period τref . The output of cell i is characterized


by the times, ti,k, at which its membrane potential reaches threshold, resulting in an output spike


train yi(t) =
�


k δ(t− ti,k). Synaptic interactions are modeled by delayed α-functions


fi(t) =


�


j


(Jij ∗ yj)(t), where Jij(t) =







Wij


�
t−τD,j


τ2
S,j


�
exp


�
− t−τD,j


τS,j


�
t ≥ τD,j


0 t < τD,j


. (2)


The N × N matrix J contains the synaptic kernels, while the matrix W contains the synaptic


weights, and hence defines the network architecture. In particular, Wij = 0 represents the absence


of a synaptic connection from cell j to cell i.


Table 1 provides an overview of all parameters and variables.


Measures of spike time correlation


We quantify dependencies between the responses of cells in the network using the spike train auto-


and cross-correlation functions [Gabbiani and Cox, 2010]. For a pair of spike trains, yi(t), yj(t), the


cross-correlation function Cij(τ) is defined as


Cij(τ) = cov (yi(t + τ), yj(t)) .


The auto-correlation function Cii(t) is the cross-correlation between a spike train and itself, and


C(t) is the matrix of cross-correlation functions. Denoting by Nyi(t1, t2) =
� t2
t1


yi(s)ds the number


of spikes over a time window [t1, t2], the spike count correlation, ρij(τ), over windows of length τ
is defined as,


ρij(τ) =
cov


�
Nyi(t, t + τ), Nyj (t, t + τ)


�
�


var (Nyi(t, t + τ)) var
�
Nyj (t, t + τ)


� .


We assume stationarity of the spiking processes so that ρij does not depend on t. The spike count


covariance is related to the cross-correlation function by [Bair et al., 2001, Shadlen and Newsome,


1998b]


cov
�
Nyi(t, t + τ), Nyj (t, t + τ)


�
=


� τ


−τ
Cij(s)(τ − |s|)ds.
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Additionally, we can interpret the covariance as the conditional probability that cell j spikes at


time t + τ given that cell i spiked at time t. The conditional intensity,


Hij(τ) = lim
∆t→0


1


∆t
Pr


�
Nyj (t + τ, t + τ + ∆t) > 0 | Nyi(t, t + ∆t) > 0


�
,


is the firing rate of cell j conditioned on a spike in cell i at τ units in the past. We then have


Cij(τ) = ri(Hij(τ) − rj). We also use the total correlation coefficient ρij(∞) = limτ→∞ ρij(τ) to


characterize dependencies between the processes yi and yj over arbitrarily long timescales.


Linear response for individual cells


Neuronal network models are typically described by a complex system of coupled nonlinear stochas-


tic differential equations. Their behavior is therefore difficult to analyze directly. We will use linear


response theory [Brunel et al., 2001, Gabbiani and Cox, 2010, Lindner and Schimansky-Geier, 2001,


Risken, 1996] to approximate the cross-correlations between the outputs of neurons in a network.


We first review the linear approximation to the response of a single cell. We illustrate the ap-


proach using current-based IF neurons, and explain how it can be generalized to other models in


the Discussion.


The membrane potential of an IF neuron receiving input X(t), with vanishing temporal average,


�X(t)� = 0, evolves according to


τ v̇ = −(v − EL) + ψ(v) + E +


√
σ2τξ(t) + X(t). (3)


The time-dependent firing rate, r(t), is determined by averaging the resulting spike train, y(t) =�
j δ(t − tj), across different realizations of noise, ξ(t), for a fixed input X(t). Linear response


approximates the firing rate by


r(t) = r0 + (A ∗X)(t), (4)


where r0 is the stationary firing rate in the absence of the signal X(t). The linear response kernel,


A(t), characterizes the firing rate response to first order in the strength of the input X(t). A rescal-


ing of the function A(t) gives the spike-triggered average of the cell, to first order in input strength,


and is hence equivalent to the optimal Weiner kernel in the presence of the signal ξ(t). [Barreiro


et al., 2010, Gabbiani and Cox, 2010] In Fig. 1A, we compare the approximate firing rate obtained


from Eq. (4) to that obtained numerically from Monte Carlo simulations.


The linear response kernel A(t) depends implicitly on model parameters, but is independent


of the statistics of the input, X(t). In particular, A(t) is sensitive to the value of the mean input


current, E. We emphasize that the presence of noise in Eq. (3) is essential to the theory.


Linear response in recurrent networks


The linear response kernel can be used to approximate the response of a cell to an external input.


However, the situation is more complicated in a network where a neuron can affect its own activity


through recurrent connections. To extend the linear response approximation to networks we follow


the approach introduced by Lindner et al. [2005]. Instead of using the linear response kernel to


approximate the firing rate of a cell, we use it to approximate a realization of its output


y(t) ≈ y1
(t) = y0


(t) + (A ∗X)(t). (5)


Here y0
(t) represents a realization of the spike train generated by an integrate-and-fire neuron


obeying Eq. (3) with X(t) = 0.
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The central assumption we make is that a cell acts approximately as a linear filter of its inputs.


Note that Eq. (5) defines a mixed point and continuous process, but averaging y(t) in Eq. (5) over


realizations of y0
gives Eq. (4) [Vilela and Lindner, 2009]. Hence, Eq. (5) can be viewed as a natural


generalization of Eq. (4) where the unperturbed output of the cell is represented as a point process,


y0
(t), instead of the firing rate, r0.


We first use Eq. (5) to describe spontaneously evolving networks where ηi(t) = 0. Eq. (1) can


then be rewritten as


τiv̇i = −(vi − EL,i) + ψ(vi) + E�
i +


�
σ2


i τiξi(t) + (fi(t)− �fi�), (6)


where �·� represents the temporal average, and E�
i = Ei + �fi�.


As a first approximation of the spiking output of cells in the coupled network, we start with


realizations of spike trains, y0
i , generated by IF neurons obeying Eq. (6) with fi(t) = �fi(t)�. This is


equivalent to considering neurons isolated from the network, with adjusted DC inputs (due to mean


network interactions). Following the approximation given by Eq. (5), we use a frozen realization of


all y0
i to find a correction to the output of each cell, with X(t) set to the mean-adjusted synaptic


input,


X(t) = fi(t)− �fi(t)�.


As noted previously, the linear response kernel is sensitive to changes in the mean input current. It


is therefore important to include the average synaptic input in the definition of the effective mean


input, E�
i.


The input from cell j to cell i is filtered by the synaptic kernel Jij(t). The linear response of


cell i to a spike in cell j is therefore captured by the interaction kernel Kij defined by


Kij(t) ≡ (Ai ∗ Jij)(t). (7)


The output of cell i in response to mean-adjusted input, y0
j (t)−rj , from cell j can be approximated


to first order in input strength using the linear response corrections


y1
i (t) = y0


i (t) +


�


j


(Kij ∗ [y0
j − rj ])(t). (8)


The method of calculating the stationary rates, rj , is given in the Methods.


We can use Eq. (8) to approximate the cross-correlation between a pre-synaptic cell with index


j and post-synaptic cell with index i. By averaging over realizations of the independent process y0
j ,


we find (See Methods)


E
�
(y1


i (t + τ)− ri)(y
0
j (t)− rj)


�
= δijC0


ii(τ) + (Kij ∗C0
jj)(τ), (9)


where C0
is the matrix of auto-correlation functions for the processes y0


i ,


C0
ii(τ) = E[(y0


i (t + τ)− ri)(y
0
i (t)− ri)].


We next extend this approach to approximate the full impact of recurrent connections in the


network. The cross-correlation between the processes y1
i (t) in Eq. (8) gives a first approximation


to the cross-correlation function between the cells (See Methods),


Cij(τ) ≈ C1
ij(τ) = E


�
(y1


i (t + τ)− ri)(y
1
j (t)− rj)


�


= δijC0
ii(τ) + (Kij ∗C0


jj)(τ) + (K−
ji ∗C0


ii)(τ) +


�


k


(Kik ∗K−
jk ∗C0


kk)(τ), (10)
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The linear response approximation now takes the form
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Impact of non-immediate neighbors


where we used f−(t) = f(−t).
Ostojic et al. [2009] obtained an approximation closely related to Eq. (10). They first obtained


the cross-correlation between a pair of neurons which either receive a common input or share a
monosynaptic connection. This can be done using Eq. (4), without the need to introduce the mixed
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To compute the correction to the output of a neuron, in the first iteration we assume that
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with K0
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ij(t) acts as the identity matrix under matrix convolution.


6


We use an iterative construction 


In matrix form


where we used f−(t) = f(−t).
Ostojic et al. [2009] obtained an approximation closely related to Eq. (10). They first obtained


the cross-correlation between a pair of neurons which either receive a common input or share a
monosynaptic connection. This can be done using Eq. (4), without the need to introduce the mixed
process given in Eq. (5). Ostojic et al. [2009] then implicitly assumed that the correlations not
due to one of these two submotifs could be disregarded. In this case, the correlation between pairs
of cells which were mutually coupled (or were unidirectionally coupled with common input) was
approximated by the sum of correlations introduced by each submotif individually.


Eq. (10) provides a first approximation to the joint spiking statistics of cells in a recurrent
network. However, it captures only the effects of direct synaptic connections, represented by the
second and third terms, and common input, represented by the last term in Eq. (10). The impact of
larger network structures, such as loops and chains are not captured, although they may significantly
impact cross-correlations [Bullmore and Sporns, 2009, Roxin, 2011, Zhao et al., 2011]. Experimental
studies have also shown local cortical connectivity may not be purely random [Oswald et al., 2009,
Perin et al., 2011, Song et al., 2005]. It is therefore important to understand the effects on network
architecture on correlations.


To capture the impact of the full network structure, we propose an iterative approach which
accounts for successively larger connectivity patterns in the network [Rangan, 2009a,b]. We again
start with y0


i (t), a realization of a single spike train in isolation. Successive approximations to the
output of cells in a recurrent network are defined by


yn+1
i (t) = y0


i (t) +
�


j


(Kij ∗ [yn
j − rj ])(t), n ≥ 0. (11)


To compute the correction to the output of a neuron, in the first iteration we assume that
its inputs come from a collection of isolated cells: When n = 1, Eq. (11) takes into account only
inputs from immediate neighbors, treating each as disconnected from the rest of the network. The
corrections in the second iteration are computed using the approximate cell responses obtained
from the first iteration. Thus, with n = 2, Eq. (11) also accounts for the impact of next nearest
neighbors. Successive iterations include the impact of directed chains of increasing length: The
isolated output from an independent collection of neurons is filtered through n stages to produce
the corrected response (See Fig. 1 C-E.)


Notation is simplified when this iterative construction is recast in matrix form1 to obtain


yn+1(t) = y0(t) + (K ∗ [yn − r])(t)


= y0(t) +
n+1�


k=1


(K(k) ∗ [y0 − r])(t),
n ≥ 0, (12)


where yn(t) = [yn
i (t)] and r = [ri] are length N column vectors, and K(k) represents a k-fold matrix


convolution of K with itself.
1
Let X(t) = [Xij(t)] and Y(t) = [Yij(t)] be n1 ×n2 and n2 ×n3 matrices of functions, respectively. We define the


convolution of matrices (X ∗Y)(t) to be the n1 × n3 matrix of functions with entries defined by


(X ∗Y)ij(t) =


X


k


(Xik ∗ Ykj)(t).


Expectations and convolutions commute for matrix convolutions as matrix expectations are taken entry-wise. Each


entry of a matrix convolution is a linear combination of scalar convolutions which commute with expectations.


Additionally, we adopt the convention that the zeroth power of the interaction matrix, K0
ij(t), is the diagonal matrix


with K0
ij(t) = δ(t) when i = j. Hence K0


ij(t) acts as the identity matrix under matrix convolution.


