Formalization of Mathematics: why Algebraic Topology?

Julio Rubio

Universidad de La Rioja
Departamento de Matemáticas y Computación

MAP Spring School 2012

Sophia Antipolis, March 12th-16th, 2012

Partially supported by Ministerio de Educación y Ciencia, project MTM2009-13842-C02-01, and by European Commission FP7, STREP project ForMath, n. 243847.
Summary

- Reasons to formalize mathematics.
- The *Kenzo* program.
- Homological processing of biomedical images.
- A multitool approach.
- Formalizing with Isabelle/HOL.
- Formalizing with ACL2.
- Formalizing with Coq/SSReflect.
- Conclusions and future work.
Reasons to formalize mathematics

- **Internal to the proving tools:**
 - Checking expressiveness, testing, and so on.

- **Internal to mathematics:**
 - Foundations: Voevodsky’s univalent foundations
 - Challenge: Gonthier on the classification of groups
 - Checking the correctness of a (computer) proof
 - Hales on the Kepler conjecture
 - Gonthier on the Four Color theorem

- **Applications:**
 - Verification of (mathematical) software
 - (Verification of hardware and software)
 - Reliable numerics: Spitters on computational analysis
 - Programs difficult to test
 - Programs for real-life problems
Reasons to formalize mathematics

- Internal to the proving tools:
 - Checking expressiveness, testing, and so on.

- Internal to mathematics:
 - Foundations: Voevodsky's univalent foundations
 - Challenge: Gonthier on the classification of groups
 - Checking the correctness of a (computer) proof
 - Hales on the Kepler conjecture
 - Gonthier on the Four Color theorem

- Applications:
 - Verification of (mathematical) software
 - (Verification of hardware and software)
 - Reliable numerics: Spitters on computational analysis
 - Programs difficult to test
 - Programs for real-life problems
The *Kenzo* program (1/3)

Algebraic Topology: the science of associating algebraic invariants with geometrical objects (topological spaces)

Kenzo is a computer algebra system (created by F. Sergeraert) devoted to Algebraic Topology.

Kenzo is a computer algebra system (created by F. Sergeraert) devoted to Algebraic Topology.
The Kenzo program (2/3)

Kenzo can compute results difficult to reach by any other means.

- In particular, A. Romero enhanced Kenzo with an algorithm to compute the homotopy groups of suspended Eilenberg-MacLane spaces.

- On homotopy groups of the suspended classifying spaces
 Roman Mikhailov and Jie Wu
 Algebraic and Geometric Topology 10(2010), 565 − 625

- Theorem 5.4: Let A_4 be the 4-th alternating group.
 Then $\pi_4(\Sigma K(A_4,1)) = \mathbb{Z}_4$

- Ana Romero makes Kenzo compute: $\pi_4(\Sigma K(A_4,1)) = \mathbb{Z}_{12}$

- Let's repeat:
 Mikhailov & Wu: $\pi_4(\Sigma K(A_4,1)) = \mathbb{Z}_4$
 Kenzo: $\pi_4(\Sigma K(A_4,1)) = \mathbb{Z}_{12}$

- Then?
In this particular case, *Kenzo* was right (i.e. the “theorem” in the paper wasn’t one).

In addition, Romero’s program can compute more homotopy groups out of reaching by Mikhailov & Wu’s techniques.

Therefore:

1. Mathematics formalization ...
2. … *for* software verification ...
3. … *for* mathematics verification.

Formalizing to prove $\pi_4(\Sigma K(A_4, 1)) = \mathbb{Z}_{12}$.

“To prove” = “To verify the correctness of a program computing it”.

An image is represented by means of a list of lists of bits.

Then we construct an associated *simplicial complex* (list of triangles).

Homology groups are obtained by diagonalizing the *incidence matrices*.
Homological processing of digital images (2/2)

Objective

Certified computation of homology groups for digital images
Application to biomedicine: Counting synapses

- Synapses are the points of connection between neurons.
- Relevance: Computational capabilities of the brain.
- Procedures to modify the synaptic density may be an important asset in the treatment of neurological diseases (like Alzheimer).
- An automated and reliable method is necessary.
Application to biomedicine: Counting synapses

- Counting synapses:
 - Measure the number of connected components of the last image.
 - Good benchmark to test our framework: computation of H_0.
 - SynapCountJ: software to measure synaptic density evolution.

