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ABSTRACT

We investigate a new process for the decrease of the IEEE 802.11b Contention Window (CW) called
CW decrease, introduced by Ni et al. We give some mathematical analysis of the model that explains
the experimental results previously obtained. The analysis allows us to refine the MAC optimization
and reach the optimal asymptotical saturation throughput when the number of stations increases. We
also investigate other parameters such as the average waiting time, that lead us to introduce another
variant of the CW decrease that we call additive - as opposed to the multiplicative original scheme. We
provide some experimental results based upon simulation to validate our analysis. Surprisingly our global
goodput rate in the basic mode is kept from 7.4 Mbit/s with 5 stations to more than 7.3 Mbit/s with
100 stations, overperforming by 40% the original basic scheme and by 8% the scheme with the RTS/CTS
enhancement.
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1 Introduction

The 802.11b norm has received in the past years
a growing interest for its ability to offer relatively
wide-band radio networking. Applications cover a
large area of domains including computer network
wireless infrastructures, and high speed Internet ac-
cess for rural areas.

The underlying mechanism of the norm[1] is a 2-
layer protocol whose first part relies on a derivative
of the Binary Exponential Backoff protocol (BEB).
The system works as follows. Each station stores a
contention window (CW) size variable, which is an
integer W varying from CWmin to CWmax. Before
transmitting, a station observes the channel dur-
ing a silent security period called DIFS (for Dis-
tributed Inter-Frame Spacing, 50µs). Then the sta-
tion chooses a random number k in {0, . . . ,W − 1}.
The station waits during k slots (each of 20µs). If
the channel is occupied during one of these slots,
the station stops decrementing k, waits until a new
DIFS silent period is observed and then continues
decrementing k if new slots are empty. Once the k
empty slots have been waited, the station sends its
packet. The only way to know whether the packet
was received is the reception of an ACK, that is
sent after a SIFS (for Short Inter-Frame Spacing,

10µs) period by the receiving station. If a trans-
mission is unsuccessful (i.e. no ACK is received and
a DIFS period is observed immediately after emis-
sion), the CW size W of the sender is multiplied by
a constant factor, denoted as PF (the persistence
factor, denoted as η throughout this paper), up to
CWmax. In the 802.11b variant of the norm, we
have PF = 2, but other factors are considered in
the 802.11e release. In all the variants, in case of
success, the norm proposes to reset W to CWmin,
which is highly aggressive to the channel, especially
if it is close to congestion. Therefore an alternative
approach [11] is then to set:

W := max(CWmin, RF ·W ),

where RF is an appropriate reduction factor. This
is the basic mechanism that we study in this paper.
A typical value is RF = 1/PF but other alternative
features will be considered. An alternative mecha-
nism we will consider is to add a constant value ω
to W in case of failure, and withdraw it in case of
success, while staying within [CWmin, CWmax].

At this point we need to say that an addi-
tional mechanism, called RTS/CTS (for Request-
To-Send/Clear-To-Send), is included in the IEEE
802.11 families of norms. With this feature, the



sender first emits a small RTS packet to warn that
it will send a packet. If another station attempts
to emit at the same time, noone can hear any of
the messages, and the channel is free after a DIFS
period. Otherwise, the receiving station sends a
CTS after a SIFS period, and all the stations let
the sender emit its packet till completion. There-
fore, while consuming a share of the bandwidth, this
mechanism allows to pay a lower price for the colli-
sions. We need to stress that the lower the packet
size is, the less efficient it is, which makes it inappro-
priate for real-time voice applications for instance.

Already many research work has been done to
model the 802.11 window decrease process. Strong
simplifying assumptions are at the basis of some
models [6], while others focus on an individual sta-
tion while considering that the effect of the others
on the channel can be represented by an occupancy
probability p (see [3, 13, 14]), following an earlier
popular approach on CSMA [10, 2].

In fact, a closed loop effect naturally takes place
in the 802.11 features. Coarsely speaking, when
more collisions occur, the CW size in each station
increases, so that the collisions are less frequent. It
turns out, as derived for instance in [3], that this
norm, however, is not efficient when the number of
stations increases. As more and more stations ac-
cess the system, the time spent to collisions and
auto-regulation of the contention window increases
drastically, to the point that the total amount of
goodput tends to zero as the number of stations
grows, resulting in a very reduced bandwidth of-
fered to each individual.