6


Which gives the n-th approximation to the cross-correlation
The nth approximation to the matrix of cross-correlations can be written in terms of the inter-


action kernels, Kij , and the autocorrelations of the base processes y0 as (See Methods)


Cij(τ) ≈ Cn(τ) = E
�
(yn(t + τ)− r)(yn(t)− r)T


�


=
n�


k,l=0


(K(k) ∗C0 ∗ (K−)(lT ))(τ), n ≥ 0,
(13)


where K−(t) = K(−t), XkT = (Xk)T , and Xk is the k-fold matrix convolution of X with itself.
If we apply the Fourier transform, f̃(ω) = F [f(t)](ω) ≡


�∞
−∞ f(t)e−2πiωtdt, to Eq. (13), we find


that for each ω,


C̃n(ω) = E[ỹn(ω)ỹn∗(ω)] =
n�
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K̃k(ω)E[ỹ0(ω)ỹ0∗(ω)](K̃∗)l(ω)
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�
n�


k=0


K̃k(ω)


�
E[ỹ0(ω)ỹ0∗(ω)]


�
n�


l=0


(K̃∗)l(ω)


�
,


(14)


where ∗ denotes the conjugate transpose. The zero-mean Fourier transforms ỹn
i of the spiking


processes yn
i is defined by ỹn


i = F [yn
i − ri], and f̃ = F(f) for all other quantities.


For a suitable matrix norm || · ||, when ||K̃|| < 1, we can take the limit n→∞ in Eq. (14) [Katō,
1995], to obtain an approximation to the full array of cross-spectra


C̃∞(ω) = lim
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C̃n(ω) = (I− K̃(ω))−1C̃0(ω)(I− K̃∗(ω))−1. (15)


This equation can also be obtained by generalizing the approach of Lindner et al. [2005] (also
see [Beck et al., 2011]). In the limit n → ∞, directed paths of arbitrary length contribute to the
approximation. Eq. (15) therefore takes into account the full recurrent structure of the network.
We will use the norm || · ||2, and assume that in the networks we study ||K̃||2 < 1. This condition
is confirmed numerically when we use Eq. (15).


Finally, consider the network response to an external signals, ηi(t), with zero mean and finite
variance. The response of the neurons in the recurrent network can be approximated iteratively by


yn+1 = y0 + K ∗ [yn − r] + A ∗ η, (16)


where A = diag(Ai) and η(t) = [ηi(t)]. External signals and recurrent synaptic inputs are both
linearly filtered to approximate a cell’s response, consistent with a generalization of Eq. (4). As in
Eq. (13), the nth approximation to the matrix of correlations is


C(τ) ≈ Cn(τ) =
n�


k,l=0


(K(k) ∗C0 ∗ (K−)(lT ))(τ) +
n−1�


k,l=0


(A(k) ∗Cη ∗ (A−)(lT ))(τ), (17)


where Cη(τ) = E
�
η(t + τ)η(t)T


�
. We can again take the Fourier transform and the limit n→∞,


and solve for C̃(ω). If ||K̃|| < 1,


C̃∞(ω) = (I− K̃(ω))−1(C̃0(ω) + Ã(ω)C̃η(ω)Ã∗(ω))(I− K̃∗(ω))−1. (18)


We may also calculate C̃∞(ω) when the signals comprising η are white (and possibly correlated),
but an extra correction must be made to account for the change in spectrum and response properties
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Figure 1: A) Illustrating Eq. (4). i) The input to the neuron is a spike train which is convolved with


a synaptic kernel. ii) The output firing rate, r(t), is obtained by averaging over realizations of the


output spike train with fixed input, and independent realizations of noise, ξ(t). The rate obtained


using Monte Carlo simulations (shaded in gray) matches predictions of linear response theory


obtained using Eq. (4) (black). iii) Raster plot of 100 realizations of output spike trains. A dot in a


bin represents a spike in that bin on a single trial. iv) A sample voltage path for the post-synaptic


cell. B) An example recurrent network. C-E) A sequence of graphs determines the successive


approximations to the output of neuron 1. Processes defined by the same iteration of Eq. (12)


have equal color. C) In the first iteration of Eq. (12), the output of neuron 1 is approximated


using the unperturbed outputs of its neighbours. D) In the second iteration the results of the first


iteration are used to define the inputs to the neuron. For instance, the process y1
2 depends on the


base process y0
1 which represents the unperturbed output of neuron 1. Neuron 4 receives no inputs


from the rest of the network, and all approximations involve only its unperturbed output, y0
4. E)


Cells 3 and 4 are not part of recurrent paths, and their contributions to the approximation are


fixed after the second iteration. However, the recurrent connection between cells 1 and 2 implies


that subsequent approximations involve contributions of directed chains of increasing length.


9


Figure 1: A) Illustrating Eq. (4). i) The input to the neuron is a spike train which is convolved with


a synaptic kernel. ii) The output firing rate, r(t), is obtained by averaging over realizations of the


output spike train with fixed input, and independent realizations of noise, ξ(t). The rate obtained


using Monte Carlo simulations (shaded in gray) matches predictions of linear response theory


obtained using Eq. (4) (black). iii) Raster plot of 100 realizations of output spike trains. A dot in a


bin represents a spike in that bin on a single trial. iv) A sample voltage path for the post-synaptic


cell. B) An example recurrent network. C-E) A sequence of graphs determines the successive


approximations to the output of neuron 1. Processes defined by the same iteration of Eq. (12)


have equal color. C) In the first iteration of Eq. (12), the output of neuron 1 is approximated


using the unperturbed outputs of its neighbours. D) In the second iteration the results of the first


iteration are used to define the inputs to the neuron. For instance, the process y1
2 depends on the


base process y0
1 which represents the unperturbed output of neuron 1. Neuron 4 receives no inputs


from the rest of the network, and all approximations involve only its unperturbed output, y0
4. E)


Cells 3 and 4 are not part of recurrent paths, and their contributions to the approximation are


fixed after the second iteration. However, the recurrent connection between cells 1 and 2 implies


that subsequent approximations involve contributions of directed chains of increasing length.


9


Figure 1: A) Illustrating Eq. (4). i) The input to the neuron is a spike train which is convolved with


a synaptic kernel. ii) The output firing rate, r(t), is obtained by averaging over realizations of the


output spike train with fixed input, and independent realizations of noise, ξ(t). The rate obtained


using Monte Carlo simulations (shaded in gray) matches predictions of linear response theory


obtained using Eq. (4) (black). iii) Raster plot of 100 realizations of output spike trains. A dot in a


bin represents a spike in that bin on a single trial. iv) A sample voltage path for the post-synaptic


cell. B) An example recurrent network. C-E) A sequence of graphs determines the successive


approximations to the output of neuron 1. Processes defined by the same iteration of Eq. (12)


have equal color. C) In the first iteration of Eq. (12), the output of neuron 1 is approximated


using the unperturbed outputs of its neighbours. D) In the second iteration the results of the first


iteration are used to define the inputs to the neuron. For instance, the process y1
2 depends on the


base process y0
1 which represents the unperturbed output of neuron 1. Neuron 4 receives no inputs


from the rest of the network, and all approximations involve only its unperturbed output, y0
4. E)


Cells 3 and 4 are not part of recurrent paths, and their contributions to the approximation are


fixed after the second iteration. However, the recurrent connection between cells 1 and 2 implies


that subsequent approximations involve contributions of directed chains of increasing length.


9


Figure 1: A) Illustrating Eq. (4). i) The input to the neuron is a spike train which is convolved with


a synaptic kernel. ii) The output firing rate, r(t), is obtained by averaging over realizations of the


output spike train with fixed input, and independent realizations of noise, ξ(t). The rate obtained


using Monte Carlo simulations (shaded in gray) matches predictions of linear response theory


obtained using Eq. (4) (black). iii) Raster plot of 100 realizations of output spike trains. A dot in a


bin represents a spike in that bin on a single trial. iv) A sample voltage path for the post-synaptic


cell. B) An example recurrent network. C-E) A sequence of graphs determines the successive


approximations to the output of neuron 1. Processes defined by the same iteration of Eq. (12)


have equal color. C) In the first iteration of Eq. (12), the output of neuron 1 is approximated


using the unperturbed outputs of its neighbours. D) In the second iteration the results of the first


iteration are used to define the inputs to the neuron. For instance, the process y1
2 depends on the


base process y0
1 which represents the unperturbed output of neuron 1. Neuron 4 receives no inputs


from the rest of the network, and all approximations involve only its unperturbed output, y0
4. E)


Cells 3 and 4 are not part of recurrent paths, and their contributions to the approximation are


fixed after the second iteration. However, the recurrent connection between cells 1 and 2 implies


that subsequent approximations involve contributions of directed chains of increasing length.


9


The iterative construction


Figure 1: A) Illustrating Eq. (4). i) The input to the neuron is a spike train which is convolved with


a synaptic kernel. ii) The output firing rate, r(t), is obtained by averaging over realizations of the


output spike train with fixed input, and independent realizations of noise, ξ(t). The rate obtained


using Monte Carlo simulations (shaded in gray) matches predictions of linear response theory


obtained using Eq. (4) (black). iii) Raster plot of 100 realizations of output spike trains. A dot in a


bin represents a spike in that bin on a single trial. iv) A sample voltage path for the post-synaptic


cell. B) An example recurrent network. C-E) A sequence of graphs determines the successive


approximations to the output of neuron 1. Processes defined by the same iteration of Eq. (12)


have equal color. C) In the first iteration of Eq. (12), the output of neuron 1 is approximated


using the unperturbed outputs of its neighbours. D) In the second iteration the results of the first


iteration are used to define the inputs to the neuron. For instance, the process y1
2 depends on the


base process y0
1 which represents the unperturbed output of neuron 1. Neuron 4 receives no inputs


from the rest of the network, and all approximations involve only its unperturbed output, y0
4. E)


Cells 3 and 4 are not part of recurrent paths, and their contributions to the approximation are


fixed after the second iteration. However, the recurrent connection between cells 1 and 2 implies


that subsequent approximations involve contributions of directed chains of increasing length.


9


Rangan 2009
Pernice et al, 2011
Trousdale, Yu, Shea-Brown, Josić, 2011


Sunday, October 2, 2011







Example - microcircuits


Note that


(I− K̃)−1 = (I + K̃ + K̃2) =








1 0 0


K̃E2E1 + K̃E2IK̃IE1 1 K̃E2I


K̃IE1 0 1






. (19)


Substituting Eq. (19) into Eq. (15) yields an approximation to the matrix of cross-spectra. For
instance,


C̃∞E2I = K̃IE2C̃
0
I + K̃E2E1K̃


∗
IE1


C̃0
E1


+ K̃E2I |K̃IE1 |2C̃0
E1


= (ÃE2 J̃E2I)C̃0
I� �� �


I


+ (ÃE2 J̃E2E1)(ÃI J̃IE1)
∗C̃0


E1� �� �
II


(20)


+ (ÃE2 J̃E2E1)|ÃI J̃IE1 |2C̃0
E1� �� �


III


.


Fig. 2B shows that these approximations closely match numerically obtained cross-correlations.
C̃0


X is the uncoupled power spectrum for cell X.


Figure 2: The relation between correlation structure and response statistics in a feed-forward in-
hibitory microcircuit. A. The FFI circuit (left) can be decomposed into three submotifs. Eq. (20)
shows that each submotif provides a specific contribution to the cross-correlation between cells E2


and I. B. Comparison of the theoretical prediction with the numerically computed cross-correlation
between cells E2 and I. Results are shown for two different values of the inhibitory time constant,τI


(τI = 5ms, solid line, τI = 10ms, dashed line, shaded area provides a numerical estimate of +/-
2 s.e. from the mean cross-correlation). C. The contributions of the different submotifs in panel
A are shown for both τI = 5ms (solid) and τI = 10ms (dashed). Inset shows the corresponding
change in the inhibitory synaptic filter. The present color scheme is used in subsequent figures.
Connection strengths were ±40 mV · ms for excitatory and inhibitory connections.
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of the isolated cells in the presence of additional white noise [de la Rocha et al., 2007, Lindner et al.,


2005] (See Methods).