- Therefore:
 1. Mathematics formalization . . .
 2. . . . for software verification . . .
 3. . . . for real-life applications.

- Formalizing Algebraic Topology for *Kenzo* verification: How?
A multitool approach (1/2)

Many proving tools are available for the formalization engineer. They differ regarding different aspects:

- Automated / Interactive
- Checkers / Provers
- First order / Higher order
- Classical / Constructive

Our problem also poses different issues:

- Formalization of basic algebraic structures and algorithms.
- Verification of concrete *Kenzo* code.
- Certified execution of homological programs (different from *Kenzo*).
A multitool approach (2/2)

Our idea is to take the best from each tool:

- Isabelle/HOL to formalize algorithms in a *classical* setting.
- ACL2 to verify *first order* fragments of *Kenzo* code.
- Coq to provide executability where first order is not enough and the constructiveness is ensured.
A chain complex is $\{(C_n, d_n)\}_{n \in \mathbb{Z}}$, where each C_n is an abelian group, and each $d_n : C_n \to C_{n-1}$ is a homomorphism satisfying $d_n \circ d_{n+1} = 0$, $\forall n \in \mathbb{Z}$.

Homology groups: $H_n(C, d) := \text{Ker}(d_n)/\text{Img}(d_{n+1})$.

Given two chain complexes $\{(C_n, d_n)\}_{n \in \mathbb{Z}}$ and $\{(C'_n, d'_n)\}_{n \in \mathbb{Z}}$, a chain morphism between them is a family f of group homomorphisms $f_n : C_n \to C'_n$, $\forall n \in \mathbb{Z}$ satisfying $d'_n \circ f_n = f_{n-1} \circ d_n$, $\forall n \in \mathbb{Z}$.
Given two chain complexes $C := \{(C_n, d_n)\}_{n \in \mathbb{Z}}$ and $C' := \{(C'_n, d'_n)\}_{n \in \mathbb{Z}}$ a reduction between them is (f, g, h) where

- $f : C \rightarrow C'$ and $g : C' \rightarrow C$ are chain morphisms
- and h is a family of homomorphisms (called *homotopy operator*) $h_n : C_n \rightarrow C_{n+1}$.

satisfying

1. $f \circ g = 1$
2. $d \circ h + h \circ d + g \circ f = 1$
3. $f \circ h = 0$
4. $h \circ g = 0$
5. $h \circ h = 0$

If $(f, g, h) : C \rightarrow C'$ is a reduction, then $H(C) \cong H(C')$.
Mathematics: Homological Algebra (3/3)

- Given a chain complex \((C, d)\), a *perturbation* for it is a family \(\rho\) of group homomorphisms \(\rho_n : C_n \rightarrow C_{n-1}\) such that \((C, d + \rho)\) is again a chain complex (that is to say: \((d + \rho) \circ (d + \rho) = 0\)).
- A reduction \((f, g, h) : (C, d) \rightarrow (C', d')\) and a perturbation \(\rho\) for \((C, d)\) are *locally nilpotent* if \(\forall x \in C_n, \exists m \in \mathbb{N} \text{ such that } (h \circ \rho)^m(x) = 0\).

Basic Perturbation Lemma

Let \((f, g, h) : (C, d) \rightarrow (C', d')\) be a reduction and be \(\rho\) a perturbation for \((C, d)\) which are locally nilpotent. Then there exists a reduction \((f_\infty, g_\infty, h_\infty) : (C, d + \rho) \rightarrow (C', d'_\infty)\).