The main reason for that is that no memory is
kept on the number of stations present in the sys-
tem, and as soon as a station emits one packet suc-
cessfully, it forgets any information on the past and
accesses again the channel with a probability that
do not consider the number of stations present in
the system. As a result, a number of collisions is
necessary to regulate the access probability, which
wastes the bandwidth for this simple purpose.

A key point in that difficulty is to know or not
at any point of time the number of stations that are
active, i.e., currently transmitting. Of course, some
simple paradigm would consist to handle the prob-
lem in a centralized way such as done in [5], but then
the approach looses precisely the flexibility brought
by the DCF mechanism in the IEEE 802.11 family
of norms (as opposed to the PCF mechanism that
directs the transmissions also in a centralized basis).
A series of works have addressed the problem of es-
timating the number of active stations. The seminal
work can be found in [4] and [6]. In [4] the assump-
tion is first made that all the stations are transmit-
ting with the same CW size W , and an estimate is
then done based on the number of observed occu-

pations c(B) during an observation period of B slot
times. The number of stations n is then estimated
by

n ≈ 1 +
E[c(B)](W + 1)

2B
,

and in return, the size of the window W is fixed
according to n. However, some instability problems
oblige the authors to introduce some tricky func-
tions that make the protocol more complex to im-
plement and to analyze. The question becomes even
more difficult when the number of active stations
varies. The alternative approach of [6] consists in
observing the total amount of idle slots in a trans-
mission time and setting:

n ≈ 1− p
Total Idle p · p =

W − 1

B − c(B)
,

using the above notation, and setting B equal to one
transmission time. Here again, some smoothing fac-
tors are necessary to make the protocol stable. The
authors argue that the capacity is globally preserved
but the resulting protocol implementation is again
quite complex.

Not only those approaches are somehow more
complicated, but performance parameters become
terribly difficult to analyze. For instance, it turns
out that most of these protocols - if not all - seem
to solve the bandwidth sharing problem by offering
almost all of the capacity to one station for some
(possibly long) periods of time. Some authors have
defended this behavior as positive and proposed to
implement it in the protocol [13]. Others view it as
a negative side-effect that should be avoided [8]. In
any cases, it is desirable to have a protocol that can
be analyzed and tuned correctly to that respect. In
particular, as will be shown in this paper, it turns
out that for some versions of the protocol, a station
can stay waiting for an infinite amount of time -
which should be avoided.

Another more confusing aspect addresses the
fairness aspects of the protocol. Indeed, as a sta-
tion gets further from the others, its transmission
rate decreases from 11 Mbit/s to 2 Mbit/s while the
remaining stations maintain their respective rates
from one to each other. As observed by [9], the
actual IEEE 802.11 norm solves the problem on a
Max-Min basis, that is, gives the same throughput
to all the stations, regardless of the fact they can
transmit to a lot more than 2 Mbit/s. We notice,
by the way, that all the above approaches will have
the same behavior since they do not consider the
effective rate of transmission (or the transmission
time of a packet) of the stations. Without address-
ing primarily this problem in the present paper (we
will only provide individual average waiting times
of the stations) we stress the importance of having
a protocol that can be analyzed properly.



To that respect, the slow CW decrease approach
is really attractive since the actual size of the win-
dows keeps an implicit memory of the stations
present in the system, avoiding any complicated es-
timation process. One can verify - either on simu-
lations and on a mathematical analysis - that the
throughput is efficiently distributed and tune the
protocol to address the points mentioned above. On
top of that, no more information on the system is
required than the success or the failure of each indi-
vidual attempt of the station to access the channel,
which fits exactly to the IEEE 802.11 norm assump-
tions.

The paper is organized as follows. The two next
sections are devoted to the mathematical analysis
of the protocols, with a particular emphasis on the
goodput and waiting time when the number of sta-
tions increases. The last one applies the theory into
some concrete simulation scenarios - applying re-
stricting parameters specified by the norm.