We note that Eq. (12) which is the basis of our iterative approach, provides an approximation


to the network’s output which is of higher than first order in connection strength. This may seem


at odds with a theory that provides a linear correction to a cell’s response, cf. Eq. (4). However,


Eq. (12) does not capture nonlinear corrections to the response of individual cells, as the output of


each cell is determined linearly from its input. It is the input that can contain terms of any order


in connection strength stemming from directed paths of different lengths through the network.


Results


We use the theoretical framework developed above to analyze the statistical structure of the spiking


activity in a network of IF neurons describe by Eq. (1). We first show that the cross-correlation


functions between cells in two small network can be studied in terms of contributions from directed


paths through the network. We use a similar approach to understand the structure of correlations in


larger all-to-all and random networks. We show that in networks where inhibition and excitation are


exactly balanced, only local interactions contribute to correlations. When such balance is broken


by elevating inhibition, the result may be increased synchrony in the network. The theory also


allows us to obtain conditional averages of cross-correlation functions. Such averages can provide


tractable yet accurate description about the joint statistics of spiking in random neuronal networks.


The correlation structure is determined by the response properties of cells together with synaptic


dynamics and network architecture. Network interactions are described by the matrix of synaptic


filters, J, given in Eq. (2), while the response of cell i to an input is approximated using the linear


response kernel Ai. Synaptic dynamics, architecture, and cell responses are all combined in the


matrix K, where Kij describes the response of cell i to an input from cell j (See Eq. (1)). The


correlation structure of network activity is approximated in Eq. (15) using the Fourier transforms


of the interaction matrix, K, and the matrix of unperturbed autocorrelations C0
.


Statistics of the response of microcircuits


We first consider a pair of simple microcircuits to highlight some of the features of the theory. We


start with a three cell model of feed-forward inhibition shown in Fig. 2A. The interaction matrix,


K̃(ω), has the form


K̃(ω) =








0 0 0


K̃E2E1(ω) 0 K̃E2I(ω)


K̃IE1(ω) 0 0






,


where cells are indexed in the order E1, E2, I. To simplify notation, we suppress the dependence of


K̃(ω) and other spectral quantities on ω.
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at odds with a theory that provides a linear correction to a cell’s response, cf. Eq. (4). However,


Eq. (12) does not capture nonlinear corrections to the response of individual cells, as the output of


each cell is determined linearly from its input. It is the input that can contain terms of any order


in connection strength stemming from directed paths of different lengths through the network.


Results


We use the theoretical framework developed above to analyze the statistical structure of the spiking


activity in a network of IF neurons describe by Eq. (1). We first show that the cross-correlation


functions between cells in two small network can be studied in terms of contributions from directed


paths through the network. We use a similar approach to understand the structure of correlations in


larger all-to-all and random networks. We show that in networks where inhibition and excitation are


exactly balanced, only local interactions contribute to correlations. When such balance is broken


by elevating inhibition, the result may be increased synchrony in the network. The theory also


allows us to obtain conditional averages of cross-correlation functions. Such averages can provide


tractable yet accurate description about the joint statistics of spiking in random neuronal networks.


The correlation structure is determined by the response properties of cells together with synaptic


dynamics and network architecture. Network interactions are described by the matrix of synaptic


filters, J, given in Eq. (2), while the response of cell i to an input is approximated using the linear


response kernel Ai. Synaptic dynamics, architecture, and cell responses are all combined in the


matrix K, where Kij describes the response of cell i to an input from cell j (See Eq. (1)). The


correlation structure of network activity is approximated in Eq. (15) using the Fourier transforms


of the interaction matrix, K, and the matrix of unperturbed autocorrelations C0
.


Statistics of the response of microcircuits


We first consider a pair of simple microcircuits to highlight some of the features of the theory. We


start with a three cell model of feed-forward inhibition shown in Fig. 2A. The interaction matrix,


K̃(ω), has the form


K̃(ω) =








0 0 0


K̃E2E1(ω) 0 K̃E2I(ω)


K̃IE1(ω) 0 0






,


where cells are indexed in the order E1, E2, I. To simplify notation, we suppress the dependence of


K̃(ω) and other spectral quantities on ω.
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Fig. 2B shows that these approximations closely match numerically obtained cross-correlations.
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X is the uncoupled power spectrum for cell X.


Figure 2: The relation between correlation structure and response statistics in a feed-forward in-
hibitory microcircuit. A. The FFI circuit (left) can be decomposed into three submotifs. Eq. (20)
shows that each submotif provides a specific contribution to the cross-correlation between cells E2


and I. B. Comparison of the theoretical prediction with the numerically computed cross-correlation
between cells E2 and I. Results are shown for two different values of the inhibitory time constant,τI


(τI = 5ms, solid line, τI = 10ms, dashed line, shaded area provides a numerical estimate of +/-
2 s.e. from the mean cross-correlation). C. The contributions of the different submotifs in panel
A are shown for both τI = 5ms (solid) and τI = 10ms (dashed). Inset shows the corresponding
change in the inhibitory synaptic filter. The present color scheme is used in subsequent figures.
Connection strengths were ±40 mV · ms for excitatory and inhibitory connections.
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of the isolated cells in the presence of additional white noise [de la Rocha et al., 2007, Lindner et al.,


2005] (See Methods).


We note that Eq. (12) which is the basis of our iterative approach, provides an approximation


to the network’s output which is of higher than first order in connection strength. This may seem


at odds with a theory that provides a linear correction to a cell’s response, cf. Eq. (4). However,


Eq. (12) does not capture nonlinear corrections to the response of individual cells, as the output of


each cell is determined linearly from its input. It is the input that can contain terms of any order


in connection strength stemming from directed paths of different lengths through the network.


Results


We use the theoretical framework developed above to analyze the statistical structure of the spiking


activity in a network of IF neurons describe by Eq. (1). We first show that the cross-correlation


functions between cells in two small network can be studied in terms of contributions from directed


paths through the network. We use a similar approach to understand the structure of correlations in


larger all-to-all and random networks. We show that in networks where inhibition and excitation are


exactly balanced, only local interactions contribute to correlations. When such balance is broken


by elevating inhibition, the result may be increased synchrony in the network. The theory also


allows us to obtain conditional averages of cross-correlation functions. Such averages can provide


tractable yet accurate description about the joint statistics of spiking in random neuronal networks.


The correlation structure is determined by the response properties of cells together with synaptic


dynamics and network architecture. Network interactions are described by the matrix of synaptic


filters, J, given in Eq. (2), while the response of cell i to an input is approximated using the linear


response kernel Ai. Synaptic dynamics, architecture, and cell responses are all combined in the


matrix K, where Kij describes the response of cell i to an input from cell j (See Eq. (1)). The


correlation structure of network activity is approximated in Eq. (15) using the Fourier transforms


of the interaction matrix, K, and the matrix of unperturbed autocorrelations C0
.


Statistics of the response of microcircuits


We first consider a pair of simple microcircuits to highlight some of the features of the theory. We


start with a three cell model of feed-forward inhibition shown in Fig. 2A. The interaction matrix,


K̃(ω), has the form


K̃(ω) =








0 0 0


K̃E2E1(ω) 0 K̃E2I(ω)


K̃IE1(ω) 0 0






,


where cells are indexed in the order E1, E2, I. To simplify notation, we suppress the dependence of


K̃(ω) and other spectral quantities on ω.
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and I. B. Comparison of the theoretical prediction with the numerically computed cross-correlation
between cells E2 and I. Results are shown for two different values of the inhibitory time constant,τI


(τI = 5ms, solid line, τI = 10ms, dashed line, shaded area provides a numerical estimate of +/-
2 s.e. from the mean cross-correlation). C. The contributions of the different submotifs in panel
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+(ÃE2
J̃E2E1
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of the isolated cells in the presence of additional white noise [de la Rocha et al., 2007, Lindner et al.,


2005] (See Methods).


We note that Eq. (12) which is the basis of our iterative approach, provides an approximation


to the network’s output which is of higher than first order in connection strength. This may seem


at odds with a theory that provides a linear correction to a cell’s response, cf. Eq. (4). However,


Eq. (12) does not capture nonlinear corrections to the response of individual cells, as the output of


each cell is determined linearly from its input. It is the input that can contain terms of any order


in connection strength stemming from directed paths of different lengths through the network.


Results


We use the theoretical framework developed above to analyze the statistical structure of the spiking


activity in a network of IF neurons describe by Eq. (1). We first show that the cross-correlation


functions between cells in two small network can be studied in terms of contributions from directed


paths through the network. We use a similar approach to understand the structure of correlations in


larger all-to-all and random networks. We show that in networks where inhibition and excitation are


exactly balanced, only local interactions contribute to correlations. When such balance is broken


by elevating inhibition, the result may be increased synchrony in the network. The theory also


allows us to obtain conditional averages of cross-correlation functions. Such averages can provide


tractable yet accurate description about the joint statistics of spiking in random neuronal networks.


The correlation structure is determined by the response properties of cells together with synaptic


dynamics and network architecture. Network interactions are described by the matrix of synaptic


filters, J, given in Eq. (2), while the response of cell i to an input is approximated using the linear


response kernel Ai. Synaptic dynamics, architecture, and cell responses are all combined in the


matrix K, where Kij describes the response of cell i to an input from cell j (See Eq. (1)). The


correlation structure of network activity is approximated in Eq. (15) using the Fourier transforms


of the interaction matrix, K, and the matrix of unperturbed autocorrelations C0
.


Statistics of the response of microcircuits


We first consider a pair of simple microcircuits to highlight some of the features of the theory. We


start with a three cell model of feed-forward inhibition shown in Fig. 2A. The interaction matrix,


K̃(ω), has the form


K̃(ω) =








0 0 0


K̃E2E1(ω) 0 K̃E2I(ω)


K̃IE1(ω) 0 0






,


where cells are indexed in the order E1, E2, I. To simplify notation, we suppress the dependence of


K̃(ω) and other spectral quantities on ω.
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Fig. 2B shows that these approximations closely match numerically obtained cross-correlations.
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X is the uncoupled power spectrum for cell X.


Figure 2: The relation between correlation structure and response statistics in a feed-forward in-
hibitory microcircuit. A. The FFI circuit (left) can be decomposed into three submotifs. Eq. (20)
shows that each submotif provides a specific contribution to the cross-correlation between cells E2


and I. B. Comparison of the theoretical prediction with the numerically computed cross-correlation
between cells E2 and I. Results are shown for two different values of the inhibitory time constant,τI


(τI = 5ms, solid line, τI = 10ms, dashed line, shaded area provides a numerical estimate of +/-
2 s.e. from the mean cross-correlation). C. The contributions of the different submotifs in panel
A are shown for both τI = 5ms (solid) and τI = 10ms (dashed). Inset shows the corresponding
change in the inhibitory synaptic filter. The present color scheme is used in subsequent figures.
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= (ÃE2 J̃E2I)C̃0
I� �� �


I
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+ (ÃE2 J̃E2E1)(ÃI J̃IE1)
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Expansion in terms of paths through the 
graph


path from one cell to the other. Likewise, the approximate power spectra contain only even powers


of the kernels corresponding to directed paths that connect a cell to itself (See Fig. 3A).


The contributions of different sub-motifs to the cross- and auto-correlations are shown in


Figs. 3C, D when the isolated cells are in a near-threshold excitable state. The auto-correlations are


significantly affected by network interactions. We also note that chains of length two and three (the


second and third submotifs in Fig. 3A) provide significant contributions. Earlier approximations


did not capture such corrections [Ostojic et al., 2009].


The operating point of a cell is set by its parameters (τi, EL,i, etc.) and the statistics of


its input (Ei, σi). A change in operating point can significantly change a cell’s response to an


input. Using linear response theory, these changes are reflected in the response functions Ai, and


the power spectra of the isolated cells, C̃
0. To highlight the role that the operating point plays


in the approximation of the correlation structure given by Eq. (15), we elevated the mean and


decreased the variance of background noise by increasing Ei and decreasing σi in Eq. (1). With


the chosen parameters the isolated cells are in a super-threshold, low noise regime and fire nearly


periodically. After the cells are coupled, this oscillatory behavior is reflected in the cross- and auto-


correlations where the dominant contributions are due to first and zeroth order terms, respectively


(See Figs. 3F,G).