Basic Perturbation Lemma Algorithm

Given a chain complex \((C, d)\) with effective homology and \(\rho\) a perturbation for it *satisfying the local nilpotence condition*, then \((C, d + \rho)\) is a chain complex with effective homology.
Formalizing with Isabelle/HOL

- Isabelle/HOL is an interactive theorem proving environment.
- Higher Order Logic (HOL) allows the modeller to translate the “by hand” proofs to the computer, in a “quite” direct way.
- First milestone: Jesús Aransay’s proof of the Basic Perturbation Lemma in Isabelle/HOL.
- Isabelle statement:

```
theorem (in BPL) BPL: shows reduction D'
  (| carrier = carrier C, mult = mult C, one = one C, diff =
     (λx. if x ∈ carrier C then (differ_C x ⊗ₜ C (f ∘ δ ∘ Ψ ∘ g) x
      else 1₅_C)) |) (f ∘ Φ) (Ψ ∘ g) (h ∘ Φ)
```

- Further challenge: program extraction.
Formalizing with ACL2 (1/3)

- ACL2 = A Computational Logic for Applicative Common Lisp (ACL^2).
- ACL2 is:
 - A programming language (an applicative subset of Common Lisp).
 - A logic (a restricted first-order one, with few quantifiers).
 - A theorem prover for that logic (on programs properties).
- Could Kenzo be verified in ACL2?
- ACL2 is first order...
- ... but Kenzo intensively uses higher-order functional programming (functional coding of infinite sets).
- Isabelle/HOL is a higher order tool (Coq too).
- Pragmatic approach: ACL2 verification of first order fragments of Kenzo.
Formalizing with ACL2 (2/3)

- Kenzo way of working:
 1. Construction of constant spaces (spheres, Moore spaces, ...)·: ~ 20%
 2. Construction of new spaces from other ones (cartesian products, loop spaces,...): ~ 60%
 3. Perform some computations (homology groups): ~ 10%

Concrete Goal

Verify the correctness of Kenzo constructors of constant spaces

- Kenzo first order logic fragments
- Kenzo code → ACL2

Case Study

Each Kenzo Simplicial Set is really a simplicial set
A simplicial set K, is a union $K = \bigcup_{q \geq 0} K^q$, where the K^q are disjoints sets, together with functions:

\[
\partial^q_i : K^q \rightarrow K^{q-1}, \quad q > 0, \quad i = 0, \ldots, q,
\]

\[
\eta^q_i : K^q \rightarrow K^{q+1}, \quad q \geq 0, \quad i = 0, \ldots, q,
\]

subject to the relations:

1. \[\partial^{q-1}_i \partial^q_j = \partial^{q-1}_{j-1} \partial^q_i \quad \text{if} \quad i < j,\]
2. \[\eta^{q+1}_i \eta^q_i = \eta^{q+1}_{j+1} \eta^q_i \quad \text{if} \quad i \leq j,\]
3. \[\partial^{q+1}_i \eta^q_j = \eta^{q-1}_{j-1} \partial^q_i \quad \text{if} \quad i < j,\]
4. \[\partial^{q+1}_i \eta^q_i = \text{identity} = \partial^{q+1}_{i+1} \eta^q_i,\]
5. \[\partial^{q+1}_i \eta^q_j = \eta^{q-1}_j \partial^q_{i-1} \quad \text{if} \quad i > j + 1,\]

- Generic Simplicial Set Theory (J. Heras, on previous work by F. J. Martín-Mateos)
- From 4 definitions and 4 theorems
- Instantiates 3 definitions and 7 theorems
- The proof of the 7 theorems involves: 92 definitions and 969 theorems
- The proof effort is considerably reduced
Formalizing with Coq/SSReflect

From digital images to homology in Coq:

- First order structures: possible also in ACL2.
- But ... finite structures: all the power of SSReflect.
- Joint work inside the ForMath project: J. Heras, M. Dénès, G. Mata, A. Mörtberg, M. Poza, V. Siles, ...
Conclusions and future work

Conclusions
- Algebraic Topology is a good place to formalization
 - The subject is rich enough (challenging tools and mathematics).
 - We have a program difficult to test (Kenzo).
 - We have a program with real-life applications (biomedical images).
- In our context (software verification), executability is important.
- Automation is necessary.
- Big endeavor, team work is mandatory.

Future work
- From execution to efficient execution.
 - Better algorithms (more math, more difficult to prove).
 - Improving running environments in the proving tools.
- Interoperability among the proving tools.