2 The multiplicative slow CW
decrease model

Following [11], we represent the contention window
decrease scheme by a Markov chain model where
each state is indexed by two integers (i, j). The
first integer i represents the stage of the process (a
class of fixed contention window size Wi) and j the
number of slots to wait before transmission. An
additional parameter, g = − log(RF )/ log(PF ) (re-
call η = PF ), allows to regulate the decrease of
the contention window size. We set W0 = CWmin

and Wm = CWmax. We also add the correction of
[14] on the fact that a station decrements its backoff
counter only when no packet is heard. We use for
this phenomenon the variable pc. Note that results
following the model of [11] are obtained for pc = 1,
while the real case is addressed by pc = p. (The
reader can also consider that coming from one sys-
tem of formulas to the other is equivalent to increase
the header of a packet by one slot of 20µs.) The
transition probabilities are then given as follows:

P [i,k|i,k+1]=1−pc k∈{0,...,Wi−2},
i∈{0,...,m},

P [i,k|i,k]=pc k∈{1,...,Wi−1},
i∈{0,...,m},

P [0,k|i,0]=(1−p)/W0 k∈{0,...,W0−1},
i∈{0,...,g−1},

P [i−g,k|i,0]=(1−p)/Wi−g k∈{0,...,Wi−g−1},
i∈{g,...,m},

P [i,k|i−1,0]=p/Wi k∈{0,...,Wi−1},
i∈{1,...,m},

P [m,k|m,0]=p/Wm k∈{0,...,Wm−1}.

We plot this process in Fig. 1 in the case g = 1 -

which will be the most important one studied in this
paper. Let {s(t), b(t)} be a bi-dimensional stochas-
tic process that follows these laws. Markovian prop-
erties show that, in this case, the process converges
almost surely to a stationary distribution, given by

πi,k = lim
t→∞

P [s(t) = i, b(t) = k], i∈{0,...,m}

k∈{0,...,Wi−1}.

The analysis allows to derive the following for-
mulas:

π0,0 = (1− p)∑g
j=0 πj,0,

πi,0 = pπi−1,0 + (1− p)πi+g,0
for 0 < i ≤ m− g,

πi,0 = pπi−1,0

for m− g < i < m,
pπm−1,0 = (1− p)πm,0.

2.1 Closed expressions

We derive some close expressions for small values of
g. If we set g = 1, then we have:

πm−1,0 = 1−p
p πm,0

πi,0 = pπi−1,0 + (1− p)πi+1,0, 0 < i < m.
(1)

So we write πm−j,0 = arj1 + brj2, for a, b ∈ IR,
where r1 and r2 are the roots of the polynomial

pX2 −X + (1− p).

We then derive:

Result 1 For g = 1, the distribution π·,· follows
the equation :

πm−j,0 =

(
1− p
p

)j
πm,0, 0 ≤ j ≤ m. (2)

It is then not difficult to see that, for all i ∈
{0, . . . ,m},

k=Wi−1∑

k=0

πi,k =

(
1 +

Wi − 1

2(1− pc)

)
πi,0.

and from that value we can derive the value of πm,0,
given that the congestion window size is given by
Wi = ηiW0 for some number η > 1.

Result 2 For g = 1, we have:

πm,0 =
2 · pm(1− pc)

1−2pc
1−2p ((1−p)m+1−pm+1) +W0

(1−p)m+1−(ηp)m+1

1−(η+1)p

.

(3)



A closed expression for the probability τ that the
terminal attempts to send a packet can be derived:

Result 3 For g = 1, the probability that a station
transmits in a randomly chosen slot time is given
by:

τ =
2(1− pc)

1−2pc +W0
1−2p

1−(η+1)p
(1−p)m+1−(ηp)m+1

(1−p)m+1−pm+1

. (4)

Proof. We simply derive the formula from τ =∑m
j=0 πj,0. �

A similar analysis can be done for all the val-
ues of g. The closed expression can be expected till
g = 4, after what several mathematical difficulties
can occur, as stated by the Galois theorem. Any-
way, the analysis is still valid after that value via a
numerical extraction of the roots of a polynomial.

For instance, for g = 2, the characteristic poly-
nomial is given by:

pX3 −X2 + (1− p),

which leads to:

Result 4 For g = 2, the distribution π·,· is given
by :

πm−j,0/πm,0 =[
1
2

(
1 +

√
1−p
3p+1

)(
1−p+

√
(1+3p)(1−p)
2p

)j

+ 1
2

(
1 +

√
1−p
3p+1

)(
1−p−

√
(1+3p)(1−p)
2p

)j]
.