Orders of coupling interactions: It is often useful to expand Eq. (15) in terms of powers of


K̃ [Pernice et al., 2011]. The term K̃
n
C̃


0(K̃∗)m in the expansion is said to be of order n + m.


Equivalently, in the expansion of C̃
∞
ij , the order of a term refers to the sum of the powers of all


constituent interaction kernels K̃ab. We can also associate a particular connectivity submotif with


each term. In particular, terms of the form


K̃ian−1K̃an−1an−2 · · · K̃a1jC̃
0
jj


are associated with a directed path j → a1 → · · · → an−2 → an−1 → i from cell j to cell i.
Similarly, the term C̃


0
iiK̃


∗
ia1


· · · K̃∗
an−2an−1


K̃
∗
an−1j corresponds to a n-step path from cell i to cell j.


A term of the form


K̃ian−1K̃an−1an−2 · · · K̃a1a0C̃
0
a0a0


K̃
∗
a0b1 · · · K̃∗


bm−2bm−1
K̃
∗
bm−1j


represents the effects of an indirect common input n steps removed from cell i and m steps removed


from cell j. This corresponds to a submotif of the form i ← an−1 ← · · · ← a0 → b1 → · · · →
bn−1 → j consisting of two branches originating at cell a0 (See the discussion around Eqs. (20,22)


and Fig. 4C).


Statistics of the response of large networks


Although these techniques can be used to analyze the joint response of cells in a microcircuit,


their full power becomes evident when considering larger networks. We again illustrate the theory


using several examples. In networks where inhibition and excitation are exactly balanced, the


theory shows that only local interactions contribute to correlations. When the balance is broken


the contributions of terms corresponding to longer paths through the network shape the cross-


correlation functions. For instance, relative increase in inhibition can lead to elevated network


synchrony. We end this section by showing how conditional averages across cell pairs in a random


network can be used to provide a tractable, yet accurate approximation of the correlation structure


in the network.
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The nth approximation to the matrix of cross-correlations can be written in terms of the inter-
action kernels, Kij , and the autocorrelations of the base processes y0 as (See Methods)


Cij(τ) ≈ Cn(τ) = E
�
(yn(t + τ)− r)(yn(t)− r)T


�


=
n�


k,l=0


(K(k) ∗C0 ∗ (K−)(lT ))(τ), n ≥ 0,
(13)


where K−(t) = K(−t), XkT = (Xk)T , and Xk is the k-fold matrix convolution of X with itself.
If we apply the Fourier transform, f̃(ω) = F [f(t)](ω) ≡


�∞
−∞ f(t)e−2πiωtdt, to Eq. (13), we find


that for each ω,


C̃n(ω) = E[ỹn(ω)ỹn∗(ω)] =
n�


k,l=0


K̃k(ω)E[ỹ0(ω)ỹ0∗(ω)](K̃∗)l(ω)


=


�
n�


k=0


K̃k(ω)


�
E[ỹ0(ω)ỹ0∗(ω)]


�
n�


l=0


(K̃∗)l(ω)


�
,


(14)


where ∗ denotes the conjugate transpose. The zero-mean Fourier transforms ỹn
i of the spiking


processes yn
i is defined by ỹn


i = F [yn
i − ri], and f̃ = F(f) for all other quantities.


For a suitable matrix norm || · ||, when ||K̃|| < 1, we can take the limit n→∞ in Eq. (14) [Katō,
1995], to obtain an approximation to the full array of cross-spectra


C̃∞(ω) = lim
n→∞


C̃n(ω) = (I− K̃(ω))−1C̃0(ω)(I− K̃∗(ω))−1. (15)


This equation can also be obtained by generalizing the approach of Lindner et al. [2005] (also
see [Beck et al., 2011]). In the limit n → ∞, directed paths of arbitrary length contribute to the
approximation. Eq. (15) therefore takes into account the full recurrent structure of the network.
We will use the norm || · ||2, and assume that in the networks we study ||K̃||2 < 1. This condition
is confirmed numerically when we use Eq. (15).


Finally, consider the network response to an external signals, ηi(t), with zero mean and finite
variance. The response of the neurons in the recurrent network can be approximated iteratively by


yn+1 = y0 + K ∗ [yn − r] + A ∗ η, (16)


where A = diag(Ai) and η(t) = [ηi(t)]. External signals and recurrent synaptic inputs are both
linearly filtered to approximate a cell’s response, consistent with a generalization of Eq. (4). As in
Eq. (13), the nth approximation to the matrix of correlations is


C(τ) ≈ Cn(τ) =
n�


k,l=0


(K(k) ∗C0 ∗ (K−)(lT ))(τ) +
n−1�


k,l=0


(A(k) ∗Cη ∗ (A−)(lT ))(τ), (17)


where Cη(τ) = E
�
η(t + τ)η(t)T


�
. We can again take the Fourier transform and the limit n→∞,


and solve for C̃(ω). If ||K̃|| < 1,


C̃∞(ω) = (I− K̃(ω))−1(C̃0(ω) + Ã(ω)C̃η(ω)Ã∗(ω))(I− K̃∗(ω))−1. (18)


We may also calculate C̃∞(ω) when the signals comprising η are white (and possibly correlated),
but an extra correction must be made to account for the change in spectrum and response properties
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Network of all-to-all coupled cells


If we have N  excitatory and N  inhibitory cells


A symmetric, all–to–all network of excitatory and inhibitory neurons We begin with


an all–to–all coupled network of N dynamically identical cells, of which NE are excitatory and


NI inhibitory. The excitatory cells are assigned indices 1, . . . , NE , and the inhibitory cells indices


NE + 1, . . . , N . All excitatory (inhibitory) synapses have weight WE =
GE
NE


(WI = −GI
NI


), and


timescale τE (τI). The interaction matrix K̃ may then be written in block form,


K̃ = ÃJ̃, where J̃ =






J̃E1NENE J̃I1NENI


J̃E1NINE J̃I1NINI





 . (23)


Here 1N1N2 is the N1 ×N2 matrix of ones, J̃X is the weighted synaptic kernel for cells of class X
assumed identical within each class, and Ã is the susceptibility function for each cell in the network.


Although the effect of autaptic connections is negligible (See SI Fig. 2), their inclusion significantly


simplifies the resulting expressions.


We define µ̃E(ω) = NE J̃E(ω), µ̃I(ω) = NI J̃I(ω), and µ̃(ω) = µ̃E(ω)+ µ̃I(ω). Using an inductive


proof we can show that


K̃k
= Ãkµ̃k−1J̃. (24)


Direct matrix multiplication yields


J̃J̃∗ = µ̃c1NN where µ̃c(ω) = NE |J̃E(ω)|2 + NI |J̃I(ω)|2, (25)


which allows us to calculate the powers K̃kK̃l∗
when k, l �= 0,


K̃kK̃l∗
= Ãk


(Ã∗)lµ̃k−1
(µ̃∗)l−1µ̃c1NN . (26)


An application of Eq. (15) then gives an approximation to the matrix of cross-spectra:


C̃∞
= C̃0


∞�


k,l=0


K̃kK̃l∗
= C̃0






�


Ã


1− Ãµ̃


�
J̃ +


�
Ã


1− Ãµ̃


�∗
J̃∗ +


�����
Ã


1− Ãµ̃


�����


2


µ̃c1NN + IN





 (27)


The cross-spectrum between two cells in the network is therefore given by


[C̃∞
ij ]i∈X,j∈Y = C̃0






�


Ã


1− Ãµ̃


�
µ̃Y


NY
+


�
Ã


1− Ãµ̃


�∗
µ̃∗X
NX


+


�����
Ã


1− Ãµ̃


�����


2


µ̃c + δij





 , (28)


where X ∈ {E, I}. In Eq. (28) the first two terms represent the effects of all unidirectional chains


originating at cell i and terminating at cell j, and vice versa. The third term represents the effects


of direct and indirect common inputs to the two neurons. In Fig. 4C, we highlight a few of these


contributing motifs.


Interestingly, when excitation and inhibition are balanced (so that µ̃ = µ̃E + µ̃I = 0),


[C̃∞
]i∈X,j∈Y = C̃0


�
Ã


µ̃Y


NY
+ Ã∗


µ̃∗X
NX


+ |Ã|2µ̃c + δij


�
. (29)


Effects of direct connections between the cells are captured by the first two terms, while those of


direct common inputs to the pair are captured by the third term.
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1− Ãµ̃


�
µ̃Y


NY
+


�
Ã
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C̃∞
= C̃0


∞�


k,l=0


K̃kK̃l∗
= C̃0






�


Ã
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where X ∈ {E, I}. In Eq. (28) the first two terms represent the effects of all unidirectional chains


originating at cell i and terminating at cell j, and vice versa. The third term represents the effects


of direct and indirect common inputs to the two neurons. In Fig. 4C, we highlight a few of these


contributing motifs.


Interestingly, when excitation and inhibition are balanced (so that µ̃ = µ̃E + µ̃I = 0),
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Effects of direct connections between the cells are captured by the first two terms, while those of


direct common inputs to the pair are captured by the third term.
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Unbalanced network


Figure 4: All–to–all networks and the importance of higher order motifs A) Cross-correlations


between two excitatory cells in an all–to-all network (NE = 80, NI = 20) obtained using Eq. (27)


(Solid – balanced network with µ̃ ≡ 0 (GE = 175 mV·ms, GI = (NE/NI)GE = 700 mV·ms, τE =


τI = 10 ms), dashed – unbalanced network with µ̃ �= 0 (GE = 210 mV·ms, GI = 1050 mV·ms, τE =


10 ms, τI = 5 ms). B) Comparison of first and second order contributions to the cross-correlation


function in panel A in the balanced (left) and unbalanced (right) network. C) Some of the submotifs


contributing to correlations in the all-to-all network.


the same linear response kernel. The excitatory and inhibitory connection strengths are GE/(pNE)


and −GI/(pNI), respectively. The timescales of excitation and inhibition may differ, but are again


identical for cells within each class.


The exact solution of Eq. (15) now depends on the realization of the connectivity matrix. For a


fixed realization the equations can be solved numerically to approximate the correlation structure


(See Fig. 5A). However, as we show next, the average cross-correlation between a pair of cells of


given types is invariant to first order in 1/N .


The cross-spectrum averaged over all cell pairs of a given type is (See SI Section 1)
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 + O(1/N2
), (31)


when i �= j. Hence, to leading order in 1/N , the mean cross-spectrum between two cells in a


given class equals that in the all–to–all network (see Eq. (28)). Therefore our previous discussion


relating network architecture to the shape of cross-correlations in the all-to-all network extend to


the average correlation structure in the random network.


Pernice et al. [2011] derived similar expressions for the correlation functions in networks of


interacting Hawkes processes [Hawkes, 1971a,b] by assuming either the network is regular or has


a narrow degree distribution. There are important similarities and distinctions between our ap-


proaches. First, our analysis depends only on having fixed in-degrees, and not fully regular networks.


Both approaches lead to results that hold approximately (for large enough N) when the in-degree


is not fixed. Pernice et al. [2011] also related terms in the expansion of an analog of Eq. (31) and


connectivity motifs.


