statistic
Interface ComputerArithmetic
- All Superinterfaces:
- statistic.UNKComputer
- All Known Implementing Classes:
- GammaDistribution, Mathematic
- public interface ComputerArithmetic
- extends statistic.UNKComputer
Field Summary |
static double |
MACHEP
|
static double |
MAXGAM
|
static double |
MAXLOG
|
static double |
MAXNUM
|
static double |
MAXSTIR
|
static double |
MINLOG
|
static double[] |
P
|
static double[] |
P0
|
static double[] |
P1
Approximation for interval z = sqrt(-2 log y ) between 2 and 8
i.e., y between exp(-2) = .135 and exp(-32) = 1.27e-14. |
static double[] |
P2
Approximation for interval z = sqrt(-2 log y ) between 8 and 64
i.e., y between exp(-32) = 1.27e-14 and exp(-2048) = 3.67e-890. |
static double[] |
Q
|
static double[] |
Q0
|
static double[] |
Q1
|
static double[] |
Q2
|
static double |
s2pi
|
static double |
SQTPI
|
static double[] |
STIR
|
MACHEP
public static final double MACHEP
- See Also:
- Constant Field Values
MAXLOG
public static final double MAXLOG
- See Also:
- Constant Field Values
MINLOG
public static final double MINLOG
- See Also:
- Constant Field Values
MAXNUM
public static final double MAXNUM
- See Also:
- Constant Field Values
s2pi
public static final double s2pi
- See Also:
- Constant Field Values
P0
public static final double[] P0
Q0
public static final double[] Q0
P1
public static final double[] P1
- Approximation for interval z = sqrt(-2 log y ) between 2 and 8
i.e., y between exp(-2) = .135 and exp(-32) = 1.27e-14.
Q1
public static final double[] Q1
P2
public static final double[] P2
- Approximation for interval z = sqrt(-2 log y ) between 8 and 64
i.e., y between exp(-32) = 1.27e-14 and exp(-2048) = 3.67e-890.
Q2
public static final double[] Q2
MAXGAM
public static final double MAXGAM
- See Also:
- Constant Field Values
STIR
public static final double[] STIR
MAXSTIR
public static final double MAXSTIR
- See Also:
- Constant Field Values
SQTPI
public static final double SQTPI
- See Also:
- Constant Field Values
P
public static final double[] P
Q
public static final double[] Q