(5)

2.2 Asymptotical behavior

In the remaining of this paper, we will study more
precisely the case g = 1. As our main interest in the
slow decrease process is the memory aspects of it,
we can consider the case m→∞. The asymptotical
function can be rewritten as:

τ =
2(1− pc)

1−2pc +W0
1−2p

1−(η+1)p

for p <
1

η + 1
, (6)

and 0 otherwise. We plot the τ function in Fig. 2.
We note that the value for p = 0 does not depend
on η, but the function abruptly reaches 0 when
p = 1/(η + 1). Following the analysis of [3], let
n the number of active stations in the channel, we
seek for the intersection point of one of (4) or (6)
with the function giving the probability that the
channel is free, given that all the remaining n − 1
stations have the same probability of access τ , and

all the accesses are independent processes (which is
obviously an approximation):

p = 1− (1− τ)n−1 (7)

or, with respect to τ

τ = 1− (1− p) 1
n−1 . (8)

Result 5 If pc is a non-decreasing function of p,
the functions (8) and (4) have a unique intersec-
tion point.

We note, in particular, that both the cases pc = p
and pc = 1 are handled by the theorem above.
Proof. Obviously the function (8) is continuous,
strictly increasing on [0, 1] from 0 to 1. The function
(4) can be rewritten as follows:

τ =
1

1 + 1
2(1−pc)

(
W0

1+···+(
(1−p)
pη )i+···+(

(1−p)
pη )m

1+···+(
(1−p)
p )i+···+(

(1−p)
p )m

− 1

) .

In order to show that the intersection point exists
and is unique, it sufficient to show that τ is non-
increasing. Since pc is non-decreasing with p and
W0 ≥ 1, it is sufficient to show that the function

x 7→ 1+···+(ηx)i+···+(ηx)m

1+···+xi+···+xm is greater than 1 and non-
decreasing as long as η ≥ 1. Then use the following
notations:

fk(x) =

j=m∑

j=k+1

xjak gk(x) =

i=k∑

i=0

xiai

and noticing that gk(x) + afk(x) = gk+1(x) +
fk+1(x), we have

1 + · · ·+ (ηx)i + · · ·+ (ηx)m

1 + · · ·+ xi + · · ·+ xm
=

m−1∏

k=0

gk(x) + afk(x)

gk(x) + fk(x)
.

It is then sufficient to show that each member of
the right-hand product is greater than 1 and in-
creasing. We can easily see it is greater than 1.
We note also that the derivate has the sign of
(η− 1)(f ′k(x)gk(x)− g′k(x)fk(x)). Recall that η ≥ 1
and

f ′k(x)gk(x)− g′k(x)fk(x))

=

j=m∑

j=k+1

jxj−1ak+1 +
i=k∑

i=1

j=m∑

j=k+1

(j − i)ak+1xi+j−1

≥ 0,

and therefore the function is non-decreasing. �

We leave to the reader the proof of the following
result:



Result 6 The functions (8) and (6) have a unique
intersection point.

From that on, we characterize the intersection
point (p∗, τ∗) when the number n of stations be-
comes large. From equation (6) we see that the
intersection point p∗ will verify p < 1/(1 + η). Sub-
stituting in (8) we have

τ∗ < 1−
(

η

η + 1

) 1
n−1

→ 0,

when n becomes large. As a result,

Result 7 Under our model’s assumptions (i.e.
supposing that the stations’ processes to access the
channel are independent), and with an infinite max-
imum window size, the convergence point verifies
p∗ → 1/(1 + η) when n becomes large, and

τ∗ =
1

n
ln

(
η + 1

η

)
+ o

(
1

n

)
. (9)

This result is extremely important from the the-
oretical point of view. It shows that naturally the
process tends to share the bandwidth between the
processors. We show in the next section that this
indeed governs the saturation throughput when the
number of stations becomes large.

2.3 Saturation throughput

Following the analysis of many authors, such as
[10, 3], we can study a renewal process drawn in
Fig. 3, that can be described as follows:

the W state is when the system has an idle slot
(wait),

the Q state is when the system has had at least
one query, but it is not known if a conflict has
occurred (query),

the P state is when the system successfully trans-
mits a packet (payload).

Theoretically speaking, it is a semi-Markov process,
and the (discrete) transition probabilities are given
by the arrows. Noting πw, πq and πp the stationary
probabilities of the corresponding discrete Markov
chain (πw + πq + πp = 1), we have the following
transition equations:

πw = πp + (1− τ)nπw +
[
1− nτ(1−τ)n−1

1−(1−τ)n

]
πp,

πq = [1− (1− τ)n]πw,

πp =
[
nτ(1−τ)n−1

1−(1−τ)n

]
πq.