However, our approaches differ in important ways: Pernice et al. [2011] did not attempt to match


their results to more physiological cell models, and did not account for the response properties of


individual cells. They also only studied total spike count covariances - i.e., the total integral of


the cross-correlation function. However, their approach could be extended to obtain a detailed


description of the temporal structure of correlations in the Hawkes model.
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Figure 5: Correlations in random, fixed in-degree networks. A) A comparison of numerically ob-
tained excitatory-inhibitory cross-correlations to the approximation given by Eq. (32) to numerical
results. B) Mean and standard deviation for the distribution of correlation functions for excitatory-
inhibitory pairs of cells. (Solid line – mean cross-correlation, shaded area – one standard deviation
from the mean, calculated using bootstrapping in a single network realization). C) Mean and
standard deviation for the distribution of cross-correlation functions conditioned on cell type and
first order connectivity for a reciprocally coupled excitatory-inhibitory pair of cells. (Solid line –
mean cross-correlation function, shaded area – one standard deviation from the mean found by
bootstrapping). D) Average reduction in L2 error between cross-correlation functions and their
respective first-order conditioned averages, relative to the error between the cross-correlations and
their cell-type averages. Blue circles give results for a balanced network, and red squares for a
network with stronger, faster inhibition. Error bars indicate two standard errors above and below
the mean. GE , GI , τE , τI for panels A-C were as in the balanced network of Fig. 4, and the balanced
and unbalanced networks of panel D were as in the same.
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Conclusion


- Linear response theory can be used to understand the 
statistical structure of population activity


- The transfer of input correlations to output correlations is 
different for membrane voltages and spikes.  This could 
impact how we interpret population recordings.


- Cross-correlation functions can be understood in terms of 
contributions from paths through the network.  Thus 
architecture and population activity can be related.
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Outline


● Spatio-temporal irregularity in patterns of neuronal activity supports the notion
  that cortical networks work in a regime of balanced excitation-inhibition.


● Networks working in the balanced regime respond linearly to external inputs,
  when neurons interact linearly.


● Short-term synaptic plasticity (STP) restores non-linearity at the network
  level in the balanced regime.







  


In Vivo Discharge Variability - I


(adapted from Shadlen & Newsome, 1998)







  


In Vivo Discharge Variability - II


(adapted from Compte et al., 2003)







  


In Vivo Rate Inhomogeneity - I


(adapted from O'Connor et al., 2010)







  


In Vivo Rate Inhomogeneity - II


(adapted from Hromàdka et al., 2008)


Median – 3 sp/s
Mean    -  5 sp/s







  


Spatio-temporal Irregularity During WM


(adapted from Shafi et al., 2007)


(adapted from Compte et al., 2003)







  


In Vitro Noisy States


(adapted from Haider & McCormick, 2009)


(adapted from Shu et al., 2003)
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Summary


● Temporally irregular spiking resembling Poisson process.


Patterns of cortical activity exhibit some very generic features:


● Right-skewed, long-tailed distributions of average rates.


● Low firing rates. 


These features do not depend on:


● The functional state of the circuits, i.e., spontaneous activity,
   stimulus-driven or stimulus-elicited activity


● The cortical region. 


They are also observed in in vitro preparations (e.g., slices)
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Excitation and  Inhibition should cancel  to leading order
to produce net inputs the same order as the fluctuations 
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(van Vreeswijk & Sompolinsky, 1996, 1998)
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Linear Synaptic Transmission


J E
ext  extJ EE E−J EI  I=0


J I
ext  extJ IE  E−J II  I=0



E



I● The network responds linearly to external inputs


Neuronal non-linearities are effectively washed out
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● A single balanced state exists







  


I E
ext 
I EE E −I EI  I =0


I I
ext 
I IE E −I II  I =0


Balance conditions
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responds  non-linearly to  external inputs  and, in  principle,
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Balance conditions


If currents are non-linear functions of the rates, the network
responds  non-linearly to  external inputs  and, in  principle,
multiple balanced solutions can exist.


Short-term synaptic plasticity is a potential source of such
a current-rate non-linear relationship (Hansel & Mato, 2008)


'Non-linear' Balance Conditions







  


depression facilitation


Post-synaptic responses decline over
consecutive pre-synaptic spikes


Post-synaptic responses increase over
consecutive pre-synaptic spikes


Short-Term Synaptic Plasticity (STP)


STP refers to temporary modifications of the synaptic efficacy depending
on the presynaptic activity, whose time scales are on the order of ~100ms
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A Stochastic STP Model


Simplified Calcium kinetics for
stochastic release/facilitation


Stochastic depletion model for
the depressing component







  


U=0.5 ;F=20 ms ;D=750 ms
si


n
g


le
 t


ri
a


ls
av


er
a


g
e


 r
es


p
o


n
s e


time


Depressing Synapse







  


U=0.1 ;F=650 ms ;D=100 ms
si


n
g


le
 t


ri
a


ls
av


er
a


g
e


 r
es


p
o


n
s e


time


Facilitating Synapse







  


Solving the STP model
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Synaptic Non-Linearities


U=0.35 ; τF=150ms ; τD=700ms U=0.055 ; τF=650ms ; τD=200ms


depression facilitation







  


Excitatory
population


Inhibitory
population


● Leaky-Integrate-and-Fire neurons


● STP described by the stochastic model


● Balancing conditions


The Network Model
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● STP is restricted to the E→E synapses


● All neurons receive the same number
of connections
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Bi-stability in the C–>∞ limit
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→ gs⋅Iα
(ext)


K → K ; ν0 → ν0


σα
2
→ gs


2
⋅σα


2


at parity of activity


Robustness to Fast/Quenched Noise


p̂R(νE)=K⋅(1−ν0/ νE)







  


J  gs⋅J


I 
ext 


 gs⋅I 
ext 


K  K ; 0  0



2
 gs


2
⋅


2


at parity of activity


Robustness to Fast/Quenched Noise


p̂R(νE)=K⋅(1−ν0/ νE)







  


Numerical Simulations
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● Non-linearities originating from synaptic function support co-existing
  balanced states of activity.


● Self-generated fluctuations in combination with activity-dependent
  synaptic interactions stabilize the different steady-states.


● New functional role for short-term plasticity:


- Supplying a robust source of non-linearity for networks operating
  In the presence of significant spatio-temporal irregularity.


Conclusions
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Pairwise correlations in recurrent networks


Disentangling multi-synaptic pathways


Impact of non-uniform connectivity







Pairwise correlations in recurrent networks


Disentangling multi-synaptic pathways


Impact of non-uniform connectivity







Two different network topologies


Biological neurons Hybrid neurons


Mean input to individual neurons is identical in both cases!







Population fluctuations depend on correlations
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Population fluctuations depend on correlations
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Recording from localized neuronal populations


stituents: neurons and neuronal pools. Studying these self-organized
processes requires simultaneously monitoring the activity of large
numbers of individual neurons in multiple brain areas. Recording from
every neuron in the brain is an unreasonable goal. On the other hand,
recording from statistically representative samples of identified neu-
rons from several local areas while minimally interfering with brain
activity is feasible with currently available and emerging technologies
and indeed is a high-priority goal in systems neuroscience. Many other
methods, such as pharmacological manipulations, macroscopic and
microscopic imaging and molecular biological tools, can aid this task,
but in the end all these indirect observations should be translated back
into a common currency—the format of neuronal spike trains—to
understand the brain’s control of behavior.


Massive parallel recording from multiple single neurons
Action potentials produce large transmembrane potentials in the vicin-
ity of their somata. These output signals can be measured as a voltage
difference by placing a conductor, such as the bare tip of an insulated
wire, in close proximity to a neuron9. If there are many active (spiking)
neurons in the vicinity of the tip, the electrode records from all of them
(Fig. 1). Because neurons of the same class generate identical action
potentials (all first violins sound the same), the only way to identify a
given neuron from extracellularly recorded spikes is to move the elec-
trode tip closer to its body (<20 µm in cortex) than to any other neu-
ron. To record from another neuron with certainty, yet another
electrode is needed. The important advances made by the one elec-


trode/one (few) neuron method10–14 are high-
lighted by Chapin (p. 452–455 in this issue)15.
Because electrical recording from neurons is
invasive, monitoring from larger numbers of
neurons inevitably increases tissue damage.
Furthermore, understanding how the cooper-
ative activity of different classes of neurons
gives rise to collective ensemble behavior
requires their separation and identification.
Because most anatomical wiring is local, the
majority of neuronal interactions, and thus
computation, occur in a small volume16. In
the neocortex, the ‘small volume’ corresponds
to hypothetical cortical modules (for example,
mini- and macro-columns, barrels, stripes,
blobs), with mostly vertically organized layers
of principal cells and numerous interneuron
types. Thus, improved methods are needed for
the simultaneous recording of closely spaced
neuronal populations with minimal damage
to the hard wiring.


The recent advent of localized, multi-site
extracellular recording techniques has dra-
matically increased the yield of isolated neu-
rons7,17,18. With only one recording site,
neurons that are the same distance from the
tip provide signals of the same magnitude,
making the isolation of single cells difficult.
The use of two or more recording sites allows
for the triangulation of distances because the
amplitude of the recorded spike is a function
of the distance between the neuron and the
electrode (Fig. 1)17–19. Ideally, the tips are sep-
arated in three-dimensional space so that
unequivocal triangulation is possible in a vol-


ume. This can be accomplished with four spaced wires (!50 µm
spread; dubbed ‘tetrodes’)18–20. Wire tetrodes have numerous advan-
tages over sharp-tip single electrodes, including larger yield of units,
low-impedance recording tips and mechanical stability. Because the
recording tip need not be placed in the immediate vicinity of the neu-
ron, long-term recordings in behaving animals are possible.


Cortical pyramidal cells generate extracellular currents that flow
mostly parallel with their somatodendritic axis. Nevertheless, elec-
trodes can ‘hear’ hippocampal CA1 pyramidal cells as far away as 
140 µm lateral to the cell body, although the extracellular spike ampli-
tude decreases rapidly as a function of distance from the neuron19. A
cylinder with a radius 140 µm contains !1,000 neurons in the rat cor-
tex19,21, which is the number of theoretically recordable cells by a sin-
gle electrode (Fig. 1). Yet, in practice, only a small fraction of the
neurons can be reliably separated with currently available probes and
spike sorting algorithms5,7,22. The remaining neurons may be dam-
aged by the blunt end of the closely spaced wires, or may be silent or
too small in amplitude. Thus, there is a large gap between the num-
bers of routinely recorded and theoretically recordable neurons.


An ideal recording electrode has a very small volume, so that tissue
injury is minimized. However, a very large number of recording sites
is ideal for monitoring many neurons. Obviously, these competing
requirements are difficult to satisfy. Micro-Electro-Mechanical
System (MEMS)-based recording devices can reduce the technical
limitations inherent in wire electrodes because with the same amount
of tissue displacement, the number of monitoring sites can be sub-
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Figure 1 Unit isolation quality varies as a function of distance from the electrode. Multisite electrodes
(a wire tetrode, for example) can estimate the position of the recorded neurons by triangulation.
Distance of the visible electrode tips from a single pyramidal cell (triangles) is indicated by arrows.
The spike amplitude of neurons (>60 µV) within the gray cylinder (50 µm radius), containing !100
neurons, is large enough for separation by currently available clustering methods. Although the
extracellularly recorded spike amplitude decreases rapidly with distance, neurons within a radius of
140 µm, containing !1,000 neurons in the rat cortex19,21, can be detected. Improved recording and
clustering methods are therefore expected to record from larger number of neurons in the future.
(Data are derived from simultaneous extracellular and intracellular recordings from the same
pyramidal cells from ref. 19.)
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Tuning of mass signals for hand movements
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Decoding movements from mass signals
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Toward the connectome
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Figure 4 | Convergent synaptic input onto inhibitory interneurons.
a, Three-dimensional rendering of axonal contacts onto a postsynaptic neuron.
Large balls at the top represent cell bodies of neurons within the functionally
imaged plane. Axons of a horizontally tuned neuron (cell 4; green) and a
vertically tuned neuron (cell 10; red) descend andmake synapses (small yellow
balls) onto dendrites of an inhibitory interneuron (cyan). The axonal and
dendritic segments leading to the convergence were independently traced by a


second person, blind to the original segmentation (thick tracing). Cell bodies
and axons coloured by orientation preference, as in Fig. 1b. Scale bar, 50mm.
b, c, Electron micrographs showing the synapses onto the inhibitory neuron
from cell 4 (b) and cell 10 (c) with corresponding colours overlaid. Scale bar,
1mm. d, e, Orientation tuning curves derived from in vivo calcium imaging of
the cell bodies of cell 4 (d) and cell 10 (e). Coloured bars and arrows, stimulus
orientation and direction. DF/F, change in fluorescence. Error bars, 6s.e.m.
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Figure 5 | From anatomy to connectivity graphs. a, Three-dimensional
rendering of the dendrites, axons and cell bodies of 14 neurons in the
functionally imaged plane (coloured according to their orientation preference,
key right, as in Fig. 1b), and the dendrites and cell bodies of all their
postsynaptic targets traced in the EM volume (magenta, excitatory targets;
cyan, inhibitory targets; spines on postsynaptic targets not shown;
SupplementaryMovie 5). Scale bar, 100mm.b, Directednetwork diagramof the
functionally characterized cells and their targets, derived from a. Postsynaptic
excitatory (magenta) and inhibitory (cyan) targets with cell bodies contained
within the EM volume are drawn as circles. Other postsynaptic targets


