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Mathematical structures

Consider the three following objects:

1. {x € C| x" =1} for a given n, and the product of
complex numbers;

2. Theset {0,...,m — 1} of natural numbers, for a given
m, and the addition modulo m of natural numbers;

3. Bijective isometries globally preserving the vertexes of a
given cube, and their composition.

What do they have in common?



Mathematical structures

If we call * the operation considered in each case:
1. Product of complex numbers
2. Addition modulo m
3. Composition

We can notice that the following properties hold in each case:
» Vxyz, xx(yxz)=(xxy)xz
» there is a particular element e such that:

Vx, Xx*xe=exx=x

» Vx,dx' xxx' =x'xx=e



Mathematical structures

These properties are in fact called the axioms of group.

Their consequences is called (finite) group theory.

We say that our three examples are instances of the finite
group structure, and they therefore enjoy all the previous
consequences.



Mathematical structures

Codifying this language, ordering its vocabulary and clarifying
its syntax is a useful work which is indeed one of the aspects
of the axiomatic method [...]. But - and we insist on this point
- this is only one of its aspects, and it is certainly the less
interesting.

N. Bourbaki “The architecture of mathematics” 1962.



Mathematical structures

Codifying this language, ordering its vocabulary and clarifying
its syntax is a useful work which is indeed one of the aspects
of the axiomatic method [...]. But - and we insist on this point
- this is only one of its aspects, and it is certainly the less
interesting.

The essential motivation of the axiomatic method is precisely
to define what the logical formalism is alone unable to provide,
which is the profound intelligibility of mathematics.

N. Bourbaki “The architecture of mathematics” 1962.



Mathematical structures for formal proofs

Today we will:
» use a computer proof assistant rather than pen and paper;

» implement known mathematical structures, and not
discover new ones;

» rely on type-theoretic foundations rather than
set-theoretic;

» use techniques from software engineering to organize
modular formal developments.

The main motivation is to share efficiently notations and
theories, and not to reach the higher level of abstraction.



Lessons from yesterday

Two key ingredients:
» Record types

» Inference via canonical instances

=> a generic pattern to organize the formalized content.



Typical scheme

Structure my_struct := My_struct{
dom : Type;
@ : dom;
op : dom —-> dom;
opP1 : forall x, P x;
.1
Notation "x * y" := (op x y).

Section my_struct_theory.
Variable s : my_struct.

Lemma foo : forall x : dom s, Q x.
Proof. ... Qed.

End my_struct_theory.



Typical scheme

Structure my_struct := My_struct{ Canonical nat_my_struct := My_struct nat _ _
dom : Type;
@ : dom; Theorem very_hard : forall n : nat, R (n * n).
op : dom —-> dom; Proof.
opP1 : forall x, P x;
507
Notation "x * y" := (op x y). ...; apply: foo.

Section my_struct_theory. oco
Qed.
Variable s : my_struct.

Lemma foo : forall x : dom s, Q x.
Proof. ... Qed.

End my_struct_theory.



From a single structure to several ones

The problem we have not addressed yet is the interaction
between structures. Issues are:

» inheritance
» sharing

» scalability to many structures and many instances

Naive approaches (like name spaces or simply nested records)
do not scale.



Skeleton of a structure

Records modeling mathematical structures have a special
shape:

Structure eqType := EqType {

sort : Type;

eq_op : sort -> sort -> bool;

_ ¢ forall x y, reflect (x =y) (eq_op x y)}.

» The sort type has a special status.

» Other projections are:
» Constants and operations (signature)
» Specifications (axioms)



Skeleton of a structure

|:|: type
signature .

and : class
specifications

on sort

providing T + T 1is building an instance of type |:|

sort : Type




Design pattern for structures

The design implementation follows this scheme:
» the type of a structure is a two projection record type;
» the first projection gives the carrier type;

» the second projection is itself a (dependent) record type
containing the signature and specifications.

The record type describing the signature/specification is called
a class.



Example: the eqType structure

Module Equality.

Definition axiom T (e : rel T) := forall x vy,
reflect (x = y) (e x y).

Structure class_of (T : Type) :=
Class {op : rel T; _ : axiom op}.

Structure type :=
Pack {sort : Type; _ : class_of sort}.

End Equality.



Example: the eqType structure

Module Equality.

Definition axiom T (e : rel T) := forall x vy,
reflect (x = y) (e x y).

Structure mixin of (T : Type) :=
Mixin {op : rel T; _ : axiom op}.

Notation class_of := mixin_of.

Structure type :=
Pack {sort; _ : class_of sort}.

End Equality.



Example: the eqType structure

Qualified generic names are hidden behind the exported
notation we have used so far:

Notation eqType := Equality.type.
Notation EqMixin := Equality.Mixin.
Notation EqType T m := Equality.Pack.

[]: type
signature .

and : class
specifications

on sort

providing T + T 1is building an instance of type |:|

sort : Type




Example: the eqType structure

Hence building and instance follows the pattern:

Fixpoint eqn (m n : nat) {struct m} : bool := ...
Lemma eqnP : Equality.axiom eqn. Proof. ... Qed.

Canonical nat_egMixin := EgMixin eqnP.

Canonical nat_eqType : eqType :=
EqType nat nat_eqMixin.

[]: type
signature .

and : class
specifications

on sort

providing T + T 1is building an instance of type |:|

sort : Type




Slicing
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Slicing

class base

BN nixin

class



Summary

» Each structure is modelled by a two projection record
» one for the carrier (sort) type
» one for the (signature/specification) class applied to the
sort
» The class is represented by a record type, parametrized by

a type.



Summary

» Each enriched structure is defined using an extra record
type called a mixin, parametrized by a type.

» This mixin described the extra content one want to add
to existing structures

» Each class (except the very first ones) is itself a two
projection record

» a base one, which is the class of a previous structure
» a mixin one, applied to the base.



Instantiation

Thanks to a careful encoding via canonical structures, the user
only needs to:

» Define the operations and prove the desired specifications

» Define the successive slices (mixins) feeding the relevant
Mixin constructors with the previous material;

» Redundant content (like bases) is inferred automatically.



Example

Record polynomial (R : ringType) := Polynomial
{polyseq :> seq R; _ : last 1 polyseq !'= O}.

And now:

Definition polynomial_ egMixin := ...
Canonical polynomial_eqType :=
EqType polynomial polynomial_eqMixin.




Example

Record polynomial (R : ringType) := Polynomial
{polyseq :> seq R; _ : last 1 polyseq != 0}.

After some more work:

Definition poly_zmodMixin :=
ZmodMixin add_polyA add_polyC add_polyO
add_poly_opp.
Canonical poly_zmodType :=
ZmodType {poly R} poly_zmodMixin.




Description of the existing hierarchy

Type

baseFinGroupType

| £inGroupType | | {group gT}
é [imorphism D >-> n)] [(mx_representation F G n

Monoid.mul_law abz



Content associated with a structure

v

Possibly several constructors of mixins

Notations

v

v

Properties on operations, often expressed by standardized
predicates

v

Generic lemmas, with a uniform name policy

Summarized on the cheat sheet you will get during the lab
session.