(10)

Therefore, if we note µw, µq and µp the expected
time spent in a state before a transition during the
process, the proportion of time spent in the stage P
(noted Thr as it is the effective saturation through-
put of the channel) will be given by (for more details
see for instance [12, pp. 130-132]):

Thr =
µpπp

µwπw + µqπq + µpπp
(11)

Solving (10) and substituting in (11) we obtain:

Thr =
1

1 +
µw+µq−µq(1−τ)n

µpnτ(1−τ)n−1

(12)

The optimal τ+ for the throughput is the one that
minimizes the denominator and after some manip-
ulation, we can see that if it exists it verifies:

µw + µq − µq(1− τ+ )n − nτ+(µw + µq) = 0 (13)

From that we can derive that

τ+ =
1

n

(
1− µq

µw + µq
(1− τ+)n

)
≤ 1

n
,

and τ+ = K
n + o( 1

n ) for some K ≥ 0 and the K
constant verifies:

(1−K)eK =
µq

µw + µq
.

The solution can be found quite easily by introduc-
ing the Lambert’s w function (or the Omega func-
tion) satisfying w(z)ew(z) = z and that can be de-
veloped as

w(x) =
∑

p≥1

(−p)p−1

p!
xp.

Then the optimal τ+ can be approximated by

τ+ =
1 + w

(
− 1
e

µq
µw+µq

)

n
+ o(

1

n
) (14)

(where e = exp(1)) and the corresponding satura-
tion throughput tends to

Thr+ =

(
1− µq/µp

w(− 1
e

µq
µw+µq

)

)−1

. (15)

Making the connection between the equations
(9) and (14), we obtain:
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Figure 1: The Markov chain in the case g = 1.
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Result 8 Under our model’s assumptions (i.e.
supposing that the stations’ processes to access the
channel are independent), the optimal saturation
throughput of the channel will be reached automat-
ically in accordance with the number of stations by
setting

η =


 − µq

µw+µq

w
(
− 1
e

µq
µw+µq

) − 1



−1

(16)

along with m =∞.

At first glance, one can be surprised that W0

plays no role to reach the asymptotical saturation
throughput. This fact is not so strange because
as the number of stations increases, the process re-
balances the weights in higher states than W0 and
reaches this equilibrium. In Fig. 5, we plot the
function x 7→ 1/(−x/w(−x/e) − 1) that governs
the value of η in function of µq/(µw + µq). We
see that the condition η > 1 turns to translate to
µq/(µw + µq) > 0.613 . . . , a condition that is eas-
ily full-filed, since the query time implies that an
acknowledgment is sent, and therefore µq > 2µw.

Anyway, we show in the next paragraph that this
mechanism has nevertheless some significant draw-
backs that make its use significantly sensitive.

2.4 Asymptotical waiting time

An important parameter to study is the asymptot-
ical waiting time when the number of station in-
creases. Naturally, it is clear that the more sta-
tions are present in the system, the less probability
there is that a station will access the system. We
show, however, that the asymptotical behavior of
the present mechanism is much worse.

Result 9 Suppose a station follows a slow CW de-
crease mechanism with m =∞, and observes a col-
lision probability of p ≥ 1/(1 + η2). Then the av-
erage number of waited timeslots before emission is
infinite. If p < 1/(1 + η2), the average number of
waited timeslots is given by:

E[W ] =
1

6(1− pc)

1
1−(η2+1)p − 1

1−2p

1−2pc
1−2p +W0

1−p
1−(η+1)p

. (17)

Else if m <∞, then the number of waited timeslots
is given by:

E[W ]= 1
6

1
1−pc

(
(1−p)m+1−(η2p)m+1

1−(η2+1)p
− (1−p)m+1−pm+1

1−2p

)

1−2pc
1−2p

((1−p)m+1−pm+1)+W0
(1−p)m+1−(ηp)m+1

1−(η+1)p

.