(dendritic fragments) are drawn as squares. (From top to bottom and left to
right: functionally characterized cells 5, 2, 7; 13, 6, 14; 1; 10; 11, 3; 9; 12, 4; and 8.)
c, Three-dimensional rendering of the arbors and cell bodies of functionally
characterized neurons, along with postsynaptic targets that either receive
convergent input from multiple functionally characterized neurons, or were
themselves functionally characterized (SupplementaryMovie 5). d, A subset of
the network graph showing only the connections in c, all independently verified
(from top to bottom and left to right: functionally characterized cells 5, 2, 7; 13,
6; 10; 11, 3; 12, 9, 8 and 4).
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Mouse visual cortex
Calcium imaging in vivo + electron microscopy in vitro
Bock et al., Nature, 2011


synaptic organization. It is, therefore, important to know
whether there exists any preferred synaptic connectivity between
neurons at early stages of brain development.
In this paper, we present a study in which we searched for


synaptically clustered neurons in the neocortex of neonatal ani-
mals (postnatal day 14) in the same neocortical region (so-
matosensory) and on the same layer 5 pyramidal (thick-tufted
subcortically projecting) neurons on which a vast number of
structural, functional, and plasticity studies have already gener-
ated extensive evidence for experience-dependent plasticity. We
studied the topology and weights of the synaptic networks of
groups of up to 12 simultaneously recorded neurons using
a newly designed multineuron patch-clamp set-up.


Results
Distance-Dependent Connectivity Profiles. We recorded simulta-
neously from up to 12 thick-tufted layer 5 pyramidal neurons in
somatosensory cortical slices (300 μm thick) from Wistar rats
(postnatal days 14–16) (Fig. 1 A and B)—a model system ex-
tensively used in previous studies of cortical neurons and plas-
ticity (39, 40, 45–47, 53–58). Connectivity was determined by
applying trains (5–15 spikes at 20–70 Hz) of pulses of current (∼2
nA for 2.5–4 ms) to each recorded neuron and measuring the
response of the other neurons, in the form of excitatory post-
synaptic potentials (EPSPs), in current–clamp mode (Fig. 1 C
and D). In 270 experiments, we took measurements from 1,345
neurons and 3,446 pairs of neurons. To ensure statistical ro-


bustness, each measurement was repeated at least 20 times. This
procedure readily revealed synaptic connections and provided
reliable measurements of their strength (Materials and Methods).
The arbors of neurons that are farther apart in space naturally


intersect more rarely than those of close neighbors. It follows that
connectivity among neurons decreases with intersomatic distance
(42). This implies that even randomly connected neurons show
distance-dependent local clustering. To account for this phe-
nomenon, we quantified distance-dependent connectivity using
infrared differential interference contrast microscopy, capturing
the precise x, y, and z coordinates of all recorded neurons and
computing connection probability as a function of intersomatic
distance for unidirectional, bidirectional, and combined connec-
tivity configurations (Fig. 1 E–G). As expected, P decreased with
distance in all configurations (P < 0.02; Kruskal–Wallis test), with
a less abrupt decrease for unidirectional than bidirectional con-
nections. These data also confirm previous reports that bidirec-
tional connections are more than two times as frequent than
predicted by chance (P < 0.001; t test) (39, 40).


Distributed Cell Assemblies. To detect possible patterns of non-
random connectivity, we measured the number of connections
between neurons in all possible groupings containing between
three and eight neurons (n = 4,199, 8,202, 11,544, 12,012, 9,306,
and 5,319, respectively). To compute expected connection prob-
abilities, we constructed 1,000 simulated sets of networks in which
the positions of neurons reflected the measured positions of the
neurons obtained from our recordings and connection probabili-
ties matched unidirectional or bidirectional connection proba-
bility profiles found earlier (Fig. S1). Finally, we compared the
expected and observed distributions. In groups of three and four
neurons, we found no significant differences (P = 0.7 and 0.6,
respectively; two-sample Kolmogorov—Smirnov test). However,
a more detailed analysis of specific connectivity patterns con-
firmed results from Song et al. (40) showing that certain three- and
four-neuron motifs (Fig. S2) were significantly overrepresented
(P < 0.01; z test and Bonferroni correction for multiple compar-
isons). Significant differences in the overall distribution of the
number of expected connections first appeared in groups con-
taining six neurons (P < 0.001; two-sample Kolmogorov–Smirnov
test) (Fig. 2). This result could be expected if the smaller motifs
previously described are not elementary units in their own right
but parts of larger assemblies.
We then proceeded to analyze the principles governing clus-


tering within these cell assemblies. There was no significant cor-
relation between the intersomatic orientation of the neurons and
their connection probability (P = 0.23; Kruskal–Wallis test) (Fig.
3 A and B). This is evidence against a lattice-like arrangement of
synaptically connected neurons. Testing for neurons with an ex-
cessive number of incoming or outgoing connections showed no
evidence of hubs (P = 0.6; two-sample Kolmogorov–Smirnov
test) (Fig. S3), which characterize scale-free networks (59).
Multineuron patch-clamp recordings normally focus on neu-


rons that are within about 50 μm of each other. We therefore
searched for synaptic clustering over greater distances (up to
200 μm). Contrary to expectations, we found that the average
number of connections in groups of six neurons initially in-
creased rather than decreasing monotonically with mean inter-
somatic distance (Fig. 3C) (P < 0.01; two-sample Kolmogorov–
Smirnov test). The highest numbers of connections were thus not
in the most compact groups but in groups of neurons separated
by a mean distance of 100–125 μm. This phenomenon was clearly
apparent, despite the fact that longer-range connections are
more likely lost during the in vitro slicing procedure than the
shorter-range connections. This suggests that the peak in the
number of connections in this range may be even higher in vivo.
Synaptic clusters of neurons are, thus, not confined within in-
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Fig. 1. Pair-wise connectivity. (A) Morphological staining of a cluster of 12
cells recorded simultaneously. (B) Region of the somatosensory cortex where
recordings were carried out. (C) Connectivity diagram of neurons in D. (D)
Example of recorded traces in an experimental session. A different neuron is
stimulated and the responses of the remaining neurons were recorded
(displayed in columns). [Scale bars: horizontal, 100 ms; vertical, 1 mV (15 mV
for action potentials)]. (E–G) Connection probability profiles as a function of
distance. Error bars represent SEM.
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Rat somatosensory cortex
12-fold patch recording in vitro
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Questions


I What is the relation between structure and dynamics
in strongly recurrent networks of spiking neurons?


I What are the consequences for biological function of
these networks?


I Specifically, what is the impact of detailed synaptic
network topology on pairwise correlations?


I What is a minimal/suitable mathematical framework to
study structure-dynamics relations?


I To which degree is a self-consistent description of
correlations in recurrent networks possible?







Connectivity induces correlations


Pernice, Staude, Cardanobile, Rotter, PLoS Computational Biology 7(5): e1002059, 2011







Pairwise correlations in recurrent networks


Disentangling multi-synaptic pathways


Impact of non-uniform connectivity







The Hawkes process


A network of N nodes (neurons) is described in terms of


spike trains si(t) =
∑
k


δ(t− tik)


firing rates yi(t) =
〈
si(t)


〉
external inputs y0 ≥ 0


interaction kernels G(t) =
(
gij(t)


)
.


Its dynamics is defined in terms of the linear integral equation


y(t) = y0 +


∫ ∞
−∞


G(τ)s(t− τ) dτ = y0 + (G ∗ s)(t).


Hawkes, 1971







Example: Balanced random networks
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Stationary firing rates
Assuming stationarity y(t) = y, one has


y = y0 +


∫ ∞
−∞


G(τ)y dτ = y0 +Gy


with
G =


∫ ∞
−∞


G(τ) dτ.


If the matrix 1−G is invertible we have


y = [1−G]−1y0.


If, in addition, |λ| < 1 for all eigenvalues λ of G, the geometric
series expansion suggests a decomposition into contributions
of recurrent pathways of all orders


y = [1−G]−1y0 =
[ ∞∑
n=0


Gn
]
y0 =


∞∑
n=0


Gny0.







Regular networks
Assume that


∫ ∞
−∞


Gij(t) dt =



gE > 0 for an excitatory synapse
0 if there is no synapse
gI < 0 for an inhibitory synapse.


Assume that each neuron receives kE excitatory inputs and kI
inhibitory inputs. We then obtain for g = kEgE + kIgI


∑
j


[δij +gij +g2ij +. . .] = 1+
∑
j


gij +
∑
k


gik
∑
j


gkj +. . . =


∞∑
n=0


gn.


If |g| < 1 and all neurons receive the same external input y0,
they all respond with the same rate


ȳ =
y0


1− g
.







Firing rates in balanced random networks
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Eigenvalue spectrum of a random network
The complex eigenvalue spectrum of a random matrix with
columns that are either non-negative or non-positive typically
has two components


1. a single real eigenvalue


g = kEgE + kIgI


that corresponds to the mean input into each neuron. It
can be positive or negative;


2. a circular bulk of complex eigenvalues centered at the
origin, and asymptotically bounded by the radius


ρ2 = [kEg
2
E + kIg


2
I ]
[
1− kE + kI


N


]
It corresponds to the input variance induced by the
connectivity matrix.


Rajan & Abbott, 2006







Stability of balanced random networks


A Hawkes process with
integrated kernel matrix G is
dynamically stable, if |λ| < 1
for all eigenvalues λ of G.


Shown are the eigenvalue
spectra for two different
stable random networks with
connection probabilities
p = kE+kI


N = 0.1 and p = 0.25.
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Stationary correlations
Assuming joint stationarity, the pulse-coded interactions are
best quantified by the covariance functions


cij(τ) = Cov
[
si(t+ τ), sj(t)


]
=
〈
si(t)sj(t+ τ)


〉
−
〈
si(t)


〉〈
sj(t)


〉
.


Using Fourier transforms


f̂(ω) =


∫ ∞
−∞


f(t)e−iωt dt and f̂(0) =


∫ ∞
−∞


f(t) dt.


one obtains the expression


Ĉ(ω) =
[
1− Ĝ(ω)


]−1
Y
[
1− ĜT (ω)


]−1
.


where Y = diag(y). For the integrated covariances, one gets


C = Ĉ(0) = [1−G]−1Y [1−GT ]−1.


Hawkes, 1971







Example: Balanced random networks
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Expanding correlations


Assuming |λ| < 1 for all eigenvalues λ of G, the expansion


[1−G]−1 =


∞∑
n=0


Gn


can be exploited to re-write the covariance matrix


C = [1−G]−1Y [1−GT ]−1 =
[ ∞∑
n=0


Gn
]
Y
[ ∞∑
m=0


(GT )m
]


=
∑
nm


GnY (GT )m =
∑
nm


G(n,m)


with matrix elements g(n,m)
ij . The parts of the sum correspond to


shared input mediated by various multi-synaptic pathways.


Pernice et al., 2011







Shared input motifs contributing to correlations







Negative feedback decorrelates activity
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Fluctuations of population activity


Fluctuations of stationary population activity


S(t) =
∑
i


si(t)


can be expanded into contributions from all auto- and
cross-covariances


Cov
[
S(t+ τ), S(t)


]
=
∑
ij


Cov
[
si(t+ τ), sj(t)


]
.


For a Hawkes process, we can exploit the power series
expansion for the matrix of integrated covariances∑


ij


Cij =
∑
ij


∑
nm


g
(n,m)
ij =


∑
nm


∑
ij


g
(n,m)
ij .







Example: Balanced random network


Let again g = kEgE + kIgI with |g| < 1 be the total input to a
neuron which is part of a balanced random network. Writing
η = (kEg


2
E + kIg


2
I )(kE + kI)/N , we obtain∑


ij


g
(n,m)
ij = ηȳgn+m−2


and, therefore∑
ij


Cij =
∑
nm


ηȳgn+m−2 =
∑
k


ηȳ(k + 1)gk−2 =
ηȳ


[g(1− g)]2
.


For networks with g < 0, motifs of uneven order m+ n always
contribute negatively to the total correlation. In this case, the
denominator [g(1− g)]2 accounts for the strong decorrelation
typically observed in such networks.







Pairwise correlations in recurrent networks


Disentangling multi-synaptic pathways


Impact of non-uniform connectivity







Some effects of increased recurrence
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Local inhibition vs. local excitation


0 100 200 300 400 500
distance


0.4


0.2


0.0


0.2


0.4


co
rr


el
at


io
n


1st order
1st + 2nd
all orders
1st an.
1st+2nd an.
all an.


0 100 200 300 400 500
distance


0.4


0.2


0.0


0.2


0.4


250 500 750
population size


25


50


75


co
un


t v
ar


ia
nc


e


corr. matrix, ring
simulation
analytical
corr. matrix, random
simulation
analytical


A B C


σI = 100, σE = 200 σI = 200, σE = 100







Fluctuations of local populations


stituents: neurons and neuronal pools. Studying these self-organized
processes requires simultaneously monitoring the activity of large
numbers of individual neurons in multiple brain areas. Recording from
every neuron in the brain is an unreasonable goal. On the other hand,
recording from statistically representative samples of identified neu-
rons from several local areas while minimally interfering with brain
activity is feasible with currently available and emerging technologies
and indeed is a high-priority goal in systems neuroscience. Many other
methods, such as pharmacological manipulations, macroscopic and
microscopic imaging and molecular biological tools, can aid this task,
but in the end all these indirect observations should be translated back
into a common currency—the format of neuronal spike trains—to
understand the brain’s control of behavior.


Massive parallel recording from multiple single neurons
Action potentials produce large transmembrane potentials in the vicin-
ity of their somata. These output signals can be measured as a voltage
difference by placing a conductor, such as the bare tip of an insulated
wire, in close proximity to a neuron9. If there are many active (spiking)
neurons in the vicinity of the tip, the electrode records from all of them
(Fig. 1). Because neurons of the same class generate identical action
potentials (all first violins sound the same), the only way to identify a
given neuron from extracellularly recorded spikes is to move the elec-
trode tip closer to its body (<20 µm in cortex) than to any other neu-
ron. To record from another neuron with certainty, yet another
electrode is needed. The important advances made by the one elec-


trode/one (few) neuron method10–14 are high-
lighted by Chapin (p. 452–455 in this issue)15.
Because electrical recording from neurons is
invasive, monitoring from larger numbers of
neurons inevitably increases tissue damage.
Furthermore, understanding how the cooper-
ative activity of different classes of neurons
gives rise to collective ensemble behavior
requires their separation and identification.
Because most anatomical wiring is local, the
majority of neuronal interactions, and thus
computation, occur in a small volume16. In
the neocortex, the ‘small volume’ corresponds
to hypothetical cortical modules (for example,
mini- and macro-columns, barrels, stripes,
blobs), with mostly vertically organized layers
of principal cells and numerous interneuron
types. Thus, improved methods are needed for
the simultaneous recording of closely spaced
neuronal populations with minimal damage
to the hard wiring.


The recent advent of localized, multi-site
extracellular recording techniques has dra-
matically increased the yield of isolated neu-
rons7,17,18. With only one recording site,
neurons that are the same distance from the
tip provide signals of the same magnitude,
making the isolation of single cells difficult.
The use of two or more recording sites allows
for the triangulation of distances because the
amplitude of the recorded spike is a function
of the distance between the neuron and the
electrode (Fig. 1)17–19. Ideally, the tips are sep-
arated in three-dimensional space so that
unequivocal triangulation is possible in a vol-


ume. This can be accomplished with four spaced wires (!50 µm
spread; dubbed ‘tetrodes’)18–20. Wire tetrodes have numerous advan-
tages over sharp-tip single electrodes, including larger yield of units,
low-impedance recording tips and mechanical stability. Because the
recording tip need not be placed in the immediate vicinity of the neu-
ron, long-term recordings in behaving animals are possible.


Cortical pyramidal cells generate extracellular currents that flow
mostly parallel with their somatodendritic axis. Nevertheless, elec-
trodes can ‘hear’ hippocampal CA1 pyramidal cells as far away as 
140 µm lateral to the cell body, although the extracellular spike ampli-
tude decreases rapidly as a function of distance from the neuron19. A
cylinder with a radius 140 µm contains !1,000 neurons in the rat cor-
tex19,21, which is the number of theoretically recordable cells by a sin-
gle electrode (Fig. 1). Yet, in practice, only a small fraction of the
neurons can be reliably separated with currently available probes and
spike sorting algorithms5,7,22. The remaining neurons may be dam-
aged by the blunt end of the closely spaced wires, or may be silent or
too small in amplitude. Thus, there is a large gap between the num-
bers of routinely recorded and theoretically recordable neurons.


An ideal recording electrode has a very small volume, so that tissue
injury is minimized. However, a very large number of recording sites
is ideal for monitoring many neurons. Obviously, these competing
requirements are difficult to satisfy. Micro-Electro-Mechanical
System (MEMS)-based recording devices can reduce the technical
limitations inherent in wire electrodes because with the same amount
of tissue displacement, the number of monitoring sites can be sub-
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Figure 1 Unit isolation quality varies as a function of distance from the electrode. Multisite electrodes
(a wire tetrode, for example) can estimate the position of the recorded neurons by triangulation.
Distance of the visible electrode tips from a single pyramidal cell (triangles) is indicated by arrows.
The spike amplitude of neurons (>60 µV) within the gray cylinder (50 µm radius), containing !100
neurons, is large enough for separation by currently available clustering methods. Although the
extracellularly recorded spike amplitude decreases rapidly with distance, neurons within a radius of
140 µm, containing !1,000 neurons in the rat cortex19,21, can be detected. Improved recording and
clustering methods are therefore expected to record from larger number of neurons in the future.
(Data are derived from simultaneous extracellular and intracellular recordings from the same
pyramidal cells from ref. 19.)
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Non-regular networks: cliques of excitatory hubs







Patchy and/or cell-type specific connectivity







Discussion


I Pairwise correlations have a large impact on the
fluctuations of population signals like LFP, ECoG, EEG.


I Linear Hawkes processes are good models for networks of
irregularly spiking neurons.


I Dynamic properties of networks with arbitrary topology can
be inferred by matrix algebra.


I The contributions of individual multi-synaptic pathways
(network motifs) to correlations can be computed in a
self-consistent manner.


I In general, many details of the connectivity matrix have an
impact on the covariance matrix.


I By measuring the interaction kernels, nonlinear neuronal
networks can be approximated by Hawkes processes.
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... and oscillations?







Two types of firing rate synchrony in E-I networks


(Brunel and Wang 2003)


1. Strong inhibition: “fast” oscillations. Frequency set by


synaptic kinetics.


2. Strong excitation, slow inhibition: “slow” oscillations.


Frequency an emergent property.







In the bistable regime:


• Slow oscillations dominate


• Oscillations arise via a Takens-Bogdanov bifurcation


(Hoppensteadt and Izhikevich 1997, Hansel and Mato


2003)







Outline:


1. Study firing rate model (Wilson-Cowan equation)


2. Confirm results in network simulation of LIF neurons


3. Look at slow-wave data from anesthetized rat







Takens Bogdanov in the Firing Rate Model







ṙE = −rE + ΦE(gEE · rE − gEI · rI + IE),


τ · ṙI = −rI + ΦI(gIE · rE − gII · rI + II).


I
E


R
E


(rE , rI) = (RE , RI) + (δrE , δrI)e
λt







ṙE = −rE + ΦE


(


gEE · rE − gEI · rI + IE


)


,


τ · ṙI = −rI + ΦI


(


gIE · rE − gII · rI + II


)


.


Take: λ = iω, i.e. on the stability boundary


−τω2 + iω
(


1 + gIIΦ
′


I + τ(1 − gEEΦ
′


E)
)


+(1 + gIIΦ
′


I)(1 − gEEΦ
′


E) + gEIgIEΦ
′


IΦ
′


E = 0


1. Steady Instability: ω = 0


2. Oscillatory Instability: ω 6= 0


Wilson and Cowan 1972, Ermentrout and Cowan 1979







λ = 0: λ = ±iω:


gEEΦ
′


E = α gEEΦ
′


E = 1 + β/τ , τω2 = α − gEEΦ
′


E


τ


g E
E
Φ


E


´


α


1
stable


osc







λ = 0: λ = ±iω:


Φ
′


E = α τω2 = 0


τ


g E
E
Φ


E


´


Takens-Bogdanov


stable


osc







λ = 0: λ = ±iω:


Φ
′


E = α τω2 = 0


τ


g E
E
Φ


E


´


TB


Inhibition Stabilized


stable


osc


(Tsodyks and Sejnowski 1995, Ozeki et al. 2009)
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Can determine bifurcation structure analytically


(Guckenheimer and Holmes)


(rE, rI) = (RE, RI) +X(T ) · φ+ Y (T ) · ψ + ...


∂TX = Y,


∂TY = µ1 + µ2Y + a1X
2 + a2XY







.


-0.5 0 0.5
I


0


1


2


3


4


5


6
r E


τ > τ
cr


0.2 0.25
0


0.1


0.2


0.3


0.4


0.5


I
SN1


I
SH1


I
H1


I
H2


I
SN2


I
SH2


I
SH2


I
H2







.







.


-0.5 0 0.5
I


0


1


2


3


4


5


r E


τ > τ∗


0.2 0.25
0


0.1
0.2
0.3
0.4
0.5


I
SNLC1


I
SN1


I
SH1


I
SN2


I
SNLC2


I
SH2


I
SNLC1


I
SH2







Indirect evidence of TB in network simulations


Once in bistable regime, make inhibition slower, and should find:


• Population spikes to left of bistable regime.


• Oscillations arise in bistable regime.


• Oscillation amplitude neg. correlated with firing rate.


• Oscillation frequency pos. correlated with firing rate.


• Large amplitude LC for slow enough inhibition.







Network Simulations


• LIF neurons: 4000 E and 1000 I


• current-based synapses


• all synapses difference-of-exponential


• independent external Poisson synapses for each


neuron
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Slow-wave activity in anesthetized rat
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Network of LIF neurons with adaptation
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Network of LIF neurons with adaptation
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τAİA,i = −IA,i + α
∑


j


δ(t − tji )


22400 22600 22800 23000 23200 23400
0


10


20


30


40


fir
in


g 
ra


te
 (


H
z)


21600 21800 22000 22200 2240022600 22800 23000 23200
time (ms)


10


20


30


40


fir
in


g 
ra


te
 (


H
z)







0


10


20


30


ne
ur


on
 in


de
x


Simulation


10000 12000 14000 16000 18000 20000
time (ms)


0


20


40


60


80


fir
in


g 
ra


te
 (


H
z)







From Simulation
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Conclusions


• Oscillations in bistable regime in E-I networks through TB


• TB very robust in spiking networks


• Oscillations (beta and low gamma) during SW activity in


anesthetized rat







LIF Network with Conductance-based synapses
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LIF Network with Conductance-based synapses
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Conductance-based Point Models


A family of deterministic multidimensional models


C
dV
dt


= −Iion(V , w (1), ·, ·, ·, w (n)) + I(t)


dw (j)


dt
= αj(V )(1− w (j))− βj(V )w (j)


• w (j) ∈ [0, 1] proportion of open channels (or gates) of type j
• Iion : the sum of ionic currents
• for type j ions, Ij = Gj(w (1), ·, ·, ·, w (n))(V − Vj) where Vj=


reversal potential, Gj= varying conductance to be specified
• I(t)= applied current (external stimulus). We will take


I(t) ≡ I.