(18)

Equation (17) shows that the waiting time tends
to infinity when p→ 1/(1 + η2). As a result, when
the number of stations increases, p grows from 0 to
1/(1 + η), leaving E[W ] infinite. This result clearly
shows a major drawback of the slow CW decrease
mechanism, since there is then no guarantee that
a packet will be emitted within a short amount of
time. The surprising point with this result is that
since 1/(η2 + 1) > 1/(η + 1), a finite number of
stations is sufficient to reach this behavior.
Proof. The expected waited time before leaving
a state (i, k), k ≥ 0, is given by

∞∑

i=0

(i+ 1)pic(1− pc) = 1/(1− pc),

and therefore the general expected waited time is

E[W ] =
i=m∑

i=0

k=Wi−1∑

k=0

kπi,k/(1− pc). (19)

Given that for k ≥ 1, πi,k = πi,0(Wi−k)/Wi/(1−pc)
and

k=i−1∑

k=1

k2 =
2i3 − 3i2 + i

6
,

and associating to equation (2) we obtain:

E[W ] =

i=m∑

i=0

π0,0

(1− pc)2

(
p

1− p

)i [
W 2
i − 1

6

]
. (20)

We set Wi = ηiW0. We note that for p ∈ (1/(η2 +
1); 1/(η + 1)), the series does not converge when
m→∞. Also, reintroducing (3), we obtain (18) af-
ter some manipulation. For p < 1/(η2+1), since the
series is bounded in absolute value, letting m→∞
gives (17). Hence the result. �

This last result advocates for a mechanism that
will respect waiting times more fairly. In the next
section we present an alternative mechanism that
keeps the good properties of the slow decrease
paradigm while avoiding the presented drawbacks.

3 An additive increase/decrease
model

In this section, we simply setWi = W0+ω·i (instead
of Wi = ηiW0) and show the behavior obtained by
this assumption. We take here the opposite course
to some fashion that was introduced by the MIMD
mechanisms that work well indeed under some spe-
cific conditions [7]. We argue that, however, in our
case the conditions are somehow different. Indeed



the maximum desirable CW size is a critical param-
eter since a too high value will induce huge delays
for some of the terminals, and a restricted one will
erase the memory effects of the mechanism, which
is what we try to stimulate in the present study. In
that context, lowering the access to high values of
CW seems to be reasonable.

3.1 The model studied

We slightly change the previous model as follows.
We replace the previous parameter p by two pa-
rameters p and q, and study the following variant of
the process. When the process is in a state (i, 0), it
goes with probability p to the upper stage, with the
probability q on the lower stage, and stays in the
same stage with probability (1 − p − q). The evo-
lution equations can be rewritten as follows (with
g = 1):

P [i, k|i, k] = pc k∈{1,...,Wi−1},
i∈{0,...,m},

P [i, k|i, k + 1] = 1− pc k∈{0,...,Wi−2},
i∈{0,...,m},

P [0, k|0, 0] = (1− p)/W0 k∈{0,...,W0−1},
P [i− 1, k|i, 0] = q/Wi−1 k∈{0,...,Wi−1−1},
P [i, k|i− 1, 0] = p/Wi k∈{0,...,Wi−1},

i∈{1,...,m},
P [i, k|i, 0] = (1− p− q)/Wi k∈{0,...,Wi−1},

i∈{1,...,m−1},
P [m, k|m, 0] = (1− q)/Wm k∈{0,...,Wm−1}.

(21)
We plot this process in Fig. 4. Let {s(t), b(t)}

be a bi-dimensional stochastic process that follows
these laws. Again, markovian properties show that
the process converges almost surely to a stationary
distribution, given by

πi,k = lim
t→∞

P [s(t) = i, b(t) = k], i∈{0,...,m}

k∈{0,...,Wi−1}.

And similar formulas can be derived:

pπ0,0 = qπ1,0,
(p+ q)πi,0 = pπi−1,0 + qπi+1,0

for 0 < i < m,
qπm,0 = pπm−1,0.

(22)

We then derive:

Result 10 The distribution π·,· follows the equa-
tion :

πj,0 =

(
p

q

)j
π0,0, 0 ≤ j ≤ m. (23)

Then the basic state is obtained as:

Result 11 We have:

1
πm,0

=
[(1+

W0−1

2(1−pc) )(q−p)+ pw
2(1−pc) ]q

m+1

pm(q−p)2

− [(1+
W0+mω−1

2(1−pc) )(q−p)+ qω
2(1−pc) ]p

m+1

pm(q−p)2 .

(24)

Proof. Similarly as before, we have

1 =
i=m∑

i=0

(
1 +

W0 + iω − 1

2(1− pc)

)(
q

p

)m−i
πm,0.

And the result comes from the simple fact (that the
reader can check by induction) that:

i=m∑

i=1

ixi =
x− (m+ 1)xm+1 +mxm+2

(1− x)2
.

�

And consequently we have the similar result:

Result 12 If we denote as before τ the probability
that a terminal will access the channel, given that it
observes a probability p of failure, we have:

τ =
1

1 + W0−1
2(1−pc) + ω

2(1−pc)
p
q−p

1−(m+1)( pq )
m

+m( pq )
m+1

1−( pq )
m+1

.

(25)

3.2 Optimal saturation throughput

If then we tend to an asymptotical result, i. e.
m =∞, we have for p < q:

τ =
1

1 + W0−1
2(1−pc) + ω

2(1−pc)
p
q−p

. (26)

In Fig. 6 we draw various curves for τ depend-
ing on ω. As expected, τ tends to zero as long as
p = q. The exact value of ω is a critical parameter
for the dynamicity of the process. A too small value
will lead to a slow convergence of the rates (and
therefore many additional collisions before regulat-
ing the value). A too high one will generate for at
least some of the processes excessively high levels of
CW , and therefore high levels of delay.

The idea for the use of q is to turn it into an
action in case of success. To that purpose, we can
write q = (1−p)(1−δ), where δ ∈ [0; 1] is a parame-
ter that drives between the action of decreasing the
window or leaving it at the same size. The condition
p = q turns to become p = (1 − δ)/(2 − δ). Given
that, we look for an asymptotical intersection point
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in (p, τ) with equation (8), where n is the number
of terminals. Similarly as before, when n becomes
large, we obtain p→ (1− δ)/(2− δ) and

τ =
1

n
ln(2− δ) + o

(
1

n

)
. (27)

At that point we see that the value of q directs
the access probability to the channel. Then the op-
timal mode can be reached asymptotically as ex-
plained in the following.

Result 13 Under an additive model to
add/decrease the congestion window, and suppos-
ing the stations’ processes to access the channel are
independent, then the optimal saturation throughput
can be obtained by flipping a coin that will trans-
form an increase action into a stationary action
with probability:

δ = 2 +

µq
µw+µq

w
(
− 1
e

µq
µw+µq

) (28)

The corresponding saturation throughput is
again given by the equation (15).

3.3 Asymptotical waiting time

We here give some considerations on the waiting
time that prove the correctness of the additive slow
CW decrease mechanism. In order to simplify the
notations, we switch back to the notations with q
and give some analytical evidence on the properties
in question.

Result 14 A terminal following an additive slow
CW decrease Markov process observing a probabil-
ity p < q of collision and with an infinite number m
of states experiences an average waiting number of
slots of

E[W ] =
q(q − p)(W 2

0 + 1) + 2W0ωpq + ω2pq(3p−q)
q−p

3(1− pc)2
[
(q − p)

(
2 + W0−1

1−pc

)
+ ωp

1−pc

] .

(29)
As a result, when p→ 1

2 , we have

E[W ] ' ω

3

1

q − p . (30)

This result is really important since it shows that
asymptotically, the waiting times behaves like the
inverse of q − p, which grows like the number of
stations. Therefore, the bandwidth is not only effi-
ciently shared, but each of the stations will receive
on average a even part of it and will observe the
same average waiting time.

Proof. (short) Summing up the waited slots by
stages of the Markov process, we obtain similarly as
before:

E[W ] =
π0,0

(1− pc)2

i=m∑

i=0

(
p

q

)i
W 2
i − 1

6
(31)

The essential ingredients are manipulations similar
to those previously done. A useful formula that is
necessary for the proof is simply:

i=m∑

i=1

i2xi = −x+3x2+(m+1)2xm+1

(1−x)3

− (2m2+6m+3)xm+2+m(m+4)xm+3

(1−x)3 .

�

In the next section we give some experimental
evidence on the accuracy of these models.

4 A simulated slow CW de-
crease mechanism compared
to the analysis

We have implemented a small simulator of the
802.11b mechanism, that takes into account all the
details of the norm. The channel bit rate is set to
11 Mbit/s, the packet payload to 1500 bytes, short
headers are used, and the propagation delay is ne-
glected. Each station is managed individually and
accesses to the channel in a slotted fashion with re-
spect to its own counter. We compare in the test
three algorithms:

The basic 801.11b scheme with PF = 2, RF =
0, CWmin = 32, and CWmax = 1024. In case
of failure of transmission in state CWmax, we
choose to stay in this stage.