4D Hodgkin-Huxley


3 types of gates : m and h for sodium ions, n for potassium ions
• current balance


C
dVt


dt
+ INa + IK + IL = I


GNa = gNam3h, GK = gKn4, GL = gL = const .


• m, h, n are proportion of open gates of each type
• underlying stochastic gating mechanism of fictive gates


m, n, h for an infinite number of gates
• the proportion of open sodium channels (resp. potassium


channels) is m3h (resp. n4)







3D Morris-Lecar


2 types of ions : calcium and potassium
• current balance


C
dVt


dt
+ ICa + IK + IL = I


GCa = gCau1, GK = gKu2, GL = gL = const .


u1 (resp. u2) interpreted as proportion of open calcium
(resp. potassium) channels


• underlying stochastic gating mechanism of channels Ca, K
for an infinite number of channels







Conductance-based Spatial Models


A family of deterministic multidimensional models


C
dV
dt


= ∆V − Iion(V , w (1), ·, ·, ·, w (n)) + I(t)


dw (j)


dt
= αj(V )(1− w (j))− βj(V )w (j)


• now V = V (t , x)


• w (j) = w j(t , x) since it is a function of V : conductances
vary with position along the axon.







Common Structure of Conductance-Based Models


They are made of 2 parts :
• the equation for V has standard form
• its coefficients describe a limiting behaviour : number of


stochastic individuals (gates or channels) is infinite
We want to make these systems stochastic in order to study the
fluctuations around the deterministic solution due to channel
noise.







Piecewise Deterministic Markov Models or PDMP


Deterministic dynamics between successive random events


We need characteristics (cf. Davis) :
• a countable set K (may be multidimensional), an integer d
• (f (·, p))u∈K family of vector fields with values in Rd


• λ : Rd × K → [0, 1] family of jump intensities
• Q : B × (Rd × K ) → [0, 1] family of jump measures.







IIterative construction of process Xt = (Ut , pt)


• Take initial value X0 = (U0, p0)


• Solve dy(t)
dt = f (y(t), p0); y0 = U0


• Define T1 such that


P(T1 > t) = e−
R t


0 λ(y(s),p0)ds


• Define ξ1 ∈ Rd × K with law Q(·; (y(T1), p0)) conditionally
on T1


• Define


Xt = (y(t), p0) if t < T1


XT1 = ξ1







Comments on PDMP


• same iterative construction applies with PDE instead of
ODE


• the PDMP (Ut , pt) is a Markov process
• (Ut) is not a Markov process
• (Ut) may have jumps too
• for neuron models Ut ≡ the membrane potential


which is continuous : take UT1 = y(T1)







PDMP as Stochastic Point Models (I)


For each N ≡ the number of each type of gate/channels,
• continuous component is UN ≡ the membrane potential


with this amount of gates/channels
• any single gate/channel is modeled by a two-state jump


process with UN dependent rates
• the jumping component pN e.g. for Hodgkin-Huxley is


pN = (p(m)
N , p(n)


N , p(h)
N ) where


p(m)
N (t) =


1
N


ΣN
l=1c(m)


l (t)


where c(m)
l are jump processes with two states 0, 1 with


rates αm(VN), βm(VN). Idem for p(n)
N , p(h)


N ,







PDMP as Stochastic Point Models (II)


• ODE for UN is


C
dUN


dt
=


3∑
j=1


GN,j(Ej − UN)


• GN,1 = gNa(p
(m)
N )3p(h)


N , GN,2 = gK(p(n)
N )4,


GN,3 = gL = const .
• writing


λ(us, ps) :=
∑


k=n,m,h βk (us)pk (s) + αk (us)(1− pk (s)) the
law of T1 is


P(T1 > t) = e−N
R t


0 λ(us,ps)ds







Austin’s Model(I)


T. Austin (2006) was the first to study mathematically a spatial
PDMP :
• the axon is the interval [0, 1]


• N channels rgularly placed at i
N


• channels can be in a finite number of states e.g. ”receptive
to sodium ions and open”


• configurations of the N channels r = r(i) satisfy


Pr(rt+h(i) = η|rt(i) = ξ) = αξ,η(Ut(
i
N


))h + o(h)







Austin’s Model(II)


• membrane potential satisfies


∂tU = ∆U +
1
N


∑
ξ


∑
i


gξ1ξ(r(i))(Eξ − U(
i
N


))δ i
N


• Austin proves a Law of Large Numbers when N →∞ with
limit


∂tV = ∆V +
∑


ξ


gξpξ(Eξ − V )


ṗξ =
∑
η 6=ξ


αη,ξ(V ) pη − αξ,η(V ) pξ







PDMP as Stochastic Spatial Models (I)


Consider the deterministic membrane model on a spatial
bounded domain D of the following form


∂tu =
d∑


i,j=1


aij(x)uxi xj +
m∑


i=1


gi(x) pi (Ei − u)


ṗj =
∑
i 6=j


qij(u) pi − qij(u) pj


We can associate to it a sequence of PDMPs as follows







PDMP as Stochastic Spatial Models (II)


• For each n ∈ N, Pn is a partition of D in a finite collection of
mutually disjoint convex subsets Dk ,n (the compartments).


• Each compartment either contains no channel or a fixed
deterministic number.


• π(n) := the number of compartments of Pn containing
channels.


• l(k , n) the total number of channels in Dk ,n.







PDMP as Stochastic Spatial Models (III)


• Define first Θk ,n
i (t) := the number of channels located in


Dk ,n in state i at time t . The jumping part of the PDMP is
for i ∈ {1, ·, ·, ·, m}


zn
i (Θn(t)) :=


π(n)∑
k=1


Θk ,n
i (t)


l(k , n)
I Dk,n ∈ L2(D)


• The continuous part Un satisfies the pde


∂tUn =
d∑


i,j=1


aij(x)Un
xi xj


+
m∑


i=1


gi(x) zn
i (Θn(t)) (Ei − Un)







Comments


• zn ≡ 0 on compartments with no channels
• jump rates : one channel in subdomain Dk ,n switches from


state i to state j at instantaneous rate


Θk ,n
i (t) · qij


( 1
|Dk ,n|


∫
Dk,n


Un
t (x) dx


)
.


• gi(x) = gρ(x) is the conductance density at position x
where ρ(x) is the channel density at x (the number of
channels by space unit around x), and g is the single
channel conductance.







General Mathematical Framework (I)


For simplicity suppose that the underlying space (≡ the axon) is
an interval I. Take K a countable set.
Consider a process Xt(ω) = (Ut(ω),Θt(ω)) where
• Θt(ω) ∈ K
• For each θ ∈ K , Ut satisfies an abstract evolution equation


with unique solution


u̇ = A(θ) u + B(θ, u) (1)


A(θ) a linear operator, B(θ, ·) a possibly nonlinear operator







General Mathematical Framework (II)


We consider sequences of PDMPs (Un,Θn) where Un solves


u̇ = An(θ) u + Bn(θ, u) (2)


such that for each n


An(θ) u = A(zn(θ)) u, Bn(θ, u) = B(zn(θ), u) (3)


where zn(θ) is an m-dimensional vector and m does not
depend on n.







General Mathematical Framework (II)


Example : PDMP Compartmental models


zn
i (Θn(t)) :=


π(n)∑
k=1


Θk ,n
i (t)


l(k , n)
I Dk,n ∈ L2(D)


We look for limit theorems and Langevin approximation for the
PDMP (Un, zn(Θn)) where typically


∂tUn =
d∑


i,j=1


aij(x)Un
xi xj


+
m∑


i=1


gi(x) zn
i (Θn(t)) (Ei − Un)







The Deterministic Limit


In general it is the pair (u, p) satisfying


u̇ = A(p) u + B(p, u),


ṗj = Fj(p, u), j = 1, . . . , m .


For neuron models :


∂tu =
d∑


i,j=1


aij(x)uxi xj +
m∑


i=1


gi(x) pi (Ei − u)


ṗj =
∑
i 6=j


qij(u) pi − qij(u) pj







LLN, TCL, Langevin for PDMP (I)


The proof of such results rely on the study of the jumping part
zn(Θn)


zn
j (θn


t ) = zn
j (θn


0) +


∫ t


0
Dn,j(s)ds + Mn,j(t)


more precisely on estimates for the martingale part Mn,j
Roughly :
• if for each j , Mn


j converges to 0 and and Dn
j to Fj we obtain


LLN
• if moreover for αn →∞, the sequence (


√
αnMn) converges


to a Gaussian process then CLT holds







LLN, TCL, Langevin for PDMP (II)


• the Langevin approximation of (Un, zn(Θn)) takes the form


dŨn
t =


(
A(p̃n


t )Ũn
t + B(p̃n


t , Ũn
t )


)
dt


dp̃n
t = F (p̃n


t , Ũn
t ) dt + 1√


αn


√
G(Ũn


t , p̃n
t ) dWt







Comments


• general framework : the size of the jumps and their
intensities (mean frequency) equilibrate


• types of convergence : for LLN, in probability uniformly on
compacts in time, for CLT convergence in law


• for compartmental PDMP modelling neuronal membrane,
convergence in LLN also holds in the mean


• processes take values in infinite dimensional spaces







Law of Large Numbers for Compartmental PDMP


The validity of LLN is expressed via two parameters of Pn,


δ+(n) = max
k=1,...,π(n)


diam(Dk ,n) and `−(n) = min
k=1,...,π(n)


l(k , n) :


If
• δ+(n) → 0 and `−(n) →∞ when n →∞
• and initial conditions (Un


0 , zn(Θn
0)) converge in probability


to (u0, p0)


then Law of Large Numbers holds for the PDMP (Un, zn(Θn))
which converges to (u, p).







Central Limit Theorem for Compartmental PDMP (I)


Remember that


δ+(n) = max
k=1,...,π(n)


diam(Dk ,n) and `−(n) = min
k=1,...,π(n)


l(k , n).


For the CLT additional parameters of Pn are needed :


`+(n) := max
k=1,...,π(n)


l(k , n) ,


ν+(n) := max
k=1,...,π(n)


|Dk ,n| , ν−(n) := min
k=1,...,π(n)


|Dk ,n| .







Central Limit Theorem for Compartmental PDMP (II)


If, when n →∞,
• δ+(n) → 0 and `−(n) →∞
• `−(n) ν−(n)


`+(n) ν+(n) → 1


• initial conditions (Un
0 , zn(Θn


0)) converge in probability to
(u0, p0)


then Central Limit Theorem holds :
(√


`−(n)
ν+(n) Mn


t


)
t≥0


converges


to a diffusion.
Notation : Mn is the martingale part of zn(Θn).







Comments I


• only compartments which contain channels are used to
establish LLN and CLL


• modelling possible heterogeneities with the limitation due
to the assumption `−(n) ν−(n)


`+(n) ν+(n) → 1


• normalization coefficient of CLT depends on parameters of
the partition Pn


• Langevin approximation : the noise coefficient has size√
ν+(n)
`−(n)







Comments II


• another application to Wilson Cowan equation (M. Riedler
work in progress)


• our results apply to multidimensional domains with
heterogeneities


• fluctuations of the PDMP (not only its martingale part) and
related linearized Langevin system


• PDMP are widely applicable
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