A slow CW decrease multiplicative mecha-
nism with η = PF = 1/RF (i.e. g = 1),
CWmin = 32, and CWmax = 1024. Accord-
ing to the previous analysis, and based upon
a rate of 11 Mbit/s and an average packet
size of 1500 bytes, we set η = 5.5 on the basic
mode, and η = 2 with RTS/CTS.

A slow CW decrease additive mechanism
with ω = 32, CWmin = 32, and CWmax =
1024. According to the previous analysis, and
based upon a rate of 11 Mbit/s and an average
packet size of 1500 bytes, we set δ = 0.81910
on the basic mode, and δ = 0.49434 with
RTS/CTS. In case of success, with probabil-
ity δ, we do not change the CW size, and with
probability 1− δ, we decrease it by ω. In case
of failure, CW is increased by ω.
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Figure 7: Simulation of the obtained rates with the
basic mechanism.
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Figure 8: Simulation of the obtained rates with the
RTS/CTS mechanism.

Given the relatively small value of CWmax, it is
not realistic to present experiments with more than
100 stations. However, further experiments with
increased CWmax showed that our approach is also
satisfactory for several hundreds of stations.

In the first experiment, we give to each of the n
stations a volume of 100 Mbytes/n to transmit. We
let them the simultaneous access to the channel, and
we compute the total volume of goodput divided
by the time necessary to complete all the transmis-
sions - we call that number the global rate. We also
compute the total number of packets that were sent
during a given period after stabilization of the pro-
cesses, that is between t = 50s and t = 100s - we call
the obtained rate the sustained rate. The difference
between these two parameters indicates the speed of
convergence of the process. We plot the results in
Figs. 7 and 8. For the basic mechanism (Fig. 7), the
gains obtained with the additive mechanism are of
more than 40% for 100 stations compared to the ba-
sic mechanism, and 3% with the RTS/CTS mecha-
nism (while losing 1% for small number of stations).
We note that the obtained rate without RTS/CTS
is on top of 8% of the norm using RTS/CTS. This
shows that even if RTS/CTS cuts the optimization,
the improvement is such that the basic mechanism
without RTS/CTS becomes more efficient. In this
context, only the hidden terminal problem justifies
the use of RTS/CTS.

In the second experiment, we start with a bench
of 100 stations having each 1 Mbyte to transmit.
Then at time t = 50s a new series of 10 stations
(numbered from 100 to 109) arrive with a volume
of 100 kbytes to transmit. We plot the time of com-
pletion of the processes for the different stations
in Figs. 9 and 10. We observe - generally speak-
ing - that the IEEE 802.11 standard and the slow
CW decrease multiplicative mechanism experience

a larger deviation than that of the additive mech-
anism. However, we notice that the slow CW de-
crease additive mechanism observes a larger devi-
ation for the first 100 stations with the RTS/CTS
mechanism. This and Fig. 8 showing some larger
difference between the global and the sustained
rates give some insight that the process does not
converge very quickly to the asymptotical behav-
ior. This is probably due to the introduction of the
q parameter that lowers the impact of success and
failure rates in the congestion window evolution. It
suggests that if this problem becomes critical, more
information on the channel should be integrated in
the process.

5 Conclusion

In this abstract, we have derived exact formulas
for small values of g for the slow congestion win-
dow decrease 802.11 WLAN mechanism, with mul-
tiplicative and additive evolution mechanisms. Our
analysis has shown that both can naturally reach
the asymptotical optimal saturation throughput of
the channel regardless of the number of stations,
but the multiplicative mechanism can introduce in-
finite waiting times when CWmax is infinite and the
number of stations becomes large. Therefore we
recommend the use of an additive mechanism that
distributes more evenly the channel, and has finite
waiting times. Experience has shown that even with
limited CWmax those two protocols behave better
than the IEEE 802.11b one, to the goodput point
of view and waiting time one. The additive mecha-
nism keeps remarkably well the optimal saturation
throughput of the channel when the number of sta-
tions increases.

Many questions remain open. Space is lacking
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Figure 9: Completion times for the stations with the
basic mechanism.
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Figure 10: Completion times for the stations with the
RTS/CTS mechanism.

here to deal with the fairness question. Other mech-
anisms in the same family (g > 1, Wi = W0 + i2ω)
seem also promising to many respects. Hidden ter-
minal questions, of course, remain an important is-
sue.
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